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Abstract: The splitting processes of bremsstrahlung and pair production in a medium

are coherent over large distances in the very high energy limit, which leads to a suppression

known as the Landau-Pomeranchuk-Migdal (LPM) effect. We analyze the case when the

coherence lengths of two consecutive splitting processes overlap, which is important for

understanding corrections to standard treatments of the LPM effect in QCD. Previous

authors have analyzed this problem in the case of overlapping double bremsstrahlung where

at least one of the bremsstrahlung gluons is soft. Here we show how to generalize to include

the case where both splittings are hard. A number of techniques must be developed, and

so in this paper we simplify by (i) restricting attention to a subset of the interference

effects, which we call the “crossed” diagrams, and (ii) working in the large-Nc limit. We

first develop some general formulas that could in principle be implemented numerically

(with substantial difficulty). To make more analytic progress, we then focus on the case

of a thick, homogeneous medium and make the multiple scattering approximation (also

known as the q̂ or harmonic approximation) appropriate at high energy. We show that the

differential rate dΓ/dx dy for overlapping double bremsstrahlung of gluons with momentum

fractions x and y can then be reduced to the calculation of a 1-dimensional integral, which

we perform numerically.
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1 Introduction

At high enough energy, particles passing through matter (cosmic rays through the atmo-

sphere, high-energy partons through a quark-gluon plasma, electrons through an electro-

magnetic calorimeter) lose energy primarily through splitting: hard bremsstrahlung or pair

production which, when repeated, produces a shower of lower energy particles. Naively,

one would calculate the rate Γ for each such splitting by (roughly speaking) computing

the cross-section σ for splitting during a collision between the high energy particle and a

particle in the medium, as in the bremsstrahlung process depicted in figure 1, and then

finding Γ ∼ nvσ, where n is the density of things to scatter from and v the relative ve-

locity. The flaw in this argument, as known since the 1950s, is that the duration of this

splitting process, called the formation time, grows with energy. At high enough energy, the

formation time exceeds the mean free time between collisions with the medium, and then

consecutive scatterings from the medium may no longer be treated as quantum mechan-

ically independent for the purpose of computing the splitting rate. This is known as the

Landau-Pomeranchuk-Migdal (LPM) effect [1, 2]1 [4], which dramatically suppresses the

splitting rate at very high energy. In the language of Feynman diagrams, the LPM effect

represents important interferences between splitting before and after a sequence of elastic

collisions with the medium, such as shown in figure 2a for QED and figure 2b for QCD.

The analysis of the LPM effect in QCD was pioneered in the 1990s by Baier et al. [5–7]

and Zakharov [8, 9], known collectively as BDMPS-Z.

A natural question that arises is whether consecutive splittings of the high energy par-

ticle, and not merely consecutive collisions with the medium, occur within the formation

time. That is, once we use the LPM or BDMPS-Z formalism to compute the rate for

a single splitting, can we then treat consecutive splittings as independent and so simply

use the single-splitting rate in a Monte Carlo to compute the development of the shower

(which we need for answering detailed questions about energy loss)? Or is there instead a

significant contribution from processes where the formation times associated with consec-

utive splittings overlap, as depicted in figure 3? Formally, the probability of a splitting is

parametrically of order α (αs in QCD) in one formation time, and so the formation time is

one power of α smaller than the typical time between consecutive splittings, as depicted in

figure 4. This means that the contribution of overlapping formation times, as in figure 3,

is formally suppressed by one factor of α. However, in QCD applications, (i) this αs is at

best moderately small at the scales relevant for the high-energy splitting process in actual

1These two papers are also available in english in ref. [3].
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Figure 1. High-energy bremsstrahlung (blue) during a collision (black) with a particle from the

medium. The curly line ending in a cross represents the electromagnetic or gluonic fields in the

medium created by sources, such as by a nucleus or a passing thermal parton.

time

formation time

time

formation time

(a) (b)

* *

Figure 2. Examples of interference terms contributing to the LPM effect in (a) QED and (b) QCD.

