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1 Introduction

The statistics of the temperature anisotropies in the cosmic microwave background (CMB)

are measured by the Planck satellite to an unprecedented accuracy. This allows to effi-

ciently probe, in addition to higher-order correlations, i.e. possible non-Gaussianity, the

detailed structure of the two-point correlations, i.e. possible statistical anisotropy.

There is a number of anomalies already in the present data, which have raised a lot

curiosity both from the theoretical side as well as from the data analysis side [8, 15, 28,

30, 32, 39–44, 51, 55, 56, 65]. In particular, the hemispherical asymmetry, first reported

by [22], seems a quite unexpected feature within the standard model of cosmology and

hasn’t yet been satisfactorily traced to a possible systematic error. The question whether

the universe is odd was asked in [45], and there are recent investigations [26, 35, 36] finding

hints of evidence for a positive answer.

This prompts to look for possible cosmological origins of odd-parity statistical

anisotropies. In the present study, we investigate the effects of noncommutative geom-

etry to the primordial spectrum of perturbations, usually assumed to be generated by

quantum effects during inflation or shortly afterwards. The observational implications

are derived, in terms of the harmonic coefficients of the CMB spectrum, and the non-

Gaussianity parameter fNL. We find that in general the noncommutativity of spacetime

geometry induces parity violating modulations of the spectra of fluctuations, thus gen-

erating distinct signatures in the statistics of CMB. In particular, this suggests that the
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hemispherical asymmetry (and various other anomalies) could originate from the funda-

mental properties of spacetime that are relevant at the vast energy scales at play in the

inflationary epoch. [14] remarked that spacetime noncommutativity can be constrained by

the statistics of inflationary fluctuations. The power spectrum has been computed [38, 63]

and various other aspects of noncommutative inflation have been discussed in the literature

e.g. [4, 10, 53, 57]. The CMB constraints beyond the power spectrum have been explored

also [1, 3, 34, 46]. Here will adopt the formalism of [1]. What is new in particular, is that

we point out the presence of odd signatures and compute the structure of the two-point

and three-point correlators in more detail and generality than previously.

We also clarify an ambiguity of the results, which forces us to introduce an additional

parameter. To assess the robustness of the results, we consider in addition the alternative

approach of [37]. It becomes clear that the details of the predictions can depend upon the

particular model, but there are generic features which appear already in the simplest cases

(in particular, in the case of canonical noncommutativity with constant θ in the comoving

frame). These nontrivial statistical features may thus be present, at an observable level,

even in the simplest inflationary ΛCDM models, if one takes into account the effect of

spacetime uncertainty principle on the inflationary fluctuations.

However, other means of generating parity violations can be introduced too. A simple

way is to assume an inhomogeneity present at the early universe. [21] considered that a large

scale perturbation of the curvaton field might result in a power asymmetry. [62] calculated

the CMB pattern from a single superhorizon perturbation, which indeed shows couplings

between adjacent multipoles. This is different from the approach of considering dipole in the

primordial spectrum, which introduces adjacent-mode correlations for the anisotropies of

the random fluctuations at all scales, as will become clear below. One may also contemplate

on possible parity-violating couplings of the inflaton field. [5] has considered the possible

role of Chern-Simons terms [13]. Finally, spontaneously broken isotropy, occurring due to

imperfect dark energy, has been shown to produce odd modulations [24, 25]. There are

qualitative differences to the present case, which will be clarified in section 5.3.

In the following section 1 we review the basic results of inflationary perturbations

and discuss how these can be applied when the spacetime is noncommutative. We then

implement this in section 3 in the case of canonically deformed spacetime commutation

relations and in section 4 in a framework based on deformed Heisenberg algebra of quantum

fields. We are then ready to discuss the observable patterns in the CMB sky. The properties

of the two-point functions and of the non-Gaussianities are clarified in section 5, and

section 6 is a brief conclusion. The CMB two-point correlation in terms of the multipole

expansion of the primordial spectrum is given in the section 5.1.

2 Curvature perturbation in non-commutative inflation

In the vast majority of models, primordial perturbations originate from quantum fluc-

tuations of light scalar fields produced by the inflationary expansion. Their properties

depend on the physics operating at the very high energy scales present during inflation.

It is conceivable that physics at such high energies becomes inherently non-local; such
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models can be effectively described by noncommutative theories. Here we are interested

in studying primordial perturbations generated in noncommutative theories of inflation.

We treat gravity as a classical background which is not affected by the noncommutative

effects. This may be justified in the case that the scale of noncommutativity is sufficiently

lower than the Planck mass MP , Θ− 1

2 ≪ MP . Then we may also, as usually, bypass

the transplanckian problem and assume the Bunch-Davies vacuum state for the scalar

field fluctuations. In this approach the noncommutativity affects only the properties of

quantum fluctuations generated during inflation.

To keep the discussion transparent, we restrict our analysis on general single field

models where primordial perturbations effectively arise from fluctuations of a single scalar

degree of freedom φ while additional scalars may affect the background evolution. This

class of models obviously contains the standard single field inflation in which case φ is

the inflaton. In general, however, φ can be a scalar field different from the inflaton-like

fields which dominate the energy density. Well known examples are the curvaton model

and modulated reheating scenario where primordial perturbations can arise solely from

fluctuations of a light field φ which remains subdominant during inflation but affects the

expansion history at a later stage [17, 48].

