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Abstract

Background: Preterm birth (PB) and fetal growth restriction (FGR) convey the highest risk of perinatal mortality and
morbidity, as well as increasing the chance of developing chronic disease in later life. Identifying early in pregnancy
the unfavourable maternal conditions that can predict poor birth outcomes could help their prevention and
management. Here we used an exploratory metabolic profiling approach (metabolomics) to investigate the
association between birth outcomes and metabolites in maternal urine collected early in pregnancy as part of the
prospective mother–child cohort Rhea study. Metabolomic techniques can simultaneously capture information
about genotype and its interaction with the accumulated exposures experienced by an individual from their diet,
environment, physical activity or disease (the exposome). As metabolic syndrome has previously been shown to be
associated with PB in this cohort, we sought to gain further insight into PB-linked metabolic phenotypes and to
define new predictive biomarkers.

Methods: Our study was a case–control study nested within the Rhea cohort. Major metabolites (n = 34) in maternal
urine samples collected at the end of the first trimester (n = 438) were measured using proton nuclear magnetic
resonance spectroscopy. In addition to PB, we used FGR in weight and small for gestational age as study endpoints.

Results: We observed significant associations between FGR and decreased urinary acetate (interquartile odds ratio
(IOR) = 0.18 CI 0.04 to 0.60), formate (IOR = 0.24 CI 0.07 to 0.71), tyrosine (IOR = 0.27 CI 0.08 to 0.81) and trimethylamine
(IOR = 0.14 CI 0.04 to 0.40) adjusting for maternal education, maternal age, parity, and smoking during pregnancy.
These metabolites were inversely correlated with blood insulin. Women with clinically induced PB (IPB) had a
significant increase in a glycoprotein N-acetyl resonance (IOR = 5.84 CI 1.44 to 39.50). This resonance was positively
correlated with body mass index, and stratified analysis confirmed that N-acetyl glycoprotein and IPB were
significantly associated in overweight and obese women only. Spontaneous PB cases were associated with elevated
urinary lysine (IOR = 2.79 CI 1.20 to 6.98) and lower formate levels (IOR = 0.42 CI 0.19 to 0.94).

Conclusions: Urinary metabolites measured at the end of the first trimester are associated with increased risk of
negative birth outcomes, and provide novel information about the possible mechanisms leading to adverse
pregnancies in the Rhea cohort. This study emphasizes the potential of metabolic profiling of urine as a means to
identify novel non-invasive biomarkers of PB and FGR risk.
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Background
Fetal growth restriction (FGR) and preterm birth (PB)
are the main predictors of perinatal morbidity and mor-
tality [1,2]. These birth outcomes are associated with
growth failure and accelerated weight gain during child-
hood. As a consequence, adverse child health and pre-
disposition to metabolic and cardiovascular disorders
can appear later in life [3,4]. Over the past 10 years, PB
has increased by 19.4% in developed regions with the
USA, accounting for 42% of these preterm births in
2010 [5]. PB can either be medically induced on the
basis of maternal or fetal indications, or spontaneously
induced. Spontaneous PB (SPB) occurs at different pre-
valences in different ethnic groups and is believed to be
associated with intrauterine infection (25 to 40% of cases),
uterine overdistension due to multiple gestations, PB his-
tory, or shortened cervix [6]. Medically induced PB (IPB),
which depends upon the decision of the clinician, often
reflect underlying conditions involved with obesity such as
pregnancy-induced hypertension or pre-gestational dia-
betes. FGR, which represents pathological inhibition of
fetal growth and failure of the fetus to attain its growth
potential, can be due to fetal genetic abnormalities or con-
genital infections (for example, toxoplasmosis, malaria, ru-
bella). However, the vast majority of FGR cases are the
result of extrinsic factors comprising maternal and pla-
cental conditions, such as placental ischemia and utero-
placental deficiency [7]. In the developed world, FGR is
prevalent in women with hypertensive disorders, exposure
to toxins (in particular cigarette smoke) and poor nutri-
tional status [8-10].
A recent report evocated a sharp increase in late PB in

Greece for the past 20 years, in a similar fashion to what
has been noted in other middle or high income coun-
tries, potentially associated with increased maternal age
and a change in obstetric interventions [11]. Other fac-
tors were reported in several studies with associations
between pre-pregnancy metabolic disease, such as obes-
ity [12-14], chronic hypertension [15,16], dyslipidaemia
and inflammation in early pregnancy [17] and high risk
of PB. To better understand the underlying mechanisms
that give rise to PB and FGR, the present study used data
from the Rhea cohort, a large population-based mother–
child cohort initiated in Crete in 2007 [18]. In this cohort,
women with metabolic syndrome early in pregnancy were
at high risk for PB (relative risk (RR) = 2.93, 95% CI 1.53
to 5.58), with the highest risk observed for IPB (RR = 5.13,
95% CI 1.97 to 13.38). Because routine prenatal care fails
to identify a large proportion of women at risk, a better
understanding of birth outcomes is crucial to improve
their prediction and prevention. The application of me-
tabolic profiling (metabolomics/metabonomics) to preg-
nancy research has emerged mainly as a non-targeted
approach to explore potential biomarkers of reproductive
outcomes and identify underlying biological mechanisms
[19-21]. It has been suggested that the use of molecular
biomarkers in combination with fetal monitoring and
other maternal characteristics may be of clinical bene-
fit [22,23]. To achieve this, new, large, prospective cohort
studies are needed in which biospecimen characterisation
is coupled with detailed analysis of maternal physiology,
lifestyle and medical history. Although other studies using
metabolomics to investigate PB and FGR risk factors have
been reported, to our knowledge this current study repre-
sents the largest human investigation (n = 438) to date in
which urinary metabolomics has been used to identify me-
tabolite predictors early in pregnancy (11-13 weeks).