For consistency with future figures, we have used blue for high-energy particles in the amplitude

and red for high-energy particles in the conjugate amplitude.

formation times

formation times

Figure 3. Two consecutive splittings that are close enough that their formation times overlap.

Each formation time region is depicted by a green or blue, hatched oval.

relativistic heavy ion collisions, and (ii) this factor of αs is accompanied by a potentially

large double logarithm [10–12]. It is therefore important to analyze the effect of overlapping

formation times.

Note that in the last figure we have drawn only the high-energy particles. This will be

our convention throughout the rest of the paper: the collisions with the medium are im-

plicit, and the high-energy particle lines should be understood as decorated with numerous

interactions with the medium, as in figure 2.

Our goal in this paper is to develop formalism for a full computation of the LPM effect

(to include the treatment of overlapping formation times) in the case of two consecutive

– 2 –
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t form t form
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Figure 4. The hierarchy of scales for typical consecutive splitting, if the relevant α is small and if

one ignores logarithmic enhancements in QCD associated with one of the daughters becoming soft.

(The cartoon in this picture assumes that the momenta of the two bremsstrahlung gauge bosons

are parametrically similar. In QCD, formation times shrink as bremsstrahlung gluons become soft.)

splittings, such as figure 3. We will then implement this formalism to compute results

for double-splitting rates in QCD in certain simplifying limits, to include the multiple-

scattering approximation (also known as the q̂ or harmonic oscillator approximation), which

is appropriate for typical events at high energy when the medium is much thicker than the

mean free path for collisions with the medium.

Previous authors [10–12] have performed explicit calculations for QCD to leading-log

order in the limit of y ≪ x ≪ 1, where x and y are the momentum fractions of two of

the final gluons. [That is, if the initial parton energy is E, the three daughters after the

two splittings have energies xE, yE, and (1−x−y)E.] These results have interesting and

important consequences, which we will briefly mention later. Wu [12] has also developed

formalism for studying the somewhat more general case of x, y ≪ 1 without assuming

y ≪ x, but so far has only performed explicit calculations when y ≪ x.2 In this paper,

we study the problem of general x and y, without requiring that either be small, and we

will carry out explicit calculations in that case. In the context of the multiple-scattering

(harmonic oscillator) approximation, we will be able to go beyond leading logarithms and

develop methods for explicitly computing the full result for double splitting.

1.1 What we compute

In this, our first paper on the case of general x and y, we will simplify the discussion by

focusing on the case of the large Nc limit of QCD. This will simplify treatment of the color

dynamics of high-energy partons (a simplification that is not needed in the y ≪ x ≪ 1

limit considered by previous authors).3 For the sake of a minor, further simplification, we

will also focus on the case where the initial high-energy particle is a gluon rather than

a quark (and so, in the large-Nc limit, all the daughter particles after each splitting are

gluons as well).

Though we will develop formal results that are more general, our explicit calculations in

this paper will be specialized to the case of a thick, static, homogeneous medium. “Thick”

means that the medium is wide compared to the typical formation length.

2There have also been some attempts to include a rough, heuristic treatment of overlapping formation

times in the Monte Carlo generator JEWEL [13, 14]. We have not yet worked out its relationship to the

results described here or in refs. [10–12].
3Blaizot and Mehtar-Tani [10] also discuss the simplification afforded by the large-Nc limit for moving

the discussion beyond the soft-gluon limit.
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Figure 5. The subset of interference contributions to double splitting that we will evaluate in this

paper: the “crossed” diagrams. To simplify the drawing, all particles, including bremsstrahlung

gluons, are indicated by straight lines. The long-dashed and short-dashed lines are the daughters

with momentum fractions x and y respectively. The naming of the diagrams indicates the time

order in which emissions occur in the amplitude and conjugate amplitude. For instance, xȳyx̄

means first (i) x emission in the amplitude, then (ii) y emission in the conjugate amplitude, then

(iii) y emission in the amplitude, and then (iv) x emission in the conjugate amplitude.

