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1 Introduction

In the AdS/CFT proposed by Maldacena [1], a complete understanding of the N = 4

SYM (CFT) requires the information of the whole infinite tower of massive Kaluza-Klein

modes on AdS5×S5 as well as the low energy supergravity on AdS5 [2]. Massless, massive

and tachyonic fields in AdS5 respectively correspond to marginal, irrelevant and relevant

perturbations in the boundary CFT. Thermalization of the strongly coupled system in CFT

may be studied holographically by reconstructing the bulk geometry from the back-reaction

of those matter fields [3].

The thermalization of a spatially homogeneous system initially in a non-equilibrium

state created by a marginal perturbation has been studied both perturbatively [4] and

numerically [5]. The perturbation is excited by a scalar source coupled to a marginal

composite operator. On the AdS side, one needs to study the black hole formation from

the gravitational collapse of a massless scalar field in the bulk. It was shown that such a
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strongly coupled system thermalizes in a typical time tT ∼ O(1)
T

with T being the thermal-

equilibrium temperature [5]. tT is the typical time for the scalar field to fall from the

boundary to the interior of AdS5 close to the location of the apparent horizon. For the

other aspects of the thermalization of such a spatially homogeneous system, the interested

reader is referred to [6–22] for CFT and [23, 24] for classical field theory.

If the boundary source is switched on only in a short duration, one may expect that

the thermalization time tT should not (dramatically) depend on whether it is coupled to a

marginal or relevant operator. However, on the gravity side the thermalization processes in

these two cases respectively correspond to the gravitational collapse of massless or tachyonic

scalar fields. It is interesting to see under what conditions the mass of the scalar field does

not affect significantly the thermalization time.

In this paper we study the thermalization process of a spatially homogeneous sys-

tem. The system is initially in a non-equilibrium state created by turning on a scalar

source coupled to a relevant operator O∆ in CFT. The energy is injected into the system

according to [3]

ε̇ ≡ Ṫ
(4)
00 = −〈O∆〉 ˙φ(0), (1.1)

where 〈O∆〉 is the expectation value of O∆ and the overdots denote time derivatives. After

the source is switched off, the system will finally thermalize through self-interaction and

the information about the initial state will be totally lost. In AdSd+1, it corresponds to the

gravitational collapse of a tachyonic scalar field of mass m. Stability requires not m2 > 0

but m2 ≥ −d2

4 . The conformal dimension ∆ of O∆ is related to the mass of the scalar

field by [2]

∆(∆− d) = m2, i.e., ∆ =
d

2
+

√

d2

4
+m2 =

d

2
+ n (1.2)

with

n =

√

d2

4
+m2. (1.3)

The scalar source induces a tachyonic scalar wave falling from the boundary into the interior

of AdSd+1. It satisfies the boundary condition

φ(t, u) ∼ ud−∆φ(0)(t). (1.4)

The induced wave will eventually collapse to form a black hole, which is the gravity dual

of a static plasma. At the end, it will be completely hidden behind the apparent horizon.

The thermalization process in CFT will be studied by investigating such a collapse process

in AdSd+1. In this paper, d = 4 and the scalar source φ(0) is chosen to take the form

φ(0)(t) =
ǫ

a
e−at

2
, (1.5)

where ǫ and a ≡ 1
∆t2

are two parameters and ∆t characterizes the duration of the source

being turned on.

This paper is organized as follows. In section 2 we give the equations of motion

for a scalar field of arbitrary mass coupled to gravity in the Poincare patch of AdS5. The
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numerical scheme in addition to initial conditions and boundary conditions is also discussed

in this section. Then, we study the propagation of a scalar field of arbitrary mass in AdS5
with the back-reaction to the bulk geometry being ignored in section 3. In section 4, we

investigate the details about the gravitational collapse of the tachyonic scalar field with

m2 = −3. In section 5, we briefly conclude. The near-boundary behavior of the massless

scalar field is presented in appendix A. In appendix B, a conserved energy-momentum

current in global AdS4 is defined, which is useful for understanding some details about the

collapse process of scalar fields discussed in [10, 11].

2 Einstein-Klein-Gordon equations

2.1 Equations of motion

On the AdS side, we need to solve the Einstein-Klein-Gordon equations

1√−g∂a
(√−ggab∂bφ

)

−m2φ = 0, (2.1)

Rab −
1

2
gabR− d(d− 1)

2L2
gab = Tab, (2.2)

where Tab takes the form

Tab = 2∂aφ∂bφ− gab

[

(∂φ)2 +m2φ2
]

. (2.3)

In the following, we take L = 1 and d = 4. For the spatially homogeneous system on the

boundary M4, we use the Schwarzschild coordinates of the form

ds2 =
1

u2

(

−fe−2δdt2 + f−1du2 + d~x2
)

, (2.4)

where f and δ are functions of t and u only. In this coordinate system, one obtains from

eqs. (2.1) and (2.2) the following equations of motion

V̇ = u3
(
fe−δP

u3

)′

− m2

u2
e−δφ, (2.5a)