Material and methods
Ethics statement
The study was conducted according to the guidelines
laid down in the Declaration of Helsinki, and all proce-
dures involving human subjects were approved by the
ethical committee of the University Hospital in Heraklion,
Crete, Greece. Written informed consent was obtained
from all women participating in the study.

The mother-child cohort in Crete, Rhea study
The Rhea project is a mother–child study, prospectively
examining a population-based cohort of pregnant wo-
men and their children in the prefecture of Heraklion,
Crete, Greece [18]. Female residents (native Greeks and
immigrants) who had become pregnant during the 12-
month period starting in February 2007 were contacted
at the four maternity clinics (two public and two private)
in Heraklion, and asked to participate in the study. Study
enrolment and urinary collection were made at the end
of the first trimester, at the time of the first major ul-
trasound examination (mean ± SD 11.96 ± 1.49 weeks).
Questionnaires on health behaviours, pregnancy history,
lifestyle characteristics, and dietary habits during preg-
nancy were administered by trained interviewers at enrol-
ment, during the third trimester, and at delivery.
During this study period 1,317 women were followed

up until delivery. Women with incomplete diagnostic in-
formation, multiple pregnancies, diagnosed pre-eclampsia
(a condition associated with PB), spontaneous or induced
abortion, or who gave birth to stillborn infants were not
included in the study [18]. Our metabolomics study was
designed as a case–control study nested within the Rhea
cohort. Mothers giving birth preterm and for whom early
pregnancy urine samples were available, were matched
with controls (in a ratio of approximately 1:3) based
on age (±2 years), country of origin and parity (n = 464).
From these urine specimens, proton nuclear magnetic
resonance (1H-NMR) spectra were acquired, of which
26 spectra were excluded (because of high dilution or
high excretion of drug metabolites), leaving 438 spectra
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available for modelling the metabolite profile with respect
to birth outcome.
Definition of the outcomes
PB, the primary outcome of interest, is defined as pre-
mature delivery at less than 37 weeks of gestation [24].
The gestational age was estimated as the period between
the most recent menstruation and the delivery. When
the date did not match the ultrasound measurement es-
timation by 7 days or more, the gestational age was cor-
rected using its relationship to the crown–rump length
[18]. Of the PBs, some were classified as spontaneous
deliveries (SPBs; n = 88) when the birth was vaginal or
when the labour was not documented as having been in-
duced. Any PBs requiring either an induction of labour
or pre-labour caesarean, or both, were defined as medic-
ally induced deliveries (IPB; n = 26) [25]. In addition, ne-
onates were classified as FGR in weight if their birth
weight fell below the 10th percentile of their predicted
birth-weight distribution, adjusted for genetic growth
potential. This customised estimation of growth impair-
ment allows for better detection of those neonates who
fail to reach their genetic growth potential or their con-
stitutional potential because of maternal, fetal, placental
or external factors, and excludes constitutionally small
babies [26].
A multivariable fractional polynomial linear regression

model was used to predict birth weight, allowing poly-
nomial terms for continuous variables in the linear re-
gression models. The final model included as covariates
the gestational age, infant gender, maternal and paternal
height, pre-pregnancy maternal weight, and interaction
of gestational age with maternal weight. Gestational age
and type of PB were known for 438 women, whereas
FGR data were available for only 401 women because a
number values necessary to define the outcome were
missing.
Metabolic syndrome variables
Data on plasma triglycerides, total cholesterol, high den-
sity lipoprotein cholesterol (HDL-C) and low density
lipoprotein cholesterol (LDL-C) of 227 fasting pregnant
women at the first prenatal visit were available [18]. The
insulin concentrations were measured for 369 women,
and the diastolic and systolic blood pressures (BPs) were
available for 338 participants. The body mass index
(BMI) calculated on reported weight before pregnancy
and height, measured at the first prenatal visit, was used
to classify women as underweight (BMI <18.5 kg/m),
normal weight (BMI >18.5 to <25 kg/m), overweight
(BMI 25 to 30 kg/m) or obese (BMI >30 kg/m), accor-
ding to the standard international classification.
1H NMR spectroscopic analysis of urine
Sample handling and preparation
Urine samples were stored at −80 °C until analysis. An
aliquot of 400 μL of urine was added to 200 μL phos-
phate buffer solution (0.2 M Na2HPO4/NaH2PO4, pH 7.4)
to minimise variations in chemical shift values in the ac-
quired 1H NMR spectra due to minor pH differences. This
buffer contained 1 mM sodium 3-trimethylsilyl-(2H4)-1-
propionate (TSP) in 20% D2O and 3 mM of the bacterio-
static agent sodium azide (NaN3). TSP is a chemical shift
reference (δ = 0.00) and D2O provided a field-frequency
lock. The buffered urine sample was then centrifuged at
16,000 × g for 5 minutes to remove any debris, and 550 μL
of the resulting supernatant was pipetted into standard
5 mm NMR tubes [27].