Finally, in this first paper, we will only compute a subset of the contributions to the

double splitting rate, depicted in figure 5. It is convenient to also draw these same inter-

ference terms with the amplitudes and conjugate amplitudes tied together, as in figure 6.

We will refer to these contributions as the “crossed” contributions, since they involve two

crossed lines when drawn as in figure 6.4 An example of an interference contribution that

we will not calculate in this paper, but plan to address in future work, is the un-crossed

diagram of figure 7. (The evaluation of this contribution involves some additional subtleties

beyond what is required for the crossed contributions, to be briefly mentioned in our con-

clusion.) In this paper, we will also, for simplicity, focus on the rate for a high-energy

particle to split into three on-shell daughters, which all persist after the double-splitting

process. That is, we will not yet consider loop corrections to single splitting, such as shown

in figure 8. Such loop corrections are necessary for using calculations of splitting rates to

compute energy loss, as has been analyzed in refs. [10–12] for the case x, y ≪ 1.

The “+ permutations” line of figures 5 and 6 contains more types of interference

terms than one might at first realize. For example, it contains the diagram of figure 9

corresponding to the interference of (i) separate emission of x and y with (ii) the emission

of an x+y gluon that then splits into x and y. This diagram is equivalent to the x ↔ 1−x−y

permutation of the xyȳx̄ interference shown explicitly in figure 5. We will correspondingly

refer to figure 9 as the zyȳz̄ interference, where z ≡ 1−x−y.

4Although these diagrams are crossed when drawn as time-ordered diagrams for the rate, as in figure 6,

they are not suppressed in the large-Nc limit. They are still planar diagrams as far as color factors are

concerned because one of the crossing lines could have instead been connected by drawing it routed around

the outside of the oval. (If the solid lines in figures 5 and 6 were quarks instead of gluons, with x and y

being bremsstrahlung gluons, then the diagrams explicitly shown would be 1/Nc suppressed, but some of

the “permutations” referred to in the figure, such as the one shown later in figure 9, would not be.)
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Figure 6. An alternative depiction of figure 5, with amplitudes (blue) and conjugate amplitudes

(red) sewn together. The dashed lines are colored according to whether they were first emitted in

the amplitude or conjugate amplitude.

xyxy

Figure 7. An example of an interference diagram not evaluated in this paper, to be treated in

later work.

)*(
=

Figure 8. An example of a virtual loop correction to single splitting.

)*

y

(

x

y x

Figure 9. One way to draw the zyȳz̄ interference contribution, which is the x ↔ z ≡ 1−x−y

permutation of the xyȳx̄ interference shown explicitly in figure 5.

1.2 Overview of method and what’s new

Here, in broad outline, are the elements involved in the calculation. We start by turning

the problem into a problem in two-dimensional non-Hermitian quantum mechanics, slightly

generalizing techniques that have been used by other authors.

1.2.1 3- and 4-particle quantum mechanics

Start by considering an interference contribution to the rate for single splitting, shown in

figure 10. In the time interval tx < t < tx̄ between splitting in the amplitude and conjugate

– 5 –
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Figure 10. The basic interference contribution for single (independent) splitting, together with

our labeling convention for the splitting times in the amplitude and conjugate amplitude.

amplitude, the number of high-energy particles in the diagram does not change. As we

shall review later, at high energy it is possible to reduce the problem in this time interval to

time evolution in two-dimensional quantum mechanics for three non-relativistic particles,

two representing the two daughter particles in the amplitude in figure 10 during this time

interval and one representing the parent particle in the conjugate amplitude in figure 10

during the same time interval. The two dimensions of the quantum mechanics problem are

the plane transverse to an axis approximately aligned with the initial direction of the parent.