The primordial perturbations are conveniently characterized by the curvature pertur-

bation ζ which measures fluctuations in the spatial curvature on uniform energy density

hypersurfaces. Since we take gravity as a classical background which is not affected by the

noncommutative effects, the curvature perturbation can be computed using the δN formal-

ism in close analogue to the standard commuting case. On superhorizon scales we can write

ζθ(t, x̄) = N ′(t, ti)δφθ(ti, x̄) +
1

2
N ′′(t, ti)δφθ(ti, x̄)

2 + · · · , (2.1)

where the subscript θ is introduced to denote noncommutative variables. The scalar

field perturbations δφθ generated during inflation are evaluated on a uniform curvature

hypersurface ti soon after the horizon crossing of all the modes of interest. Their properties

differ from the corresponding commuting quantities δφ0 as we will discuss below. The

function N(t, ti) measures the number of e-foldings of a classical Friedmann-Robertson-

Walker (FRW) universe from the uniform curvature hypersurface at ti to a uniform

density hypersurface at some final time t when the universe is evolving adiabatically. The

primes denote derivatives with respect to the classical background field φ. The derivatives

of N(t, ti) describe entirely classical properties of the theory and their values coincide

with the corresponding commutative theory. The curvature perturbations produced in a

noncommutative and commutative theory with the same classical solutions therefore differ

only by the different properties of δφθ and δφ0. We turn to discuss the relation between

δφθ and δφ0 in more detail after briefly reviewing some standard results for δφ0.

2.1 The mode functions in the commutative case

We consider the FRW metric in terms of conformal time τ and including scalar perturba-

tions in the Newtonian gauge in the absence of shear [52]:

ds2 = −a2(τ)
[

dτ2 (1 + 2Φ)− dx2 (1 + 2Φ)
]

. (2.2)
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A scalar field ψ can be expanded in terms of the annihilation and creation operators as

ψ(x) =

∫

(

uk(τ)e
ik·xak + u∗k(τ)e

−ik·xa†k

) d3k

a(τ)(2π)3
. (2.3)

The operators satisfy the canonical commutation relations. The canonical momentum can

then be identified as

π(x) =
d

dτ
(a(τ)ψ(x)) ≡ (aψ)′, . (2.4)

mode functions u(τ) obey the time evolution equation

u′′k +

(

k2 − a′′

a

)

uk = 0 , (2.5)

with the well known Hankel function solutions that, when matched with the initial Bunch-

Davies vacuum at early times, reduce at late times outside the horizon to

uk(τ) =
e−ik(τ−τi)√

2k

(

i

kτ
− 1

)

, (2.6)

u′k(τ) =
ike−ik(τ−τi)√

2k

(

1− i

kτ
− 1

k2τ2

)

. (2.7)

The spectrum of scalar metric perturbation Φ in the conformal Newtonian gauge is then

related to the spectrum of the field fluctuation as

PΦ(k) =
16πG

9ǫ
Pψ(k) , (2.8)

and evaluated at the horizon crossing a(η)H = k, where the Hubble rate is approximately

constant when the slow-roll parameter

ǫ ≡ − Ḣ

H2
, (2.9)

is small. The spectrum of the metric perturbation Φ0 in standard single field inflation can

be known to be given by

PΦ0
(t, k) =

8πG

9ǫk3a2(t)τ2(t)
. (2.10)

3 Canonical noncommutativity

A canonical way of deforming the spacetime is to introduce the commutation relations for

the coordinate operators

[x̂µ, x̂ν ] = iθµν , (3.1)

where in the simplest case θµν is an antisymmetric constant matrix of dimension length

squared. It is well known that this is the exact low-energy limit of open string theory with

a constant antisymmetric background field [60]. In general, a commutation relation of the

form (3.1) induces the uncertainty relation for coordinates

∆xµ∆xν ≥ 1

2
|θµν | , (3.2)
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so that a spacetime point is heuristically replaced by a Planck cell. The ordinary

coordinates may then be thought to be obtained by coarse-graining over scales smaller

than the fundamental scale of order
√

|θ| . Thus, noncommutative spacetime provides a

framework that is compatible with generic features of quantum gravity like the uncertainty

principle and nonlocality.

The commutation relations (3.1) generally assumes more complicated form when ex-

pressed in alternative coordinate systems. It is thereby essential to specify in which frame

this relation is taken to hold as written down above. In cosmology, a natural frame to

consider is the comoving one. We call the physical scale θph
µν , whereas θµν is the matrix

corresponding to the coordinates of an observer, to whom this matrix then is a constant

throughout the evolution of the universe. We perform the computations in the comoving

frame, but in the end translate the result into the physical scale employing the relations

θph
0i = a(t)θ0i(t) , θph

ij = a2(t)θ0i(t) , (3.3)

where the θµν here and in the following is evaluated in the comoving coordinates.