1H NMR experiments and data processing
1H NMR spectra of the urine samples were acquired
using a Bruker Avance 600 spectrometer (Bruker Biospin,
Rheinstetten, Germany) operating at 600.13 MHz. The 1H
NMR spectra of the urine samples were acquired using
a standard one-dimensional pulse sequence with water
pre-saturation (recycle delay-90°-t1-90°-tm-90°-acquisition;
XWIN–NMR 3.5) during both the recycle delay (2 sec-
onds) and mixing time (tm, 100 milliseconds). The 90°
pulse length was adjusted to approximately 10 μs and t1
was set to 3 microseconds. For each sample, 128 free in-
duction decays (FIDs) were collected into 32 K data points
using a spectral width of 12,000 Hz. The FIDs were mul-
tiplied by an exponential weighting function correspon-
ding to a line broadening of 0.3 Hz prior to Fourier
transformation [27].
All NMR spectra (spectral region δ 10 to 0.5) were

imported into MATLAB 7.3.1 (MathWorks), and were
referenced and corrected for phase and baseline distor-
tion using an in-house script (developed by Drs Rachel
Cavill, Hector Keun and Tim Ebbels, Imperial College,
London, UK). The spectral region δ 4.0 to 5.4, contain-
ing residual water and urea resonances, were removed
prior to median fold change normalisation [28]. Integrals
of well-resolved peaks were calculated. Certain metabo-
lites were quantified using the Profiler and Library Man-
ager modules in Chenomx NMRSuite 5.11 (Chenomx
Inc, Edmonton, Canada), when overlapping signals were
present in the integration window or when there were
metabolites with a low signal-to-noise ratio (specifically
creatine, creatinine, tyrosine, dimethylamine (DMA) and
1-methylnicotinamide). The advantage in using Chenomx
for these metabolites is that it accounts for quantification
error by fitting experimental spectra of pure compounds
to all the resonant peaks for the metabolite [29]. The stat-
istical analysis presented later was applied to the peak in-
tegrals for all the metabolites, except for the metabolites
cited above, for which Chenomx values were used.
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1H NMR spectroscopic signals were assigned to me-
tabolites after reference to the literature [30,31] or on-
line databases (HMDB) [32], and/or confirmation by 2D
NMR experiments on a selected sample, including ho-
monuclear 1H-1H correlation spectroscopy and 1H-1H
total correlation spectroscopy.

Statistical analysis
All statistical analyses were performed using R project
software [33]. Continuous distributed variables were dis-
played as median with interquartile range and were
tested using Mann–Whitney non-parametric statistical
tests. Categorical variables were tested using the χ2 test.
The threshold statistical significance was set at a P < 0.05
and conducted with a two-sided alternative hypothesis.
Statistical analyses were conducted on 34 metabolites

to assess their variation in relation to birth outcomes
(for example, PB, IPB, SPB and FGR) and to maternal
parameters (biochemical measures and dietary intake).
A five-step analysis was conducted to select metabo-
lites that were significantly associated with birth out-
comes and associated with metabolic syndrome. To
identify metabolites associated with birth outcomes,
a non-parametric test (Mann–Whitney U–test), was used,
because of the non-normal distribution of the metabolite
relative concentrations. The effect of multiple testing was
considered by calculating the false discovery rate (FDR;
that is, the expected proportion of the tests misclassified
as significant for any given P value cut-off) [34]. To test
for a dose–response association between metabolite levels
and birth outcomes, a trend test (χ2 test) for trend in pro-
portions, was used to assess the frequency distribution of
women with pregnancy outcomes according to the quar-
tiles of the metabolites [35]. For the metabolites identified
as ‘of interest’ by the above analyses, their association with
birth outcomes was tested after adjusting for confounding
factors using multivariate logistic regression models. Inter-
quartile range odds ratios (IORs) with 95% confidence in-
tervals (CIs) were calculated for PB, IPB, SPB and FGR by
using interquartile range for standardisation. We used the
change from the outer quartiles as a measure, because
metabolite integrals/predictors are not always normally
distributed. Using the difference in the outer quartiles as a
measure (0.25 and 0.75 quantiles), the OR is called the
interquartile range or half-sample OR. Potential con-
founders with an established or potential association with
PB or FGR were included in the logistic regression mo-
dels. Receiver operator characteristic (ROC) curves and
95% CIs based on candidate metabolites (significant in lo-
gistic regression) were calculated for cases versus healthy
controls using the package pROC in R [36].
In order to assess whether the metabolite panel as-

sociated with birth outcomes is also associated with
known metabolic syndrome traits (BMI, BP, blood glucose,
insulin, lipids), Spearman’s correlation coefficients were
calculated. Metabolites with significant association with
birth outcomes in logistic regression models and signi-
ficant correlation coefficients with metabolic syndrome
traits were selected for the final analysis. A stratified ana-
lysis by maternal BMI before pregnancy and maternal in-
sulin levels at the first prenatal visit, was performed using
multivariate logistic regression models on log-transformed
metabolite levels, correcting for potential confounders (as
described above).

Results
Descriptive statistics of the study population
Our metabolomics study was designed as a case–control
study nested within the Rhea cohort. Table 1 shows the
demographic characteristics within each case group, the
control group and their comparison. Mothers of cases
and controls tended to be of similar age (median 30 and
31 years, respectively), and (with the exception of SGA)
possessed no significant differences in parity or in pro-
portion of smokers. However, less educated women were
more likely to develop pregnancy outcomes such as PB
(32.7%) and FGR (27.8%) compared with controls (13.5%).
The observations with respect to BMI and maternal edu-
cation were consistent with associations reported in the
wider cohort [18]. Extreme maternal BMI before preg-
nancy (either underweight or obese) occurred more in PB
cases. In particular, more obese women had IPB (24% ver-
sus 11% in controls). Maternal BMI was not associated
with FGR because maternal height and weight were ac-
counted for in the assessment of FGR.