The “non-relativistic” character of the transverse dynamics comes from the large-pz (and

small-angle) approximation to the kinetic energy εp of a high-energy particle of mass M,

εp =
√
p2z + p2

⊥ +M2 ≃ pz +
p2
⊥ +M2

2pz
≃ p2

⊥
2pz

+ constant. (1.1)

The right-hand side looks like a two-dimensional non-relativistic kinetic energy p2
⊥/2m with

a “mass” m with magnitude |pz|, and (for our purposes) |pz| may be treated as constant

in the above approximation.5 As we’ll discuss, the 3-particle quantum mechanics problem

that describes figure 10 has the funny feature that the “mass” m which describes the parti-

cle in the conjugate amplitude is taken to be negative, which arises from the sign difference

between the evolution exp(−iHt) of amplitudes vs. the evolution exp(+iHt) of conjugate

amplitudes. Because of overall longitudinal momentum conservation in the splitting pro-

cess, the two positive and one negative “mass” in this quantum-mechanics problem satisfy

the unusual property (from the perspective of non-relativistic quantum mechanics) that

m1 +m2 +m3 = 0. (1.2)

Another unusual feature of the effective quantum mechanics problem is that it has

a non-Hermitian Hamiltonian. As the particles propagate, they interact with the back-

ground fields in the plasma. For a thermal medium (or other random medium), these

background fields are random with well-defined correlations. When computing a rate in

a random background, one should average the rate over that randomness (e.g. average

over the thermal ensemble). After this average, the interactions of the particles with the

5The distinction “for our purposes” is important. In ǫp ≃ pz + p2
⊥/2pz + · · · , the variation of the first

term pz can be as large as the second term p2
⊥/2pz in our context. However, the leading pz term will cancel

in the combinations of ǫp’s that will appear in our problem, such as (2.14).

– 6 –
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Figure 11. The xyȳx̄ interference contribution of figures 5 and 6 with individual splitting times

labeled.

background fields, and their correlations, may be replaced by a “potential energy” term

in the quantum mechanics problem, as we will later review more concretely.6 However,

unlike a normal quantum mechanics problem, this potential energy is not real-valued. The

effective quantum mechanics problem that reproduces the medium-averaged splitting rate

(rather than the unaveraged splitting amplitude) has a non-Hermitian Hamiltonian. The

non-Hermiticity of the Hamiltonian accounts for quantum decoherence over long times: it

causes the interference contribution of figure 10 to decay exponentially for time separations

tx̄−tx large compared to the formation time.

Now consider a particular interference contribution to the double splitting rate, such

as the xyx̄ȳ interference shown in figure 11. Within each time interval between splittings

in the figure, such as (a) tx < t < ty, (b) ty < t < tȳ, or (c) tȳ < t < tx̄, the number of high-

energy partons does not change. Using the same methods outlined above, we can reduce

the problem of medium-averaged time evolution during these intervals to two-dimensional

non-Hermitian non-relativistic quantum mechanics for (a) three, (b) four, and (c) three

particles respectively. For the 4-particle evolution for ty < t < tȳ, the “masses” of the

quantum mechanics problem will satisfy

m1 +m2 +m3 +m4 = 0, (1.3)

in analogy to the 3-particle case (1.2).

If we can solve the time evolution in the non-Hermitian quantum mechanics problems,

we can glue the results together using the field-theory matrix elements for the splittings at

t = tx, ty, tȳ, and tx̄ in figure 11 to compute the result that we want for that interference

contribution. We may similarly compute all the other interference contributions and add

them together. Fortunately, for the sake of making the calculation practical, there is a

major simplification to the problem, which we now outline.

6A potential in non-relativistic quantum mechanics represents an instantaneous correlation in our prob-

lem. This is a valid approximation in our problem because the time it takes for high-energy particles to

cross one correlation length of the medium is parametrically small compared to the formation time in the

high-energy limit. The dynamics of the high-energy particles on the time scale of the formation time is

what is relevant to our calculation.