Consistent statistics in noncommutative spacetime [2] require deformation of the quan-

tum fields by the exponential operator defined by the following relation:

ϕθ(x) = ϕ0(x) exp

(

− i
2

←−
∂ µθ

µν−→∂ ν
)

, (3.4)

where the lower index θ refers to the deformation, so ϕ0 is the corresponding field in the

commutative case. In the following we will be interested in the two-point correlation of

the inflaton field in this setting. This implies that the vacuum expectation value of the

two-point function can now be written as

〈0|ϕ†
θ(x)ϕθ(x

′)|0〉 = e−
i
2
∂µθ

µν∂ν′ 〈0|ϕ0(x)ϕ0(x
′)|0〉 . (3.5)

Writing this in terms of the Fourier image φθ(k, t) defined by

ϕθ(x) =

∫

d3k

(2π)3
φ(k, t)eik·x , (3.6)

we obtain

〈0|ϕθ(x)†ϕθ(x′)|0〉 =

∫

d3k

(2π)3
e−

i
2
(kiθ

i0∂t′−∂tθ0iki)〈0|φ†0(k, t)φ0(k, t
′)|0〉eik·x (3.7)

where we have used the fact that in the usual case θ = 0 (only) the different wavemodes

are uncorrelated,

〈0|φ†0(k, t)φ0(k
′, t)|0〉 = (2π)3Pφ0

(k, t)δ3(k− k′) , (3.8)

where Pϕ(k, t) is the power spectrum. Let us call the time-space components of the non-

commutativity the three-vector ~θ as

θ0i ≡ ~θi . (3.9)
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By comparing the form (3.7) to the usual case we readily infer that

〈0|φ†θ(k, t)φθ(k, t)|0〉 = lim
t→t′

e−
1

2

~θ·k(∂t+∂t′) × 〈0|φ†0(k, t)φ0(k, t
′)|0〉 (3.10)

= (2π)3Pφ0

(

k, t− 1

2
~θ · k

)

.

Consider then the spectrum of metric perturbation (2.10) in near de Sitter space where H

is approximately constant is given by

τ ≃ −1

Ha(t)
e−Ht . (3.11)

Using this we can immediately combine equations (3.10) and (2.10) to obtain the spectrum

in noncommutative geometry. Evaluated at the horizon crossing, we have

PΦθ
(k) = PΦ0

(k)eH
~θ·k . (3.12)

Thus the spectrum will be direction-dependent. Furthermore, it is not parity invariant.

We see that the leading correction is a dipole with an amplitude A1m ∼ |~θ| and blue-tilted

spectral index n1,m ≃ 2. The next correction is the even-parity quadropole term, with an

amplitude A2,m ∼ −|~θ|2 and spectral index n1,m ≃ 3, and so on.

However, we have to choose the consistent parts of the correlator in order to obtain

a physical result. As clear from the subsection 5.1, the odd multipole modulations should

have imaginary coefficients, otherwise the result is not sensible as the real-space correlators

and the CMB sky would not turn out real. This would be cured if we promote ~θ into

an imaginary parameter but this seems inconsistent with 3.1. Therefore we adopt the

following prescription

〈. . . 〉 → α〈. . . 〉M + i(1− α)〈. . . 〉A , (3.13)

where 〈. . . 〉 denotes schematically some a correlator, 〈. . . 〉M is its self-adjoint, and 〈. . . 〉A
its anti-self-adjoint part. Then α ∈ [0, 1] is a parameter which corresponds to some kind

of phase. [1] considered only the self-adjoint part of the correlators, which corresponds

to α = 1 in our parametrization. However, we do not know any physical reason why

the remaining part should not contribute to observed correlations. As we are unable to

determine the value of α from first principles, it is left as a parameter to be determined

by observations. We then introduce the notation

expα(x) ≡ α cosh (x) + i(1− α) sinh (x) . (3.14)

In this prescription, the result (3.12) becomes

PΦθ
(k) = PΦ0

(k) expα(H
~θ · k) , (3.15)

which is the main result of this section.

The conceptual problem noted above appears in alternative frameworks too and is

thus not merely a possible inconsistency in of the particular formalism employed here. In

particular, one could also start by expanding the action in the noncommutative parameter

– 6 –
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and derive the correlations of the perturbations from the ensuing equations of motion. One

obtains also then imaginary results, see e.g. the four-point function calculated by [14]. It

can be pointed out also that the problematics of observing correlations of noncommuting

observables are independent of the nature of noncommutativity. Noncommutativity

between space and time has not yet been put into theoretically rigorous footing but

generically seems to imply unitarity violations [12, 23]. Though in open string theory with

a constant electric background, which is supposed to exhibit noncommutativity between

space and time, these problems are absent [59], the noncommuting field theory with

constant θµν can be recovered from string theory only in the case of magnetic background

field which then corresponds to vanishing ~θ. The need for the prescription (3.13) would

nevertheless reappear for higher order correlations even when ~θ = 0 as will be seen in

section 5.4. One may speculate that beyond the semiclassical approximation (i.e. taking

fully into account the noncommutative quantum effects also on the gravity sector), the

results would turn out unique and consistent.

4 Deformation of the Heisenberg algebra

Violation of microcausality in the spirit of (stringy) uncertainty principle can also be de-

scribed by imposing noncommutativity of quantum fields [16] (instead of the coordinate

operators, as in the previous subsection). Consider the following equal-time commutation

relations in expanding spacetime

[φ(x, τ), φ(y, τ)] =
iµ2(τ)

a2(τ)
f(x− y) , (4.1)

[π(x, τ), π(y, τ)] = 0 , (4.2)

[φ(x, τ), π(y, τ)] =
i

a2(τ)
δ(x − y) . (4.3)

For notational convenience we parametrize µ(τ) = µ0a(τ)
n
2 , where the constant where µ0

is the characteristic scale of microcausality violation with the dimension dim[φ]-dim[f ]/2.