Ṗ =
(

fe−δV
)′
, (2.5b)

ḟ =
4

3
uf2e−δV P, (2.5c)

δ′ =
2

3
u
(
V 2 + P 2

)
, (2.5d)

f ′ =
2

3
u

[

f
(
V 2 + P 2

)
+
m2

u2
φ2
]

+
4

u
(f − 1) , (2.5e)

where the derivatives with respect to t and u are denoted respectively by overdots and

primes, P ≡ φ′ and V ≡ f−1eδφ̇.
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2.2 Initial and boundary conditions

Before the scalar source is turned on, the scalar field is assumed to vanish in the bulk. In

this case, at the initial time t = ti the metric functions and the scalar field are as follows

f = 1, δ = 0, V = 0 and P = 0. (2.6)

The boundary condition for solving (2.5d), (2.5a) and (2.5b) are respectively given by1

δ(t, 0) = 0, (2.7)

V (t, umin) = −2tǫe−at
2
u2−nmin and P (t,∞) = 0 as umin → 0. (2.8)

2.3 Scaling symmetry

The scaling symmetry of the equations of motion in eq. (2.5) allows us to obtain solutions

from a known solution as follows [5]

φλ(t, u) = φ(λt, λu), fλ(t, u) = f(λt, λu), and δλ(t, u) = δ(λt, λu), (2.9)

where (φ, f, δ) denote the solution with the boundary condition given by

φ(t, umin) =
ǫ

a
e−at

2
(umin)

2−n (2.10)

and (φλ, fλ, δλ) with λ > 0 denote the one with

φ(t, umin) =
ǫ

a
e−a(λt)

2
(λumin)

2−n =
λ4−nǫ

λ2a
e−(λ2a)t2u2−nmin . (2.11)

Or, equivalently,

(a, ǫ) →
(
λ2a, λ4−nǫ

)
. (2.12)

As a result, we only need to study the dependence of solutions either on a or ǫ.

2.4 Numerical scheme

The equations of motion in eq. (2.5) can be solved by the numerical scheme described in

detail in ref. [5]: given f , δ, V and P at t = tj , we first calculate V , P and f at the

next time step tj+1 by solving (2.5a), (2.5b) and (2.5c). Then, δ at tj+1 is obtained by

solving eq. (2.5d). Given the initial conditions in (2.6), the bulk metric at late times can

be calculated by repeating the above two steps. In our numerical calculation, we use a grid

in the u direction with uniform spacing du. We find that a stable algorithm requires the

time step dt . 0.1du. Also, du should satisfy du . 0.1umin to ensure that the boundary

conditions can be correctly provided.

For arbitrary mass, we can not in general provide the boundary condition at u = 0 due

to our choice of the coordinates in eq. (2.4) (see eq. (1.4)). In this paper, the boundary

condition for numerical simulations is provided at u = umin ≪ 1 in eq. (2.8). We find that

our numerical results are insensitive to the choice of umin as long as umin ≤ 0.01. For all

the numerical results in the following sections, we choose umin = 0.001.

1In our numerical calculations, we have also tried providing the boundary conditions by including higher-

order terms in the power series solutions of eq. (2.5) in eqs. (4.6), (4.7) and (4.8) but we only find negligible

difference.
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3 Scalar fields in AdS5

In this section we ignore the back-reaction of the scalars to the bulk geometry. In this case,

the AdS5 metric, with f = 1 and δ = 0 in eq. (2.4), has a killing vector

ξa = δa0 , (3.1)

which allows us to define a conserved total energy M(t, u) as follows2

∂

∂t
M(t, u) ≡ ∂

∂t

∫ ∞

u

duE0 = Eu|u∞ , (3.3)

where

E0 ≡ 2

3u3

(

V 2 + P 2 +
m2

u2
φ2
)

, and, Eu ≡ − 4

3u3
PV = − 4

3u3
φ′φ̇. (3.4)

In section 4, we shall show that in the case ǫ
a
≪ 1 M(t, 0) is a very good approximation to

the black hole mass resulted from the gravitational collapse of the scalar fields.

In such a fixed gravitational background, the equation of motion of the scalar field in

eq. (2.1) or eq. (2.5a) reduces to

φ̈− φ′′ +
m2

u2
φ+

3

u
φ′ = 0. (3.5)

The general solution to the above equation is given by

φ = Re u2
∫
dω

2π
e−iωt [CJ(ω)Jn (ωu) + CY (ω)Yn (ωu)] , (3.6)

where Jn and Yn are respectively the Bessel functions of the first and second kind. For the

boundary condition in eq. (1.4)

φ = Re u2
∫
dω

2π
e−iωtCY (ω)Yn (ωu) (3.7)

with

CY (ω) = − πωn

2nΓ(n)
φ(0)(ω) and φ(0)(ω) ≡

∫

dteiωtφ(0)(t) =
ǫπ

1
2

a
3
2

e−
ω
2

4a . (3.8)