Metabolomic analysis
To obtain metabolic profiles, 1H NMR spectroscopy was
applied to all the urine specimens from our study po-
pulation (n = 464). From these spectra, 26 were excluded
because of high dilution or high excretion of drug me-
tabolites, leaving 438 available for modelling the metab-
olite profile with respect to birth outcomes. In total, 34
metabolites were identified in the urinary 1H NMR spec-
tra (a representative assigned spectrum from a healthy
pregnant woman is displayed in Figure 1). These inclu-
ded organic acids such as acetate, citrate and hippurate;
aliphatic amines such as creatinine, DMA, trimethylamine
(TMA) and trimethylamine-N-oxide (TMAO); amino
acids such as alanine, leucine and tyrosine; and other me-
tabolites such as p-cresol sulphate and niacin metabolites
(N-methyl-2-pyridone-5-carboxamide or 2-Py).
A systematic analysis was performed to detect associa-

tions between birth outcomes (PB, IPB, SPB, SGA and
FGR) and metabolite abundance. Because a single mole-
cular species may give rise to multiple resonances (peaks)
in an NMR spectrum, we chose to select a single rep-
resentative peak for each metabolite (based on sufficient
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Table 1 Characteristics of the study population with respect to pregnancy outcomes

SPB (n = 88) IPB (n = 26) FGR (n = 36) SGA (n = 19) Control (n = 275)

Categorical variables Maternal education Low 31 (35.6%)*** 6 (23.1%) 10 (27.8%)* 4 (21.1%) 37 (13.5%)

Medium 37 (42.5%) 11 (42.3%) 10 (27.8%) 7 (36.8%) 139 (50.5%)

High 19 (21.8%) 9 (34.6%) 16 (44.4%) 8 (42.1%) 99 (36.0%)

Greek origin 82 (93.2%) 26 (100.0%) 35 (97.2%) 19 (100.0%) 258 (94.2%)

Multiparity 58 (65.9%) 19 (73.1%) 20 (55.6%) 12 (63.2%) 187 (68.0%)

Smoking during pregnancy 19 (22.9%) 6 (24.0%) 10 (27.8%) 8 (42.1%)* 55 (20.4%)

Pre-pregnancy BMI Underweight 6 (7.2%)*** 1 (4.0%) 1 (2.8%)* 1 (5.3%) 6 (2.2%)

Normal 49 (59.0%) 10 (40.0%) 27 (75.0%) 15 (78.9%) 181 (66.8%)

Overweight 16 (19.3%) 8 (32.0%) 4 (11.1%) 2 (10.5%) 54 (19.9%)

Obese 12 (14.5%) 6 (24.0%) 4 (11.1%) 1 (5.3%) 30 (11.1%)

FGR 3 (4.0%) 3 (14.3%) 36 (100.0%)*** 17 (94.4%)*** 0 (0.0%)

Continuous variables Maternal age, years 29.0 (26.0 to 33.0) 31.0 (27.2 to 36.0) 30.0 (27.0 to 33.2) 30.0 (28.0 to 33.0) 31.0 (27.0 to 34.5)

Gestational age, weeks 35.5 (35.0 to 36.0)*** 36.0 (35.5 to 36.0)*** 39.0 (37.5 to 40.0) 38.0 (38.0 to 40.0) 39.0 (38.0 to 39.0)

Birth weight, g 2715 (2430 to 2980)*** 2800 (2570 to 2890)*** 2610 (2482 to 2802)*** 2550 (2182 to 2615)*** 3250 (3010 to 3550)

Cholesterol (n = 227) 215.0 (189.5 to 237.0) 222.0 (212.8 to 233.0)* 205.0 (163.0 to 225.0) 225.0 (198.0 to 234.0) 202.0 (178.5 to 231.0)

Triglycerides (n = 227) 112.0 (86.5 to 134.5) 149.0 (104.0 to 159.2) 99.0 (89.0 to 119.0) 95.0 (89.0 to 131.0) 111.0 (85.5 to 138.0)

Insulin (n = 369) 6.3 (2.3 to 14.8) 10.6 (5.0 to 17.5)* 8.3 (3.2 to 26.6) 5.1 (2.7 to 37.9) 5.5 (2.0 to 15.9)

LDL-C (n = 227) 128.0 (101.5 to 138.5) 130.0 (121.2 to 135.8) 116.0 (90.0 to 142.0) 142.0 (112.0 to 149.0) 114.0 (98.5 to 142.0)

HDL-C (n = 227) 61.0 (52.0 to 71.0) 70.5 (59.8 to 79.2) 59.0 (49.0 to 69.0) 63.0 (49.0 to 67.0) 60.0 (49.0 to 68.5)

Systolic BP (n = 338) 107.7 (101.0 to 115.7) 110.7 (105.7 to 117.3) 105.0 (96.0 to 112.1) 99.7 (94.2 to 110.2) 106.3 (100.3 to 112.0)

Diastolic BP (n = 338) 69.7 (64.3 to 76.0) 74.5 (69.6 to 79.3) 69.3 (61.3 to 77.0) 65.2 (58.2 to 77.3) 69.7 (63.7 to 76.0)