The scale-factor dependence is added because we want to consider also the case where the

form of the commutator is constant in comoving coordinates, n = 2. The time-dependence

of the effective parameter µ does not affect the computation and we return to the different

choices in the analysis of the results. The derivation here follows closely [37], where n = 0.

The difference to the usual case is now only the odd function f(r) appearing in the first

commutator. It is useful to note that by defining the field ψ(x) as1

φ(x) = ψ(x)− µ2(τ)

2a(τ)

∫

f(x− z)π(z, τ)d3z , (4.4)

we recover canonical commutation relations for the pair (ψ, π). This observation allows us,

analogously to the previous subsection, to relate correlations in the noncommutative case

to the correlators in the standard case. In particular, one may check that if the field ψ

satisfies the equations for standard inflaton we described in section 2.1, one can translate

1The factor 1/a(τ ) was missing in eq. (6) of [37].
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those conventional results into the noncommutative set-up (4.1)–(4.3) by employing the

shift (4.4). The noncommutative inflaton field is then expanded is terms of the mode

functions uk introduced in section 2.1 as

φ(x) =

∫

d3k

(2π)3

[

(

uk(τ)−
µ2(τ)

2
F (k)u′k(τ)

)

eik·xak

+

(

u∗k(τ) +
µ2(τ)

2
F (k)u∗k

′(τ)

)

e−ik·xa†k

]

1

a2(τ)
, (4.5)

where F (k) is the Fourier image of the function f(x),

F (k) =

∫

f(y)eik·yd3y . (4.6)

Since f(r) is an odd function, we have also F (−k) = F (k). The two-point correlation

function follows then straightforwardly:

〈0|φ(x, τ)φ(y, τ)|0〉 =

∫

d3kUk(τ)U∗
−k(τ)eik·(x−y)

a2(τ)(2π)3

=

∫

Pµφ (k)eik·(x−y) d
3k

(2π)3
. (4.7)

where Uk̄(τ) is defined as

Uk(τ) = u′k(τ)−
µ2(τ)

2
F (k̄)u′k(τ) . (4.8)

In the second line we have identified the power spectrum of the non-selfcommuting field φ

and denoted it by Pµφ (k). It is easy to see that lest physical observables become imaginary,

the Fourier image F (k) must be real, and thus we cannot express the first line of (4.7) as a

square.2 Now using the relation of the inflaton and metric perturbation spectra (2.8) and

the late-time limit of the mode function solutions (2.6), (2.7) we obtain

PµΦ(k) =
8πG

9ǫk3a2τ2

[

1 + k2τ2
(

1 + iµ2kF (k)
)

− µ4

2τ2
F 2(k)

(

1− k2τ2 + k4τ4
)

]

. (4.9)

The leading order contribution in the parameter is thus odd in parity.

Let us then look at some specific forms of the noncommutativity. A simple assumption

for the form of the function f(r) is a delta-function and that the commutator is constant

in comoving coordinates. An odd combination is

µ2(τ)f(r) = 4π3iµ2
0a

2 [δ(r − v)− δ(−r− v)] . (4.10)

In this prescription, the commutator (4.1) gets contribution from spacelike separations

equal to v. Then (4.9) becomes, neglecting the decaying modes

PµΦ(k) = PΦ(k)

[

1 + k3(µ0aτ)
2 sin(k · v) +

(

µ0a√
2τ

)4

sin2(k · v)

]

. (4.11)

2Our result (4.5) differs from the eq. (13) in [37] by the sign of the argument of the second F (k), but

our (4.7) would agree with the eq. (14) in [37] if F (k) was imaginary. This indeed seems to have been the

assumption in [37], which then however leads to imaginary temperature correlations, see eq. (23) there.
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Remarkably, at the leading order the predicted modulation has the same form as in the

previous case (3.12), if we identify the vectors v = H~θ. One of course obtains hyperbolic

sinus instead of the ordinary one by promoting v to an imaginary vector parameter (and

dropping the i in (4.10)). The second line in (4.11) contains modes growing outside the

horizon. They can be eliminated by choosing n ≤ −1 in µ(τ) = µ0a
n(τ). If n < −1 both

the odd and the even contributions are decaying (regardless of the form of f(r)). The

spectral index of the leading modification in (4.11) is nS + 3, but this depends sensitively

on the precise form of f(r). As an example, the form

f(r) = i
π3

2

[

(rz−vz)σ(vx−rx)σ(vy−ry)σ(vz−rz)+(rz+vz)σ(vx+rx)σ(vy+ry)σ(vz+rz)
]

,

(4.12)

where σ(x) is the sign of x, results in F (k̄) = sin(k · v)/(kxkyk
2
z), which results in a

strongly blue-tilted spectral index. Thus we may obtain similar correlations as in section 3

by choosing a suitable function f(r).