Taking the explicit form of φ(0) in eq. (1.5), we have

CY (ω) = −ǫω
ne−

ω
2

4a

2nΓ(n)

(π

a

) 3
2
. (3.9)

At time t ≫ ∆t ≡ 1√
a
, regardless of its mass the group velocity of the scalar wave

in eq. (3.7) is always equal to the speed of light. This can be proven as follows: φ is not

2That is, we have

0 =

∫

dx5√−g ▽a

(

T abξb
)

=

∫

d3x

[

∫

∞

u

du

u4
taξbT

ab

∣

∣

∣

∣

t

−∞

+

∫

t

−∞

dt

u4
uaξbT

ab

∣

∣

∣

∣

∞

u

]

(3.2)

with ua ≡ δau

u
and ta ≡ δa0

u
.
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significantly suppressed only in the region |t−u| . ∆t at late times. Using the asymptotic

expansion of Yn(ζ) at |ζ| ≫ 1,3

Yn(ζ) ≃







(−1)l

(πζ)
1
2
[sin ζ − (−1)n cos ζ] , if ζ > 0

(−1)l

(πζ)
1
2
[(2− (−1)n i) sin ζ − (i+ (−1)n 2) cos ζ] , if ζ < 0

(3.10)

with n = 2l + (−1)n mod 2 in eq. (3.7), after some algebra we obtain

φ ≃ u
3
2φa

(
t− u

∆t

)

≡ (−1)l Cnu
3
2

∫ ∞

0
dωωn−

1
2 e−

ω
2

4

[

(−1)n cos
ω(t− u)

∆t
+ sin

ω(t− u)

∆t

]

, (3.11)

where

φa(ζ) = (−1)l Cn2
n− 1

2 (3.12)

×
[

2ζΓ

(
3

4
+
n

2

)

1F1

(
3

4
+
n

2
,
3

2
,−ζ2

)

+ (−1)nΓ

(
1

4
+
n

2

)

1F1

(
1

4
+
n

2
,
1

2
,−ζ2

)]

with

Cn ≡ ǫa
n

2
− 5

4

2nΓ(n)
. (3.13)

Here, 1F1 is the Kummer confluent hypergeometric function. Therefore, at late times all

the scalars propagate at the speed of light in the bulk.

Near the boundary u = 0, the power series expansion of the scalar field has the form

φ = ud−∆
(
φ(0) + φ(2)u

2 + · · ·+ φ(2n−2)u
2n−2 + φ(2n)u

2n + ψ(2n)u
2n log u2 + · · ·

)
, (3.14)

where φ(2m) for 2m < 2n and ψ(2n) are determined by the boundary source φ(0). The

expectation value of the dual operator O∆ is given by [3]

〈O∆〉 = 2nφ2n (3.15)

up to terms contributing contact terms in the 2-point function. In the next section, we

shall focus on the tachyonic scalar with m2 = −3. In this case, ∆ = 3 and n = 1. The

power series expansion of φ in eq. (3.7) near the boundary takes the form

φ = Re u

∫
dω

2π
e−iωtφ(0)(ω)

[

1− ω2

4
(2γE − 1− log 4 + 2 log uω)u2 + · · ·

]

= u

[

φ(0) +

(

1

4
¨φ(0)

︸ ︷︷ ︸

ψ(2)

log u2 + φeven(2) + φodd(2)
︸ ︷︷ ︸

φ(2)

)

u2 + · · ·
]

, (3.16)

3Here, we only discuss the cases with n being integral and m2 > −4.
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where γE ≃ 0.5772 is the Euler-Mascheroni constant and φodd2 or φeven2 are respectively an

odd or even function of t defined by

φodd(2) ≡ −1

4

∫ 0

−∞
dω sin(ωt)ω2φ(0)(ω), (3.17)

φeven(2) ≡ 1

4
(2γE − 1− log 4) ¨φ(0) −

1

4

∫
dω

2π
e−iωtφ(0)(ω)ω

2 logω2. (3.18)

Here, we have assumed that φ(0)(ω) is an even function of ω.

4 Tachyonic scalar fields coupled to gravity

In this section, we reconstruct the bulk geometry from the gravitational collapse of a

tachyonic scalar field with m2 = −3. In eq. (2.2), we implicitly assume that the VEV of

the dual operator scales as N2
c . In this case, the back-reaction of the scalar field to the

bulk geometry can not be ignored and it eventually collapses to form a black hole in the

bulk. Such a collapse process is dual to the thermalization process in the boundary CFT.

We study both narrow ( ǫ
a
. 1) and broad( ǫ

a
& 1) waves.