Values are presented as medians (interquartile range) for continuous variables or frequencies, n (%) for categorical variables.
*P < 0.05 and ***P < 0.001 where P values were calculated using the χ2 test (categorical variables) or Mann–Whitney test (continuous) between cases and controls.
Gestational age and type of PB were known for 438 women, whereas FGR data were available for 401 women. BMI, body mass index; BP, blood pressure; FGR, fetal growth restriction; HDL-C, high density lipoprotein
cholesterol; IPB, induced preterm birth; LDL-C, low density lipoprotein cholesterol; SGA, small for gestational age; SPB, spontaneous preterm birth.
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Figure 1 Representative 1H NMR spectrum (600 MHz) recorded for early pregnancy urine from a healthy pregnant woman. Spectrum
was recorded at 300 K. 1, Steroid conjugate; 2, leucine; 3, valine; 4, lactate; 5, alanine; 6, acetate; 7, N-acetyls of glycoprotein fragments; 8, N-acetyl
neuraminic acid; 9, phenylacetylglutamine; 10, p-cresol sulphate; 11, citrate; 12, dimethylamine; 13, creatine; 14, creatinine; 15, proline betaine; 16,
choline-containing moieties; 17, trimethylamine-N-oxide (TMAO); 18, glycine; 19, hippurate; 20, tyrosine; 21, N-methyl-2-pyridone-5-carboxamide
(2Py); 22, formate; 23, N-methyl nicotinic acid (trigonelline); 24, 1-methylnicotinamide.
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intensity and absence of overlap with other signals) to pro-
vide the measurement, with most metabolites exhibiting
well-resolved peaks analysed by spectral integration. Our
strategy was to use two different univariate approaches for
initial candidate selection, and to look for agreement
between these to define a consensus set of metabolites.
These candidate metabolites were then subject to multi-
variate regression analysis to control for major confound-
ing in our study. The first selection approach tested for
significant median differences in metabolite abundance
between cases and controls for each outcome. For a full
description of the results of this analysis and the integral
regions used for all metabolites, see Additional file 1. Of
an initial 34 metabolites, eight metabolites displayed sig-
nificant median differences between FGR and controls
(see Table 2). Five metabolites were significant for both
SGA and FGR, and two metabolites were specifically asso-
ciated with SGA, namely leucine and N-acetyl neuraminic
acid.
The analysis of PB outcomes was conducted both on

the combined clinical subtypes (PB) and separately on
each subtype (SPB and IPB). Formate and an unassigned
singlet resonance at 0.63 parts per million (ppm) prob-
ably derived from a steroid moiety, displayed significant
(P < 0.05) median differences between PB and control
cases (Mann–Whitney test, Table 2). Formate, N-methyl-
2-pyridone-5-carboxamide (2-Py), glycine, TMAO, lysine
and the singlet at 0.63 ppm significantly varied between
SPB and control groups. The IPB group exhibited specifi-
cally higher levels of N-acetyl glycoproteins and lower
levels of phenylacetylglutamine compared with controls.
Using FDR analysis, we also estimated the likelihood of
each difference between the groups being a false positive
association (q values in Table 2); for significant meta-
bolites in this analysis, these were observed to be up to
25% for IPB and SPB, up to 10% for SGA, and up to 7%
for FGR.
For the metabolites with significant differences in pair-

wise tests, we next examined the trend in the proportion
of women with each type of pregnancy outcome with in-
creasing metabolite levels (dataset split in quartiles). Out
of the eight candidate metabolites for FGR and the two
metabolites applying to both PB and IPB, all showed a
trend in frequency of birth outcomes across quartiles,
therefore showing a dose–response relationship between
levels of candidate metabolites and the outcome inci-
dence. However, only three of the six candidate metabo-
lites for SPB, namely formate, lysine and the singlet at
0.63 ppm, showed a significant trend (Table 3).
Finally, risk estimates of pregnancy outcomes were

then computed using candidate metabolites as predictors
in a logistic regression model, allowing adjustment for
confounding factors such as maternal education, mater-
nal age, parity and smoking habits (Table 4). The IORs
between the outer quartiles (0.25 and 0.75 quantiles) of
the candidate metabolite level was used to determine a
significant association. Models for FGR indicated that
high levels of tyrosine, acetate, trimethylamine and for-
mate were significantly associated with a decreased inci-
dence of FGR (IORs between 0.27 and 0.14). High levels
of N-acetyl glycoproteins were associated with a drama-
tically increased risk of IPB (IOR = 5.84, 95% CI 1.44 to
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Table 2 Urinary metabolites with significant median differences between birth outcome cases and controls

Selected
resonance (δ), ppm

All PB types (n = 114) SPB (n = 88) IPB (n = 26) FGR (n = 36) SGA (n = 19)

P value q value % diff P value q value % diff P value q value % diff P value q value % diff P value q value % diff

Tyrosinea 6.87 (d), 7.18 (d) 0.055 0.264 −15% 0.161 0.410 −12% 0.083 0.530 −20% 0.008 0.024 −24% 0.094 0.220 −25%

Steroid conjugate – 0.63 (s) 0.63 (s) 0.039 0.252 17% 0.045 0.218 19% 0.391 0.808 11% 0.129 0.096 15% 0.392 0.486 8%

Leucine 0.96 (t) 0.364 0.578 2% 0.227 0.463 2% 0.778 0.893 −2% 0.443 0.226 1% 0.026 0.093 11%

Lactate 1.33 (d) 0.342 0.562 −5% 0.259 0.482 −5% 0.988 0.914 −4% 0.025 0.051 −19% 0.009 0.081 −19%

Alanine 1.48 (d) 0.627 0.702 −1% 0.426 0.602 −2% 0.653 0.875 3% 0.031 0.055 −10% 0.027 0.094 −9%

Lysine 1.73 (m) 0.056 0.264 1% 0.016 0.214 2% 0.762 0.891 −2% 0.349 0.197 −4% 0.512 0.553 0%

Acetate 1.92 (s) 0.423 0.613 −2% 0.885 0.758 0% 0.106 0.564 −7% 0.003 0.018 −9% 0.017 0.081 −11%

N-acetyl glycoprotein fragments 2.04 (s) 0.390 0.594 3% 0.783 0.735 0% 0.009 0.231 9% 0.358 0.200 −4% 0.913 0.688 −1%

N-acetyl neuraminic acid 2.06 (s) 0.806 0.752 0% 0.701 0.713 0% 0.173 0.650 7% 0.525 0.248 1% 0.015 0.081 10%

Citrate 2.55 (d) 0.818 0.754 −2% 0.882 0.757 −1% 0.395 0.809 −5% 0.045 0.067 −9% 0.119 0.250 −9%