For the three-point function one gets

〈φ(k̄1)φ(k̄2)φ(k̄3)〉 =
Uk1

(τ)U∗
k3

(τ)

(2πa(τ))6

[

δ3(k1 + k2 − k3)Uk2
(τ) + δ3(k1 − k2 − k3)U∗

k2
(τ)
]

.

(4.13)

in terms of the functions Uk̄(τ) defined in (4.8).

5 Patterns from noncommutative inflation

In this section we discuss some observational implications of the results at more length and

derive an explicit expression for the non-Gaussianity.

5.1 Multipole expansion of the primordial power spectrum

The temperature anisotropy field is conventionally expanded in terms of the spherical

harmonics and on the other hand considered in the Fourier space

Θ(x, ê, η) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm =

∫

d3k

(2π)3
eik·xRkΘ(k, ê, η) , (5.1)

where we have normalized the transfer function Θ(k, e, η) with respect to the initial

amplitude of the primordial curvature perturbation Rk). It follows that the coefficients

aℓm are given by

aℓm = iℓ
∫

d3k

2π2
RkY

∗
ℓm(k̂)Θl(k). (5.2)

where we have introduced the transfer function which depends only on the magnitude of

the wavevector,

Θl(k) =

∫

jℓ(kr(η))Θ(k, η)dη , (5.3)

since we assume the evolution to be isotropic. The possible anisotropy appears in the

primordial spectrum, which can be expanded also in spherical harmonics as (we refer
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to this expansion of the primordial spectra always with capital letters indices to avoid

confusion with the expansion of the temperature anisotropies) [27, 54, 61]

〈RkR∗
k′〉 = δ3(k− k′)

2π2

k3
P(k) = δ3(k− k′)

2π2
√

4π

k3

∞
∑

L=1

M
∑

M=−L

ALM
(

k

k0

)nLM−1

YLM (k̂) ,

(5.4)

In the first equality we have used the WMAP conventions, and in the second one employed

the parametrization of [6]. They use the pivot scale k0 = 2 · 10−3/Mpc. For the time

being, we allow independent spectral indices nLM for each multipole L,M . Using the

formula (5.2) and the primordial spectrum (5.4), the correlation matrix can be written as

〈aℓma∗ℓ′m′〉 = iℓ−ℓ
′

2π2

∞
∑

L=1

L
∑

M=−L

ALMξLMℓm;ℓ′m′ILMℓℓ′ . (5.5)

We have separated here the integrated contribution from perturbations of all different

magnitudes,

ILMℓℓ′ =

∫ ∞

0

dk

k

(

k

k0

)nLM−1

Θℓ(k)Θℓ′(k) . (5.6)

They are then weighted by the geometrical factors ξ which happen to be proportional to the

coefficients of the Gaunt series. We may write them in terms of the Wigners 3-functions as

ξLMℓm;ℓ′m′ = (−1)m+1
√

(2ℓ+ 1)(2ℓ′ + 1)(2L+ 1)

(

ℓ ℓ′ L

0 0 0

)(

ℓ ℓ′ L

−m m′ M

)

, (5.7)

when ℓ, ℓ′ and L satisfy the triangle condition. For the dipole these become

ξL=1,M=−1
ℓm;ℓ′m′ =

√
3δm′,m−1

[

δℓ′,ℓ−1

√

(ℓ+m−1)(ℓ+m)

2(2ℓ−1)(2ℓ+1)
−δℓ′,ℓ+1

√

(ℓ−m+1)(ℓ−m+2)

2(2ℓ+1)(2ℓ+3)

]

, (5.8)

ξL=1,M=1
ℓm;ℓ′m′ =

√
3δm′,m+1

[

δℓ′,ℓ−1

√

(ℓ−m−1)(ℓ−m)

2(2ℓ−1)(2ℓ+1)
−δℓ′,ℓ+1

√

(ℓ+m+1)(ℓ+m+2)

2(2ℓ+1)(2ℓ+3)

]

, (5.9)

ξL=1,M=0
ℓm;ℓ′m′ =

√
3δm′,m

[

δℓ′,ℓ−1

√

(ℓ−m)(ℓ+m)

(2ℓ− 1)(2ℓ+ 1)
+δℓ′,ℓ+1

√

(ℓ−m+ 1)(ℓ+m+ 1)

(2ℓ+ 1)(2ℓ + 3)

]

.(5.10)

All odd multipole coefficients in the spectrum are imaginary A∗
2K+1,M = −A2K+1,M , and

the even are real A∗
2K,M = A2K,M for any K. The geometric coefficients are symmetric,

ξLMℓm;ℓ′m′ = ξLMℓ′m′;ℓm (one can check this is the case for the dipole above). The angular

correlations of course turn out to be symmetric 〈aℓma∗ℓ′m′〉 = 〈aℓ′m′a∗ℓm〉, though the

primordial spectrum may not be, 〈R(x)R(x)〉 6= 〈R(x′)R(x)〉. As shown above, this can

be understood by the noncommutative quantum nature of the fields whose fluctuations

are responsible for the perturbations.