4.1 Energy conservation

Eqs. (2.5c) and (2.5e) give the conservation of the total energy in the bulk4

∂

∂t
M(t, u) ≡ ∂

∂t

∫ ∞

u

duE0 = Eu|u∞ , (4.2)

where the energy density and the energy flux along the u direction are defined by

E0 ≡ 2

3u3

[

f
(
V 2 + P 2

)
+
m2

u2
φ2
]

, and, Eu ≡ − 4

3u3
f2e−δPV = − 4

3u3
fφ′φ̇. (4.3)

They reduce to those in eq. (3.4) if the back-reaction of the scalar field to the bulk geometry

is ignored. After the source is switched off, M(t, 0) is the black hole mass Mbh. This can

be easily seen by rewriting eq. (2.5e) in the form

(
f − 1

u4

)′

= E0. (4.4)

Integrating over u, one gets from the above equation

M(t, 0)|t&∆t =

∫ ∞

0
duE0 = − lim

u→0

f − 1

u4
=Mbh ≡ (πT )4 (4.5)

by Birkhoff’s theorem. Here, T is the thermal equilibrium temperature of the boundary

CFT or, equivalently, the Hawking temperature of the black hole formed in the bulk.

4Equivalently, one has
∂

∂t
E0 +

∂

∂u
Eu = 0. (4.1)

Eα ≡
(

E0, Eu
)

is referred to as the conserved energy-momentum current in the bulk.
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Figure 1. A typical tachyonic narrow wave (ǫ = 0.5 and a = 60): ∆t = 0.13 ≃ 0.018
T . This figure

shows u−3/2φ as a function of u at different times. At t . 1.0 = 7.7∆t, the fixed-background

solution in eq. (3.7) agrees every well with our numerical solution. Then, the fixed-background

solution, which can be very well approximated by the asymptotic solution in eq. (3.11), fails to

describe the collapse process later on. At t & tT = 6.25, the scalar field is (almost) completely

hidden behind the apparent horizon.

In the boundary CFT, eq. (4.2) also gives the conservation of the boundary energy in

eq. (1.1). Now let us take m2 = −3. Near the boundary the power series solutions to the

equations of motion in eq. (2.5) have the form

δ =
1

3
φ2(0)u

2 + · · · , (4.6)

f = 1 + a(2)u
2 + (b(4) log u+ a(4))u

4 + · · · , (4.7)

φ = u
(
φ(0) + φ(2)u

2 + ψ(2)u
2 log u2 + · · ·

)
, (4.8)

where the coefficients are given by

a(2) =
2

3
φ2(0), b(4) =

2

3

(

φ(0)φ̈(0) + φ̇2(0) + 2φ4(0)

)

, ψ(2) =
1

12

(

3φ̈(0) + 4φ3(0)

)

. (4.9)

Here the boundary condition in eq. (1.4) has been used and all the other coefficients of

the power series can be expressed in terms of φ(0) and φ(2). Among them the nonsingular

terms of eq. (4.2) in the limit u→ 0 give

ȧ(4) =
2

9

[

8φ3(0)φ̇(0) + 6φ(0)φ̇(2) + 3φ̇(0)

(

6φ(2) + φ̈(0)

)]

, (4.10)

which is the time-evolution equation of the boundary energy density

ε(t) = −
∫ t

∞
dt
〈

Ô3

〉

φ̇0 = φ(0)φ(2) −
3

4
a(4) +

1

4
φ̇2(0) +

1

3
φ4(0). (4.11)

4.2 Narrow waves
(

∆t = 1√
a
. 1

T

)

: ǫ
a
. 1

From figure 1 one can understand how a typical narrow wave propagates in the bulk. This

figure shows u−
3
2φ as a function of u at different times. At t . 7.7∆t, the fixed-background

– 8 –
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solution in eq. (3.7) is a good approximation of our numerical solution. Then, due to the

back-reaction of the scalar to the bulk geometry, the group velocity of the wave starts

to slow down while the fixed-background solution still propagates at the speed of light,

which can be clearly seen from the asymptotic solution in eq. (3.11). As a result, one

can use the fixed-background solution to calculate the thermal equilibrium temperature T

and to describe the details about how the energy is injected into the CFT vacuum during

∆t & t & −∆t.

4.2.1 The thermal-equilibrium temperature T

Let us first calculate Mbh = (πT )4, the black hole mass formed in the bulk. Taking ǫ̂ ≡ ǫ
a

as a small parameter, we write f , δ and φ in the form [4]

f = 1 + ǫ̂f1 + ǫ̂2f2 +O(ǫ̂3), (4.12)

δ = ǫ̂δ1 + ǫ̂2δ(2) +O(ǫ̂3), (4.13)

φ = ǫ̂φ1 + ǫ̂2φ2 +O(ǫ̂3). (4.14)