– 7 –
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1.2.2 Simplification to 1- and 2-particle quantum mechanics

We will need to solve for two-dimensional quantum mechanical evolution in problems of

the form

H =
p2
1

2m1
+ · · ·+ p2

N

2mN
+ V (b1, · · · bN ; t), (1.4)

where bi are the two-dimensional transverse positions of the particles, pi are the cor-

responding transverse momenta, and V is the (non-real) potential that incorporates the

medium-averaged effects of scattering from the medium, which may depend on t ≃ z (where

z in this context refers to the longitudinal coordinate x3). At high energies, the medium

will be (statistically) translation invariant in the transverse plane over the small trans-

verse distances relevant to the problem, and so the potential V will be similarly invariant.

For generic masses mi, that invariance lets us factor out the analog of the trivial “center

of mass” motion of the problem (which turns out not to be relevant) and so reduce the

N -particle problem to an effective N−1 particle problem. However, as we shall discuss,

something very special happens when
∑

imi = 0, which will allow us to eliminate yet an-

other two-dimensional degree of freedom and so reduce the N particle problem to an N−2

particle problem. So, 3-particle evolution can be reduced to a simple problem of 1-particle

quantum mechanics, which is equivalent to simplifications originally used by BDMPS-Z to

analyze the problem of the single-splitting rate via figure 10 in the case of general x. In

our case, it will allow us (at the expense of having to develop some formalism) to reduce

the 4-particle two-dimensional quantum mechanics problem required for the ty < t < tȳ
region of figure 11 to a simpler 2-particle two-dimensional quantum mechanics problem.

1.2.3 Further specialization

In the multiple scattering (harmonic) approximation, appropriate at high energy both for

thick media and for “typical” events in relatively thin media,7 the potential V in (1.4)

becomes a (non-Hermitian) harmonic oscillator potential. Then we will just need to (i)

solve for time-evolution of 1-particle and 2-particle harmonic oscillator problems; (ii) glue

the results together with splitting matrix elements; (iii) integrate over the four times tx,

ty, tx̄, and tȳ associated with those splittings in figure 11, for example; and (iv) integrate

over all relevant intermediate states (i.e. transverse positions) of the high-energy particles

at the intermediate times ty and tȳ in figure 11. That sounds like a lot of complicated

integration. However, for the case of a thick, homogeneous medium, we will see that it is

possible to do all of these integrations in closed form, except for a single time integral over

the duration ∆t of the 4-particle evolution (i.e. over ∆t ≡ tȳ − ty for figure 11). The final

∆t integral will be performed numerically.

7Here, thin and thick are defined relative to the typical formation length in an infinite medium, which for

QCD is ∼
√

ω/q̂, where ω is the smallest energy of the daughters. There is often a great deal of confusion

about the applicability of the harmonic oscillator approximation to thin media because interest is often

focused on calculations of the medium effect on the average energy loss 〈∆E〉, which in the thin-media case

can be dominated by rare events with relatively large ∆E. However, the harmonic oscillator approximation

still describes typical events in the thin-media case, provided the thickness of the medium is large compared

to the mean free path for collisions. See the notes and references given for (2.22) in appendix A.
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1.2.4 Other aspects worth noting before we begin

Before we launch into the main body of the paper, we will first note some other aspects

of our problem (double splitting for general x and y) that did not arise in previous work

(specific to small x and y). The first is the necessity for a careful treatment of the helicity

of high-energy particles between splittings. In the calculation of the single-splitting rate

of figure 10, it is possible to express the x dependence of the splitting matrix elements at

tx and tx̄ in terms of spin-averaged Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

splitting functions. As an example, the differential splitting rate in the case of a thick,

homogeneous medium is [15]
dΓ

dx
=

αs

π
√
2
P (x) |Ω0|, (1.5a)

where P (x) is the relevant spin-averaged DGLAP splitting function and Ω0 is the (complex)

frequency associated with the non-Hermitian harmonic oscillator in the multiple scattering

approximation. For g → gg splitting for example, Ω0 turns out to be

Ω0 =

√
− iq̂A
2E

(
−1 +

1

1−x
+

1

x

)
. (1.5b)

(q̂R, known as the jet-quenching parameter, is the average squared transverse momentum

per unit length that is transferred from the medium to a high-energy particle with color

representation R.) When we study double splitting, such as in figures 5 and 6, the helicities

associated with the various splittings are tied together in a non-trivial way that cannot be

packaged into spin-averaged DGLAP splitting functions for general values of x and y. One

of our tasks will be to distinguish different intermediate-state helicity amplitudes in our

treatment of the splitting matrix elements.