Trimethylamine 2.87 (s) 0.094 0.277 −2% 0.218 0.457 −1% 0.133 0.593 −7% 0.002 0.018 −18% 0.013 0.081 −17%

Trimethylamine-N-oxide 3.27 (s) 0.067 0.270 −3% 0.032 0.217 −3% 0.976 0.913 6% 0.184 0.126 −7% 0.084 0.206 −9%

Glycine 3.57 (d) 0.103 0.279 −5% 0.049 0.218 −10% 0.920 0.908 8% 0.019 0.044 −14% 0.008 0.081 −17%

Phenylacetylglutamine 7.37 (d) 0.071 0.271 −9% 0.356 0.558 −3% 0.015 0.231 −21% 0.871 0.339 −1% 0.428 0.508 −12%

N-methyl-2-pyridone-5-carboxamide 8.33 (s) 0.065 0.269 8% 0.049 0.218 8% 0.676 0.879 −3% 0.764 0.311 −7% 0.545 0.568 −10%

Formate 8.46 (s) 0.004 0.105 −11% 0.009 0.214 −12% 0.115 0.574 −8% 0.007 0.024 −16% 0.410 0.498 −2%

% diff – percentage difference in group median.
Metabolite differences with P < 0.05 (Mann–Whitney test) are in bold type.
q Values indicate false discovery rate (likelihood of a false positive finding).
aMetabolite levels were determined by peak integration except for tyrosine, for which the Chenomx NMR suite was used.
FGR, fetal growth restriction; IPB, induced preterm birth; SGA, small for gestational age; SPB, spontaneous preterm birth.
Letters in brackets in the selected resonance column represent the signal multiplicity with (s) for singlets, (d) for doublets, (m) for multiplet and (t) for triplets.
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Table 3 Dose–response relationships between levels of selected metabolites and frequency of birth outcomes

Outcome Metabolite Q1 Q2 Q3 Q4 P value for trend

All PB types (n = 114) Steroid conjugate: 0.63 (s) 21% 22% 25% 32% 0.01*

Formate 32% 25% 23% 20% 0.02*

SPB (n = 88) Steroid conjugate: 0.63 (s) 20% 22% 24% 34% 0.01*

Lysine 14% 30% 26% 31% 0.03*

Trimethylamine-N-oxide 26% 28% 28% 17% 0.10

Glycine 26% 34% 20% 19% 0.07

N-methyl-2-pyridone-5-carboxamide 19% 19% 30% 32% 0.03*

Formate 32% 25% 24% 19% 0.02

IPB (n = 26) N-acetyl glycoprotein fragments 8% 23% 19% 50% 0.01**

Phenylacetylglutamine 42% 27% 12% 19% 0.03*

FGR (n = 36) Tyrosine 33% 36% 17% 14% 0.03*

Lactate 33% 33% 17% 17% 0.05*

Alanine 39% 31% 11% 19% 0.03*

Acetate 39% 31% 22% 8% 0.004**

Citrate 33% 39% 14% 14% 0.02*

Trimethylamine 50% 19% 17% 14% 0.002**

Glycine 33% 39% 11% 17% 0.03*

Formate 39% 28% 19% 14% 0.02*

SGA (n = 19) Leucine 16% 16% 26% 42% 0.06

Lactate 37% 37% 16% 11% 0.05*

Alanine 42% 32% 16% 11% 0.03*

Acetate 42% 21% 32% 5% 0.05*

N-acetyl neuraminic acid 21% 11% 16% 53% 0.04*

Trimethylamine 47% 16% 21% 16% 0.07

Glycine 42% 37% 11% 11% 0.02*

Percentage of each birth outcome frequency across pregnant women stratified by metabolite levels (into quartiles: Q1, Q2, Q3, and Q4).
*P < 0.05 and **P < 0.01 for a significant trend in outcome (Cochrane-Armitage trend test, highlighted in bold).
FGR, fetal growth restriction; IPB, induced preterm birth; SGA, small for gestational age; SPB, spontaneous preterm birth.
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39.5). High lysine and low formate levels were signifi-
cantly associated with a higher risk of SPB.
IORs between all quartiles for metabolites significantly

discriminating pregnancy outcomes are presented in
Figure 2. Some metabolites, such as 2-Py in SPB ca-
ses, were associated with a linear increase in outcome
incidence, whereas other metabolites, such as N-acetyl
glycoproteins in IPB cases, were associated with a steep
increase in outcome incidence only at high level. ROC
analysis was also performed on the metabolites that were
significantly associated in adjusted logistic regression
models, in order to provide an alternative test of the
ability of these molecules to predict birth outcomes
in the study population. Modest but statistically sig-
nificant area under the curve (AUC) values were obtained
for all metabolites (AUCs for SPB: 58.8% to 59.4%;
IPB: AUC 66%; FGR: 63.7% to 66.3%; see Additional
file 2).
Urinary metabolites characterising pregnancy outcomes
and adverse metabolic status
According to a previous analysis [18], the presence of
metabolic syndrome in early pregnancy is related to in-
creased risk of PB and FGR within the Rhea cohort par-
ticipants. Metabolic syndrome is a cluster of metabolic
abnormalities related to increased risk of cardiovascular
diseases and diabetes [37]. We hypothesised that the can-
didate metabolites associated with pregnancy outcomes
might reflect aspects of metabolic syndrome, and that
clinical parameters associated with metabolic syndrome
would correlate with levels of the urinary metabolites
(Figure 3). Insulin was the parameter with the most sig-
nificant correlations with urinary metabolites, showing
significant negative correlations with acetate, formate
and tyrosine levels (Spearman ρ = −0.22, ρ = −0.21, and
ρ = −0.15 respectively, P < 0.05). Increased BMI was as-
sociated with elevated levels of N-acetyl glycoprotein
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Table 4 Logistic regression models predicting pregnancy outcomes from metabolite levels