The equations of motion in eq. (2.5) can be solved order by order in ǫ̂. At the first order in ǫ̂,

f1 = 0, δ1 = 0, (4.15)

and ǫ̂φ1 is given by the fixed-background solution in eq. (3.7). Then, the second order

equation

ḟ2 =
4u

3
φ′1φ̇1 (4.16)

gives the black hole mass5

Mbh ≡ −a(4)(∞) = − lim
u→0

ǫ̂2f2(∞)

u4
= − lim

u→0

4ǫ̂2

3u3

∫ ∞

−∞
dtφ′1φ̇1, (4.17)

where a(4)(∞) ≡ − 1
u40

and u0 = 1
πT

is the location of the apparent horizon. Therefore,

M(t, 0)|t&∆t of the fixed-background solution in eq. (3.3) is approximately the black hole

mass in the bulk. Inserting (3.16) into (4.17) and only keeping the terms even in t, we get

Mbh = −
∫ ∞

−∞
dt

(

4φ̇(0)φ
odd
(2) +

4

3
φ(0)φ̇

odd
(2)

)

= −8

3

∫ ∞

−∞
dtφ̇(0)φ

odd
(2) =

4πǫ2

3a
∝ ǫ2

a
. (4.18)

By comparison with our numerical results in figure 2, we find that eq. (4.18) is a valid

approximation for ∆t . 0.3
T
. Using φ in eq. (A.1) as ǫ̂φ1 for the massless scalar, we have [4]

Mbh = −16π

3

∫ ∞

−∞
dtφ̇(0)φ

odd
(4) =

4πǫ2

3
∝ ǫ2, (4.19)

which also agrees with our numerical results in ref. [5].

5Here, we take t = ∞ but because of the energy conservation in eq. (4.2) it is the black hole mass after

the scalar source is switched off, that is, at time t & ∆t.
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take u0 as a function of a. The red solid curve (Analytic) shows the analytical result in eq. (4.18),

which agrees very well with our numerical results for all a & 1, or, equivalent, ∆t . 0.3
T .

The above scaling behavior of Mbh is a consequence of the scaling symmetry. Under

the scaling transformation in eq. (2.9),

Mbh → λ4Mbh. (4.20)

Therefore, at O(ǫ̂2) one should has, for arbitrary n,

Mbh ∝ ǫ2an−2 = ǫ̂2an =

(
ǫ̂

∆tn

)2

(4.21)

according to the scaling transformation in eq. (2.12). This scaling behavior should be

independent of the shape of the scalar source.

4.2.2 Energy injection

Using the (approximate) analytic solution above, we discuss the procedure to obtain the

boundary energy from the numerical bulk solutions in this subsection. Even though we

are mainly interested in the thermalization time tT and ε (strongly) depends of the shape

of the boundary source, the lesson we learn from such a simplified case may be useful for

studying the more complicated systems, say, in [25, 35, 36].

The energy is injected into the vacuum in the boundary CFT according to eq. (1.1),

that is,

ε(t) = −
∫ t

∞
dt
〈

Ô3

〉

φ̇0 = −2

∫ t

∞
dtφ̇(0)φ(2). (4.22)

Insert into the above equation φ(2) defined in eq. (3.16), and we find the following relation

for different (a, ǫ),6

ε(t) =
ǫ2

a
ε̂(
√
at)− 1

4
φ̇2(0) log a (4.23)

6Note that the energy density may take negative values at some intermediate time, which can be under-

stood from the second term on the right-hand side of eq. (4.23). One may choose a renormalization scheme

different from that used in ref. [3] to make ε be positive all the time. The interested reader is referred

to [26] for a recent discussion of holographic renormalization in the cases with m2 = −3 and −4.
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with

ε̂(t) ≡ ε(t)|a=1,ǫ=1 . (4.24)

The term ∝ log a is due to the conformal anomaly [27]. In order to get the boundary

energy density one only needs to calculate φ(2) from known solutions of eq. (2.5) and then

integrate over t in eq. (4.22).

Numerically, we find that it is easier to obtain ε(t) in the following way: by inserting

eq. (3.16) into eq. (4.16), near the boundary one has

ǫ̂2f2 = a(2)u
2 + (b(4) log u+ a(4))u

4 + · · · , (4.25)

where the coefficients are given by

a(2) =
2

3
φ2(0), b(4) =

2

3

(

φ(0)φ̈(0) + φ̇2(0)

)

, (4.26)

a(4) =
1

3

(

φ̇2(0) + 4φ(0)φ(2) + 8

∫ t

−∞
dtφ̇(0)φ(2)

)

. (4.27)

Accordingly,

ε(t) = φ(0)φ(2) −
3

4
a(4) +

1

4
φ̇2(0), (4.28)

which is eq. (4.11) up to O(ǫ̂2). The coefficients a(4) and φ(2) can be obtained by the least-

squared fit of the power series expansion of f and φ near the boundary to our numerical

results. Here, the power series expansion of f and φ takes the form

fs = 1 + a(2)u
2 +

ns

2∑

k=2

(
b(2k) log u+ a(2k)

)
u2k, (4.29)

φs = u



φ(0) +

ns

2
−1
∑

k=1

(
ψ(2k) log u

2 + φ(2k)
)
u2k



 , (4.30)

where ns ≥ 4 is an even integer. The coefficients φ(0), ψ(2), a(2) and b(4) take values

according to eqs. (1.5), (3.16) and (4.26) but others are to be obtained from the least-

squared fit to our numerical solutions at u = (umin, us). us > umin and ns are chosen such

that the fit results of a(4) and φ(2) do not change by increasing ns. Then, the fit result of

ε is obtained by eq. (4.28) or eq. (4.11).