5.2 Anisotropic power spectrum

As found in sections 3 and 4, the two-point function acquires typically exponential mod-

ulations from noncommutative geometry. For clarity, let us focus on an exponential term
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eik·r0 in the following. This be decomposed using the Rayleigh formula and by expressing

the Legendre polynomial Pℓ in terms of sum of products of spherical harmonics:

eik·r0 =
∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr0)Pℓ(k̂ · r̂0) = 4π
∞
∑

ℓ=0

iℓjℓ(kr0)
ℓ
∑

m=−ℓ

Y ∗
ℓm(Ωk)Y

∗
ℓm(Ωr0) . (5.11)

Now comparing the spectra with the general form (5.4), and using the orthogonality of

spherical harmonics together with (5.11), we obtain the amplitudes of each modulations:

ALM = 4πiLjL(kr0)Y
∗
LM(Ωr0)A . (5.12)

Clearly the scale dependence of these coefficients cannot be described by simple power-laws.

Instead, the modulations will be oscillating along the k-modes.

Let us first comment the power spectrum. we note that already the isotropic spectrum

is modified with respect to the usual result A00(µ = 0) ≡ A, because of the nontrivial

k-dependence encoded in the function j0(kr0) = sin(kr0)/kr0. In principle the oscillatory

behavior of the modulation could result in ”wiggles” there seem to appear in the observed

spectrum. Such wiggles have also been predicted from transplanckian physics [49, 64] or

from cyclic inflation [9], and the data has been shown to be compatible with such features.

Furthermore, there is an infinite series of higher-multipole modulations which will in-

troduce statistically anisotropic correlations. The reflects the nonlocality of the underlying

model. In principle all types of modulations are present, meaning that every ℓ-mode is cou-

pled to any other. Each wavemode of perturbations that contributes to the power spectrum

is also relevant to the anisotropic couplings. In particular, as one expects from ultravio-

let noncommutativity, small wavelengths contribute most to the modulations at all scales.

Contribution from extremely small wavelengths would cancel out due to rapid oscillations.

It is crucial to note however, that in practise the scales at which the modulations

are strongest, do not contribute to the angular modes observed in the CMB unless the

length scale of noncommutativity is much above the Planck scale (which would contradict

our starting assumptions). The spherical Bessel functions jℓ(z) have their highest peak

at about z ∼ L, so each L-modulation will be strongest at wavemodes corresponding

to k ∼ L/r0. On the other hand, the contribution to the CMB anisotropy Θℓ(k) from

inhomogeneous sources Θ(k, τ) is also dependent on the spherical Bessel function

Θℓ(k) =

∫

jℓ(kτ)Θ(k, τ)dτ . (5.13)

The scales contributing most to the multipole ℓ are k ∼ ℓ/τ∗, where the comoving distance

to the last scattering surface is about τ∗ ≈ 14000 Mpc. Thus the modulation of the order

L will affect maximally the correlators corresponding to the multipole ℓ when

r0 ∼ 1.4 · 1061

(

L

ℓ

)

M−1
P ∼ Hθ ∼ H

µ2
, (5.14)

where M−1
P is the Planck length and µ−1 ∼ θ−

1

2 is the noncommutative length

scale. So, the dipole modulation at the multipoles ℓ ∼ 1000 would be of order one
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if µ ∼ 10−30MP ∼ 10−10ΛQCD at inflation. Now, to translate this into the physical

energy scale of noncommutativity observable today in laboratory we should recall the

relation (3.3). If the reheating temperature of the universe was close to the GUT scale

∼ 1016 GeV, the scale factor at the end of inflation was about aRH ∼ 10−29 of its value

normalized to unity at the present. This gives us µph ∼ (θph)−
1

2 ∼ 10−16MP ∼ 10 TeV.

We note also that at those multipoles the cosmic variance is negligible and Planck can

be expected to measure deviations from statistical anisotropy at percent level or so.

Furthermore, the total effect of the modulations does of course not come from the peak of

the Bessel functions in (5.12) but is the cumulative contribution integrated from all scales.

We may then expect several orders of magnitude improvement to the above estimate of

the maximal noncommutative scale µ that may be observed in the CMB. Conservative

lower bounds from modifications to standard model of particle physics give µ & few

TeV [11, 29, 50]. Thus, the tightest bounds may turn out to be cosmological.

Full comparison with the data would require considerable technical difficulties, firstly

because all the observed multipoles should be included in the analysis, and even higher

k-modes than usually corresponding to those would have to be taken into account.

Moreover, since there occur couplings between arbitrarily separated ℓ-modes, one cannot

employ the previous techniques that have been developed to deal with sparse correlation

matrices (with only the diagonal and some adjacent entries nonvanishing). Finally, the

distortion of the power spectra should be tested in conjunction with the effects of the

anisotropic correlations.