Outcomes Metabolite IQR 95% CI P value

Min Max

All PB types (n = 114) Steroid conjugate: 0.63 (s) 1.90 0.99 3.69 0.054

Formate 0.51 0.26 0.99 0.047

SPB (n = 88) Steroid conjugate: 0.63 (s) 1.99 0.94 4.32 0.076

Lysine 2.79 1.20 6.98 0.021

N-methyl-2-pyridone-5-carboxamide 2.05 0.96 4.51 0.066

Formate 0.42 0.19 0.94 0.037

IPB (n = 26) N-acetyl glycoprotein fragments 5.84 1.44 39.50 0.028

Phenylacetylglutamine 0.37 0.09 1.28 0.131

FGR (n = 36) Tyrosine 0.27 0.08 0.81 0.025

Lactate 0.37 0.12 1.04 0.069

Alanine 0.38 0.13 1.02 0.064

Acetate 0.18 0.04 0.60 0.011

Citrate 0.33 0.09 0.99 0.058

Trimethylamine 0.14 0.04 0.40 0.001

Glycine 0.36 0.11 1.02 0.062

Formate 0.24 0.07 0.71 0.014

SGA (n = 19) Lactate 0.20 0.03 0.89 0.055

Alanine 0.19 0.03 0.88 0.055

Acetate 0.12 0.01 0.70 0.050

N-acetyl neuraminic acid 2.23 0.64 9.10 0.225

Glycine 0.19 0.03 0.88 0.052

Interquartile odds ratios (IQR, first versus fourth) with 95% confidence interval (CIs) are presented for the incident risk for pregnancy outcomes according to
candidate metabolite relative concentrations.
Statistical analysis (z-score) of the beta values (log odds) indicated if the metabolite was significantly contributing to the model (highlighted in bold).
Models were adjusted for maternal education, maternal age, parity and smoking. FGR, fetal growth restriction; IPB, induced preterm birth; SGA, small for
gestational age; SPB, spontaneous preterm birth.
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fragments in the urine (ρ = 0.14). BP was poorly corre-
lated with urinary metabolites. These findings suggest that
some of the variation in the urinary metabolites associated
withbirth outcomes could be related to underlying ma-
ternal metabolic disease such as obesity and insulin resis-
tance. Stratified analysis by maternal BMI as the two
categories of ‘underweight and normal’ (<25) versus ‘over-
weight and obese’ (>25), confirmed that N-acetyl glyco-
protein and IPB are significantly associated in overweight
and obese women only (P = 0.008 in the overweight and
obese group versus P = 0.40 in the underweight and nor-
mal group). Figure 4 illustrates that N-acetyl glycoprotein
levels were particularly high in IPB women with high BMI
before pregnancy. A stratified analysis was also performed
for insulin levels (low levels ≤6 mU/mL versus high le-
vels >6 mU/mL). Tyrosine, acetate and formate associations
with FGR were not significant in the high insulin group.

Discussion
Although over 90% of fetal growth occurs in the sec-
ond half of gestation, maternal metabolism in the first
trimester undergoes extensive changes in lipid storage,
nitrogen species excretion and other metabolic pathways
in order to facilitate fetal development [38]. Thus, early
maternal metabolic abnormalities could indicate, or even
cause, abnormal implantation, fetal growth impairment or
other adverse birth outcomes, before clinical symptoms
appear. Using a 1H NMR-based metabolic profiling ap-
proach, we found early (end of first trimester) differences
in urinary metabolic phenotypes in the pregnant women in
the Rhea cohort study in whom PB and FGR subsequently
occurred. These potentially predictive metabolic signatures
of birth outcomes were correlated with aspects of meta-
bolic syndrome. Furthermore, we observed a distinction
between the metabolic signature of ‘medically indicated’/
induced and ‘non-indicated’/spontaneous PB, suggesting a
range of aetiological metabolic factors contributing to PB.
Despite the relative small number of induced preterm

pregnancies (n = 28), a significant increase in N-acetyl
glycoprotein fragments was observed in these women.
The N-acetyl proton resonances arising at δ 2.04 ppm are
frequently associated with inflammation-induced acute
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Figure 2 Interquartile odds ratios (IORs) for pregnancy outcomes according relative concentrations of discriminatory urinary
metabolites. Logistic regression models were adjusted for maternal education, maternal age, parity and smoking. CI, 95% confidence interval.
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phase proteins such as alpha-1 glycoprotein when repor-
ted in serum [39], but the urinary source is less certain.
One candidate is uromodulin, also called the Tamm-
Horsfall glycoprotein, which is the most abundant protein
found in urine [40]. The N-acetyl glycoprotein resonance
was positively correlated in this study with BMI. In the
Rhea cohort, pregnant women with metabolic syndrome
(and in particular the obesity component) had a high risk
of encountering IPB (RR = 5.13, 95% Cl 1.97 to 13.38).
The mechanisms relating N-acetyl glycoproteins to obesity
and IPB, remain unclear; however, it is widely repor-
ted that high levels of adipose tissue can lead to sys-
temic inflammation through release of cytokines such
as interleukin-6, which could lead to an acute phase re-
sponse [41]. Higher N-acetyl glycoprotein levels in NMR
spectra of women with PB were also found in a study pro-
filing maternal serum and cord blood at birth [42]. Spon-
taneous PB was specifically associated with higher urinary
lysine, an essential amino acid that is limiting for growth,
and is elevated in the plasma of premature infants [43].
The steroid conjugate at 0.63 ppm, possibly arising from a
soluble metabolite of pregnanediol, was also increased in
SPB cases by 19%. This signal has also been identified in
previous studies that detected it in the urine of second tri-
mester pregnant women with subsequent fetal malforma-
tion and trisomy 21 [20,44]. In our study, this steroid was
also positively correlated with cholesterol and LDL-C,
known sources for progesterone synthesis by the placenta.
With the exception of formate, a different metabolic