Let us take for example the narrow wave with (a, ǫ) = (60, 0.5) (see figure 1). In this

case, we find that the fit results of ε do not depend on us in the range us = (0.3, 0.45). For

us = 0.3, 0.4 and 0.45, it respectively requires ns ≥ 18, 26 and 42. Figure 3(a) shows our

fit results with us = 0.4, which agree with the analytic solution in eq. (4.22) for ns ≥ 26.

However, for us & 0.5 the fit results always depend on ns (see figure 3(b)), which indicates

that u = 0.5 should be outside of the radius of convergence of the metric functions. We

also find that the fit result slightly depends on ns for smaller us. It is due to the error of

order u2min = 10−6 introduced by the boundary condition in eq. (2.8).
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Figure 3. The boundary energy density ε(t). Figure (a) shows the fit results of ε with us = 0.4

and ns = 24, 26 and 100. We find that for ns ≥ 26 they do not depend on ns, which agree with

the result (Analytic) in eq. (4.22). In contrast, for us = 0.5 the fit results always depend on ns as

shown in figure (b). Here (a, ǫ) = (60, 0.5).

4.2.3 The thermalization time

The details about the collapse process of the tachyonic scalar is shown in figure 1. Like the

massless scalar [5], it shows that the system in the boundary CFT thermalizes in a top-

down manner [8, 9]. Since the naive perturbative calculation breaks down at tT & t≫ ∆t,

we instead resort to numerical simulations to study the thermalization time tT . Here tT is

defined to be the first time when

min f(tT , u) = 0.01, (4.31)

which has an interpretation in terms of a spacelike Wilson loop
〈
W (l ≃ 1

T
)
〉
in the boundary

CFT [5].

First, let us fix ǫ = 0.5 and numerically calculate tT and T as functions of a =

a(0.5), which are denoted respectively by t
(0.5)
T and T (0.5). Then, let us use the scaling

transformation in eq. (2.9) to get the result for arbitrary (a, ǫ):

(tT , T, a, ǫ) =

(

t
(0.5)
T

λ
, λT (0.5), λ2a(0.5), 0.5λ4−n

)

, (4.32)

that is, the scaling parameter λ is given by

λ = (2ǫ)
1

4−n , (4.33)

and the thermalization time tT is

tT =
gt

T
with gt ≡ t

(0.5)
T T (0.5) =

t
(0.5)
T

πu
(0.5)
0

. (4.34)

In order to compare with the results of the massless scalar in ref. [5] we take gt as a function

of ∆t T . The result for gt at 0.3 ≥ ∆t T ≥ 0.015 is shown in figure 4. For ∆t . 0.02
T

, we
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waves with ∆t . 0.02
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0.8%.

find that the relative difference of gt from that of the massless scalar is less than 0.8% and

the mass term does not play an important role for very narrow waves. In summary, we

conclude that in the cases with ∆t . 1
T
the system in the boundary CFT thermalizes in a

typical time tT ∼ 1
T
.

4.3 Broad waves
(
∆t & 1

T

)
: ǫ
a
& 1

At the end of this section, we briefly discuss the double-collapse solutions of the tachyonic

scalar field. It also undergoes two-stage collapse in the bulk, which is qualitatively the

same as the massless scalar field in ref. [5]: the energy injected into the bulk from the

boundary before and after t = 0 is respectively responsible for the two peaks in the bulk

energy density E0. As a result, there are two local minima f ≃ 0.01 respectively at u = uL

and u0. Figure 5 shows how E0 and f of a double-collapse solution with (a, ǫ) = (0.3, 0.5)

evolve over time. At each time, f reaches its minima around the locations of the peaks in

E0. And the unsmoothness near its minima can be qualitatively understood by eq. (4.4):

near the peaks,

E0 =

(
f − 1

u4

)′

≃ f ′

u4
. (4.35)

At t & ∆t, the total bulk energy M(t, 0) =Mbh is conserved according to eq. (4.2), which

governs the time evolution of E0 shown in figure 5.

However, as shown in figures 5 and 6, f at t = 0 is far from that of the AdS black hole

metric near the boundary.7 This is in sharp contrast with the double-collapse solutions of

the massless scalar field. Such a difference can be easily understood according to eqs. (4.9)

and (A.7), which show that f ≃ 1+ 2
3φ

2
(0)u

2 for m2 = −3 while f ≃ 1− 1
3 φ̇

2
(0)u

2 for m2 = 0.

At t = 0 the system does not look like thermalized for either local or non-local operators.