Therefore, and because both observations and theory suggest these effects should be

small, let us then, instead of the full pattern, consider the power series expansion

eik·r0 ≈ 1 + ik · r0 −
1

2
(k · r0)2 + . . . (5.15)

Note that the expansion of the more general parametrization (3.15) is essentially very

similar. It is useful to separate the magnitude r of r0 = rr̂, defining the unit direction

vector r̂ decomposed as

r̂± = ∓
(

rx ∓ iry√
2r

)

, r̂0 =
rz
r
, r = |r0| . (5.16)

Then the nonvanishing contributions to the spectrum may be written as the following. The

amplitudes are

A00 = A , A1(−1) =
i√
3
k0rr̂−A , (5.17)

A10 =
i√
3
k0rr̂0A , A1(+1) =

i√
3
k0rr̂+A ,

and the corresponding spectral indices are

n00 = ns , n1m = 1 + ns . (5.18)

In a companion paper we test the leading order dipole correction given by (5.17) with the

data, which is found to slightly prefer the presence of the dipole [25].
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5.3 Comparison with imperfect source models

Let us remark on the difference to the imperfect dark energy model, where similar geometric

modulations can appear as well. There the dipole is due to an anisotropic source, it’s

contribution with respect to the quadropole is subdominant. This is because there then

occurs cancellation to the odd correlations, as they are proportional to

〈aℓma∗(ℓ+L)m′〉DE ∼ A0

∫

d(log k)
[

Θℓ(k)Θ
A
ℓ+L(k)−Θℓ+L(k)ΘA

ℓ (k)
]

, (5.19)

where A quantifies the magnitude of the anisotropy, ΘA
ℓ (k) is the anisotropic transfer

function and L is odd. The function (5.13) gives the source contribution in the isotropic

case, in the presence of imperfect sources the Θ’s depend also on the direction of the

wavevector. Due to the partial cancellation effect in such a case, [25] found the quadropole

contribution dominant even though it was suppressed by the small parameter corresponding

to A2
0. However, since in the present case the dipole is of primordial origin, we have

〈aℓma∗(ℓ+L)m′〉 ∼ ALM

∫

d(log k)Θℓ(k)Θℓ+L(k) , (5.20)

and the magnitude of the odd and even modulations is expected to be similar. A priori,

higher multipoles are again suppressed by some small parameter, and the dominating

correction to the monopole is now generically the dipole.

5.4 Non-Gaussianities

The non-commutativity also affects the non-Gaussian statistics of primordial perturbations.

Here we discuss non-Gaussianities in effective single field models, described by (2.1), where

the field φ affects very little the classical dynamics during inflation, V ′/3H2M2 ∼ 0, but

becomes dynamically relevant at some later stage. Such models can generate observable

non-Gaussianities in the usual commutative case [20, 47], see e.g. works concerning the

curvaton scenario [7, 19] or modulated reheating [18, 31], and our aim is to analyze how

the non-commutativity alters the predictions.

Assuming standard slow roll dynamics with canonical kinetic terms during inflation,

the Fourier transform of (2.1) can expressed in the form

ζθ(t, k̄) = ζ̃θ(t, k̄) + f(k)

∫

dq̄

(2π)3
ζ̃θ(t, q̄)ζ̃θ(t, k̄ − q̄) + · · · , (5.21)

where we have defined

ζ̃θ(t, k̄) = N ′

(

1− η ln
k

kp

)

δφθ(tk, k̄) , (5.22)

f(k) =
N ′′

2N ′2

(

1 + nfNL,0
ln

k

kp

)

, (5.23)

nfNL,0
=

N ′

N ′′

(

−3η +
V ′′′

3H2

)

. (5.24)

Here we have neglected slow roll corrections to constant terms and derived the k-dependent

terms to leading order precision in slow roll. The same precision is used in the results

– 13 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
1

derived below. N = N(t, ti) and all other quantities in (5.22), (5.23) and (5.24) without

explicit time indices are evaluated at the time ti appearing in (2.1). The slow roll parameter

η is defined by η = M2
PV

′′/3H2 and V denotes the potential of φ.

In the commutative case, the field ζ̃ is Gaussian to leading order in slow roll.

The magnitude of primordial non-Gaussianities is then controlled by the function f(k)

which is related to the non-linearity parameter fNL for equilateral configurations. The

scale-dependence of fNL is measured by nfNL
.

In non-commutative theories, ζ̃θ becomes non-Gaussian due to the inherent non-

Gaussianities of the fluctuations δφθ. This affects both the magnitude of fNL and its

scale-dependence. Quite generally, the non-Gaussianities also deviate from the (quasi-)local

form since the non-Gaussianity in (5.22) is not of the simple (Gaussian)2 type. Below we

analyze non-Gaussianities arising in non-commutative theories discussed in section 3. (The

non-Gaussianity in the approach of section 4 can be considered starting from (4.13), but

for clarity we do not consider that separately here).

Using the relations between n-point functions of δφθ and δφ0 given in section 3, we

can express the three-point function of ζθ in the form

〈ζθ(t, k̄1)ζθ(t, k̄2)ζθ(t, k̄3)〉=(2π)3δ(
∑

k̄i)× e−ik̄1∧k̄2
(

2P0(k1)P0(k2)f(k3)e
2H~θ·k̄3 + 2p.

)

,

(5.25)

where P0 = N ′2H2/2k3 denotes the power spectrum in the commuting case. In this section

we denote the wavevectors by an overbar, k̄ = k.