profile (decreased urinary acetate, citrate, formate, gly-
cine, tyrosine and trimethylamine) was associated specif-
ically with poorer fetal growth. FGR remains difficult to
assign owing to healthy biological variability in human
size, hence in this study we used a definition based on
customised birth-weight percentiles designed to better
differentiate between infants who are small because of
restricted growth and infants who are small but have
reached their likely individual growth potential (see
Methods) [18,26]. A similar pattern of associations was
observed for this parameter as for the more conventional
classification of SGA; however, FGR resulted in more sta-
tistically significant associations because of larger sample
size. The FGR metabolite profile was broadly inversely as-
sociated with plasma insulin and positively correlated with
HDL-C levels. Of these metabolites, formate, tyrosine and
trimethylamine were all found to be significantly positively
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correlated with each other, suggesting a common source
of variation (ρ(formate-tyrosine) = 0.38, ρ(formate-trimethylamine) =
0.21 and ρ(tyrosine-trimethylamine) = 0.26). Elevations of several
of these metabolites in blood have been previously associ-
ated with risk of insulin resistance [45,46]; however, the
biological significance of low urinary levels of these mo-
lecules is less clear. Low urinary formate has been previ-
ously associated with increased hypertension in a large
multinational study [47] and interestingly, hypertension in
the first trimester of pregnancy was the most significant
risk factor for PB and FGR in the Rhea cohort [18]. How-
ever, the association between formate and BP observed
was not statistically significant in our study cohort. Several
of the metabolites in the FGR signature (acetate, formate,
tyrosine, trimethylamine) are known to be consumed
or produced in significant quantities by gut microbes
[48-51], hence the association might reflect a specific
gut microbial distribution or a dietary pattern that selects
for such a distribution. A recent study reported dramatic
change in gut microbial composition throughout preg-
nancy causing increased insulin resistance and greater
adiposity; although normally associated with disease
this may be of benefit during pregnancy [52]. This
indicates that the composition of gut microbiota in
pregnant women could influence their metabolic
homeostasis and their pregnancy outcomes. Daily
intake of 5 mg of supplemental folic acid in the whole
Rhea population (n = 1,279) was associated with a 66%
decrease in the risk of delivering an SGA neonate
(RR = 0.34; 95% CI 0.16 to 0.73) [53]. However, formate
levels were not correlated with supplementary folate
intake in our study population (ρ = −0.05 and P = 0.23).
Despite our study not being directly comparable with

previous metabolomics studies investigating birth out-
comes, owing to differences in the analytical platform
used and the biofluids studied (often cord blood serum
or amniotic fluid), and because our samples were taken
at the end of the first trimester (whereas most previous
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Figure 4 Distribution of urinary N-acetyl glycoprotein resonance intensity in induced preterm birth (IPB) cases and controls stratified
by maternal body mass index (BMI). Box plots represent median and range of metabolite concentration with numbers in white corresponding
to individual counts per categories.
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metabolomics studies have examined late pregnancy
samples), some similarities with other investigations were
observed. In addition to the instances cited above, a previ-
ous study in women with subsequent FGR also reported
decreased levels of urinary trimethylamine, tyrosine and
glycine [44]. However, many more metabolomic studies
have focused on events during pregnancy such as pre-
eclampsia rather than birth outcomes; in our work, we ex-
cluded women with pre-eclampsia, making comparison
with these inappropriate.
Our study has a number of other important limita-

tions. Firstly, our study was not specifically designed to
examine FGR, and only a limited number of these cases
were available within our dataset. Secondly, although
our study is unique in defining associations between me-
tabolism during early pregnancy and birth outcomes,
it is not possible at this stage to distinguish between
pregnancy-induced effects and underlying metabolic risk
factors. However, this does not negate the potential
value of urinary metabolites in general as biomarkers of
risk of negative birth outcomes, and our exploratory
study has generated several hypotheses for future in-
vestigation. It is also possible that our observations re-
flect aetiological factors specific to the Rhea cohort,
which experience an abnormally high rate of PB, and are
not generalisable to the broader European population.
Specimens from an independent cohort would be needed
to validate our findings, and several efforts to com-
plete comparable studies in large birth cohorts are cur-
rently underway, such as the Human Early-Life Exposome
(HELIX) project [54]. This consortium aims to imple-
ment novel exposure assessment and biomarker me-
thods (including metabolomics) to characterise the total
exposure from conception to multiple environmental fac-
tors (the exposome [55-57]) and associate these with child
health outcomes. Applied as an untargeted approach,
metabolomics captures information about endogenous
metabolism and exogenous exposures simultaneously,
making it in principle an ideal tool for exploring the
exposome.
Conclusion
Urinary acetate, tyrosine, formate, trimethylamine, lysine
and glycoprotein measured at the end of the first trimes-
ter are associated with increased risk of negative birth
outcomes in the Rhea cohort. We believe our study to
be a confirmation of the potential of metabolomics to
reveal novel links between metabolite exposure and birth
outcomes, and evidence in support of the inclusion of
such approaches in studies that attempt to link the
exposome to neonatal health.
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Additional files

: Analysis of median differences (Mann-Whitney U
test) for all metabolite integrals comparing negative birth outcome
groups and controls.

: Discrimination between birth outcome cases and
control group receiver operating characteristic (ROC) curves for
selected candidate metabolites.
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