7For umin = 0.0001/0.001, we find the fit result of ε always depends on ns and us. It indicates that even

us ∼ 0.1 is outside of the radius of convergence of the metric functions. The calculation with a smaller umin

is numerically too demanding for us.
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Figure 5. Two-stage collapse in the bulk. These figures show how E0 and f of a double-collapse

solution with (a, ǫ) = (0.3, 0.5) evolve over time. The qualitative features of the time evolution of

those two quantities can be understood by the conservation of E0 in eq. (4.2) and the back-reaction

of E0 to f in eq. (4.4).
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Figure 6. Single-collapse (figure (a)) and double-collapse (figure(b)) solutions. They are respec-

tively the analogs of the single-collapse and double-collapse solutions of the massless scalar fields

in ref. [5].

To conclude this subsection, we discuss the thermalization time for broad waves. In

this case, we define the thermalization time tT by subtracting out ∆t from that defined

in eq. (4.31). That is, we study the thermalization of the isolated system after the source

is switched off. For the solution with (a, ǫ) = (0.3, 0.5), we find tT = 1.85 = 0.83
T

with

u0 = 1.09. We find that this is also parametrically true for other double-collapse solutions.

Therefore, we conclude that the typical thermalization time for such a strongly coupled

system is always of order 1
T
no matter whether the non-equilibrium initial state is produced

by marginal or relevant perturbations.
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5 Conclusions

In this paper, we study the thermalization process of a strongly coupled system via

AdS/CFT. The non-equilibrium initial state of the system is created by turing on a scalar

source during ∆t & t & −∆t, which is coupled to a relevant composite operator. On the

gravity side, we study the gravitational collapse of a tachyonic scalar field with m2 = −3

in AdS5. In the case with ∆t . 0.3
T

we find that the black hole mass Mbh ≡ (πT )4 ∝
(
ǫ̂
∆t

)2

with ǫ̂ ≡ ǫ
a
being the amplitude of the scalar source. In this case, the injection of energy

into the CFT vacuum can be very well described by perturbative calculations. Moreover,

for ∆t < 0.02
T

, the thermalization time tT is found to be quantitatively the same as that of

the non-equilibrium state created by the marginal perturbation in ref. [5]. For the case with

∆t & 1
T
a non-equilibrium intermediate state at t ≃ 0 is found in double-collapse solutions,

which is very different from that of the massless scalar field. In all the cases we find that

the system, after the scalar source is turned off, thermalizes in a typical time tT ≃ O(1)
T

.

Such a rapid thermalization seems typical of such a strongly coupled CFT (see [28–44] for

various other non-equilibrium initial states).

After the source is switched off, one has

Eu(t, 0) = 0 = Eu(t,∞). (5.1)

Both the boundary at u = 0 and the hypersurface at u = ∞ act as reflecting mirrors to

the scalar field. As a result, its total energy M(t, 0) is conserved. In our case, as shown

in figure 1, the scalar field always propagates inwards and eventually hides behind the

apparent horizon. It can not reach u = ∞. In contrast, in the global coordinate the

scalar field can travel from the boundary/center to the center/boundary in finite time. In

this case, both the center and the boundary act as reflecting mirrors. The scalar field

may collapse to form a black hole after oscillating between the boundary and the center

several times [10]. The conserved energy-momentum current Eα ≡ (E0, Ex) in global AdS4
is defined in eq. (B.3), which is useful for understanding the qualitative features of such

a collapse process (see figure 7). A more comprehensive description in terms of Eα would

help understand better such collapse processes in global AdS. Besides, many discussions in

sections 2 and 3 are also applicable to massive scalar fields (withm2 > 0), which are relevant

for the thermalization of the non-equilibrium state created by irrelevant perturbations.

However, φ is divergent near the boundary u = 0 (see eq. (1.4)) and the back-reaction of

the matter field to the bulk geometry requires a more careful analysis [2, 3]. Moreover,

in our double-collapse solutions, at t = 0 the speed of light-like geodesics du
dt

≡ fe−δ ≃
1 + 1

3φ
2
(0)u

2 > 1 at u ∼ 0. It would be interesting to learn more details about such an

intermediate state as well as the thermalization process by studying other probes such

as heavy quarks [45], dileptons [16] or prompt photons [17]. We leave those unanswered

questions for future research.
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A Near-boundary behavior of the massless scalar field

For the massless scalar field, ∆ = 4 and n = 2. The power series expansion of the fixed-

background solution in eq. (3.7) near the boundary is as follows

φ = Re

∫
dω

2π
e−iωtφ(0)(ω)

[

1 +
ω2u2

4
+
ω4u4

64

(

3− 4γE − 4 log
ωu

2

)

+ · · ·
]

= φ(0) −
u2

4
¨φ(0) +

(

φeven(4) + φodd(4)
︸ ︷︷ ︸

φ(4)

+ψ(4) log u
2

)

u4 + · · · , (A.1)

where

ψ(4) ≡ −
φ
(4)
(0)