To obtain real-valued results in coordinate space, we apply the prescription introduced

in (3.13) to (5.25) and identify the observable three-point correlator with

〈ζθζθζθ〉 ≡ α〈ζθζθζθ〉M + i(1− α)〈ζθζθζθ〉A
≡ (2π)3δ(

∑

k̄i)Bθ(k̄1, k̄2, k̄3) , (5.26)

where the (anti)self-adjoint part is

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉M,A =
1

2

(

〈ζθ(k̄1)ζθ(k̄2)ζθ(k̄3)〉 ± 〈ζθ(−k̄1)ζθ(−k̄2)ζθ(−k̄3)〉∗
)

, (5.27)

and all perturbations are evaluated at the same time t. It becomes then straightforward

to derive the result

Bθ(k̄1, k̄2, k̄3) = 2e−ik̄1∧k̄2α

(

cosh(2H~θ · k̄3)P0(k̄1)P0(k̄2)f3(k̄3) + 2p.
)

(5.28)

+2ieik̄1∧k̄21−α

(

sinh(2H~θ · k̄3)P0(k̄1)P0(k̄2)f3(k̄3) + 2p.
)

.

We used a shorthand notation +2p. to denote the permutations of the three indices. Using

the above result and the spectrum of the two-point function computed in section 3, we find
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the non-linearity parameter fNL,θ given by the expression

fNL,θ ≡
5

6

Bθ(k̄1, k̄2, k̄3)

Pθ(k1)Pθ(k2) + 2p.
(5.29)

=
5

3
expα(−ik̄1 ∧ k̄2)×

P0(k1)P0(k2)f(k3)cosh(2H~θ · k̄3) + 2p.

P0(k1)P0(k2)eα(H~θ · k̄1)eα(H~θ · k̄2) + 2p.

+i
5

3
exp1−α(ik̄1 ∧ k̄2)×

P0(k1)P0(k2)f(k3)sinh(2H~θ · k̄3) + 2p.

P0(k1)P0(k2)eα(H~θ · k̄1)eα(H~θ · k̄2) + 2p.
.

We have separated the real and imaginary terms in (5.28) and (5.29). The imaginary

contributions violate parity and they vanish if all the components of ~θ are set to zero.

Otherwise they are present for arbitrary α: in particular we observe that restriction to

the self-adjoint piece of the correlation (α = 1) does not eliminate the odd correlations.

One also expects that higher order correlations would exhibit parity violations even in

the case of purely spatial noncommutativity. [33] have recently discussed the possibility of

odd-parity component in the CMB bispectrum.

The spatial components of the non-commutativity matrix θij enter the through

results the phase exp(ik̄1 ∧ k̄2) = exp(ki1k
j
2 θij). They do not appear in the results for the

spectrum and therefore affect only the non-Gaussian statistics of primordial perturbations.

For simplicity, we analyze in the following only the modifications due to θij setting all

components of ~θ equal to zero. This gives

fNL,θ =
5

3
e−ik̄1∧k̄2α

P0(k1)P0(k2)f(k3) + 2p.

P0(k1)P0(k2) + 2p.
, (5.30)

where the only contribution from the non-commutativity is the prefactor involving the

wedge product. This affects the scale dependence of fNL,θ and can hence be constrained

observationally. For example, computing the scale-dependence for shape preserving

variations of the momentum space triangle, k̄i → λk̄i, defined as

nfNL,θ
=
∂ln |fNL,θ(λk̄1, λk̄2, λk̄3)|

∂lnλ

∣

∣

∣

λ=1
, (5.31)

we find, in the two specific cases,

nfNL,θ
=

{

2ki1k
j
2θij cot(ki1k

j
2θij) + nfNL,0

if α = 0 ,

−2ki1k
j
2θij tan(ki1k

j
2θij) + nfNL,0

if α = 1 .
(5.32)

where nfNL,0
given by (5.24) is the result in the commuting case. The part dependent on θij

arises purely from non-commutative features. The observational prospects of scale depen-

dent fNL were considered in ref. [58], which suggests that Planck data could be sensitive to a

scale dependence of the order of slow roll parameters. The scale dependence therefore could

place interesting bounds on θij. Moreover, it is worth noting that the result (5.32) depends

on the wavevectors k̄1 and k̄2 and hence on the shape of the momentum space triangle.

This is in contrast with the commutative case, where the shape dependence is given by the

same result nfNL,0
for all shape preserving variations, k̄i → λk̄i, regardless of triangle shape.

This allows, in principle, to distinguish between the contributions arising from the non-

commutative properties of the theory and from the standard classical inflationary physics.
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6 Conclusions

We considered the effects of noncommutative geometry to the statistics of the CMB

anisotropy field. The results are encoded in two formulas:

• The statistically anisotropic modulation of the two-point function: eq. (3.15).

• The function fNL characterizing the non-Gaussian property of the three-point func-

tion: eq. (5.29).

Both of these describe effects that in general violate parity. The presence of spacetime non-

commutativity was found to induce the leading contributions to the anisotropic couplings,

which occur in principle between all pairs of multipoles. The non-Gaussianity is scale-

dependent in a way which depends upon the shape of the momentum triangles considered.

These features can provide stringent bounds on the scale of noncommutativity.

The first tests of these predictions are underway [25]. A quite promising result is that

already the leading contribution, a dipole modulation, is found to have an anomalous

signature which exhibits a hemispherical asymmetry and is modestly preferred by the

data. We hope to make progress also on the theoretical problem of the physical part of

the correlations in a future publication. In particular, the correct value of α, introduced

in (3.13), should be deduced from first principles, whereas it was left here as an additional

parameter to be determined empirically.

By looking closely at the odd features in the sky, one may see evidence that an accurate

description of the universe must be deformed and twisted, since it is fundamentally pointless.
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