32
, φodd(4) ≡ −

∫ 0

−∞

dω

32π
sin(ωt)ω4φ(0)(ω), (A.2)

φeven(4) ≡
φ
(4)
(0)

64
(3− 4γE + 4 log 2)− 1

32

∫
dω

2π
e−iωtφ(0)(ω)ω

4 logω2. (A.3)

Near the boundary, the power series solutions to the equations of motion in eq. (2.5)

take the form8

f = 1 + a(2)u
2 + (b(4) log u+ a(4))u

4 + · · · , (A.4)

φ = φ(0) + φ(2)u
2 + φ(4)u

4 + ψ(4)u
4 log u2 + · · · , (A.5)

δ =
1

3
u2φ̇2(0) +

1

72
u4
(

16φ̇4(0) + 3φ̈2(0) − 6φ̇(0)φ
(3)
(0)

)

, (A.6)

where the coefficients are given by

a(2) = −1

3
φ̇2(0), b(4) =

1

6

(

4φ̇4(0) + φ̈2(0) − 2φ̇(0)φ
(3)
(0)

)

, (A.7)

φ(2) = −1

4
φ̈(0), ψ(4) = − 1

32

(

φ
(4)
(0) − 8φ̇2(0)φ̈(0)

)

. (A.8)

The nonsingular terms of eq. (4.2) in the limit u→ 0 gives

ȧ4 =
1

36

(

192φ(4)φ̇(0) + 32φ̇3(0)φ̈(0) + 6φ̈(0)φ
(3)
(0) − 3φ̇(0)φ

(4)
(0)

)

. (A.9)

As a result, we have

ε(t) = −
∫ t

∞
dt
〈

Ô4

〉

φ̇0 = −4

∫ t

−∞
dtφ̇(0)φ(4)

= −3

4
a(4) +

3

32
φ̈2(0) −

1

16
φ̇(0)φ

(3)
(0) +

1

6
φ̇4(0). (A.10)

8At t = 0, f = 1 +
(

2ǫ2

3
log u+ a(4)

)

u4 + · · · . For the double-collapse solutions, one always has

|a4| ≫
∣

∣

∣

2ǫ2

3
log u

∣

∣

∣
at uL ≥ u ≥ umin. This makes f look like that of the AdS black hole at t = 0.
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Figure 7. Gravitational collapse of a massless scalar in global AdS4. Here, we show the time

evolution of E0 (figure (a)) and Ex (figure (b)) of a solution which collapses to form a black hole

at t ∼ π. At t = 0, the matter field locates mostly near the center (x = 0). Then, the matter field

propagates upwards as a result from the reflection by the center. Afterwards, it keeps going up

before reaching the boundary, which forces it to fall inwards. At t ∼ π, E0 is more sharply peaked

near x = 0 than that at t = 0. The force from the reflection can not resist the gravity and the

scalar field will eventually collapse to form a black hole.

B Gravitational collapse of massless scalars in global AdS4

The metric of AdS4 in the global coordinate takes the form [10]

ds2 =
1

cos2 x

(

−fe−2δdt2 + f−1dx2 + sin2 xdΩ2
)

, (B.1)

where the metric functions f and δ are functions of t and x. Here, the boundary of AdS4
locates at x = π

2 . It takes only t = π
2 for light to travel from the boundary/center to the

center/boundary. From eqs. (2.1) and (2.2), one has

∂

∂t
M(t, x1, x2) ≡ ∂

∂t

∫ x2

x1

E0 = Ex(t, x1)− Ex(t, x2), (B.2a)

V̇ =
1

tan2 x

(

tan2 xfe−δP
)′
, Ṗ =

(

fe−δV
)′
, (B.2b)

δ′ = − sinx cosx
(
V 2 + P 2

)
, ḟ =

cos3 x

sinx
Ex, (B.2c)

where the derivatives with respect to t and x are denoted respectively by overdots and

primes, P ≡ φ′, V ≡ f−1eδφ̇ and the conserved energy-momentum current Eα ≡
(
E0, Ex

)

is defined by

E0 ≡ tan2 xf
(
V 2 + P 2

)
, and, Ex ≡ −2 tan2 xf2e−δPV. (B.3)

After the boundary source is switched off, one has

P (t, 0) = 0, and V
(

t,
π

2

)

= 0. (B.4)

– 17 –



J
H
E
P
0
4
(
2
0
1
3
)
0
4
4

As a result, the total energyM(t, 0, π2 ) is a constant according to eq. (B.2a). E0 and Ex help
understand some details on how the scalar field evolves over time in the bulk. Figure 7 shows

the time evolution of E0 and Ex of a solution with the initial condition given by P (0, x) = 0

and V (0, x) = 80
π
exp

(

−1024 tan2 x
π2

)

. It illustrates the general features about such a collapse

process. All the discussions here can be easily generalized to the cases of massive/tachyonic

scalar fields in global AdSd+1 or in Minkowski space (by taking the limit x→ 0).
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