The other non-trivial feature that we want to mention is that individual interference

contributions, such as each of those in figure 5, will turn out to have an unphysical loga-

rithmic UV divergence arising from coincidence of three of the four splitting times in the

diagram.8 Since the diagrams for the amplitude are tree level (and similarly for the conju-

gate amplitude), there are no loops involved in the amplitude, and so there should be no

actual UV divergences in the final result for the differential double splitting rate dΓ/dx dy

once we sum over all contributions. We will see that the short-time UV issue is resolved

by being careful about operator ordering and iǫ prescriptions.

1.3 What we find

Since we are only computing the “crossed” subset of contributions to the double-splitting

rate (figure 6) and not yet all contributions, the results of this paper lie in the development

of calculational methods rather than a final, total answer for the differential double-splitting

rate dΓ/dx dy. That said, it is still interesting to ask if the contribution of this subset to

8This is not the
∫

d(∆t)/∆t divergence that is part of the double log behavior found for y ≪ x in

refs. [10–12]. For fixed x and y (which is what we consider in this paper), that particular logarithm is cut

off at small ∆t ∼ y
√

E/xq̂, as we review in section 9.1.
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the result for dΓ/dx dy has any interesting qualitative features. First, we will check that

for y ≪ x ≪ 1, we find a contribution with y dependence of the form

[
dΓ

dx dy

]

crossed

∝ · · ·+ α2
s ln y

x3/2y
+ · · · . (1.6)

When integrated over y, this gives a double log correction ∝ α2
s log

2. We will see (with

some caveats explained later) that this result matches recent y ≪ x results by Blaizot and

Mehtar-Tani [10] and Iancu [11] and Wu [12], after accounting for the fact that we have not

included virtual corrections like figure 8. The (ln y)/y contribution to (1.6) arises from in-

terference diagrams of the form xyȳx̄, xȳyx̄, zyȳz̄ and zȳyz̄, where the zyȳz̄ interference was

depicted in figure 9. As discussed in refs. [10–12], this correction is due to small-x physics in

the collisions of the high-energy particles with the medium, and it may be absorbed into a

running of the parameter q̂ that characterizes the strength of interactions of the high-energy

particles with the medium in the multiple-scattering approximation [10, 16, 17].

However, in the limit of small y and fixed x, we will find an even more divergent

contribution from crossed diagrams that scales with y as

[
dΓ

dx dy

]

crossed

∝ α2
s

x3y3/2
+ · · · . (1.7)

It is quite possible that this infrared divergence arises because our calculation only contains

the crossed subset of diagrams rather than all diagrams, which we plan to investigate in

future work.

1.4 Outline

At the end of this introduction, we will briefly comment on the relevant scale of the αs

that controls a perturbative treatment in the number of overlapping hard splittings. In

section 2, we review formalism and results for computing single splitting processes, as in

figure 10, which will set up some of the language and formalism we later need for double

splitting. Section 3 turns to how to use symmetry to reduce the problem of N particle

quantum evolution in interference diagrams to an effective quantum mechanics problem

involving only N−2 particles. We apply that technique to the double splitting problem

in section 4, which also discusses the rules of diagrammatic perturbation theory in this

language, how the large-Nc limit simplifies the discussion of color in this paper, and the

relationship of splitting vertex matrix elements to helicity-dependent DGLAP structure

functions. In that section, we go as far as we can without either attempting complicated

numerics or introducing additional approximations. To go further, we turn to the multiple

scattering (harmonic oscillator) and thick-media approximations in section 5, where, as a

first example, we reduce the calculation of the xyȳx̄ interference in figure 11 to the form of

a single integral over ∆t ≡ tȳ − ty. We also show that this integral is divergent as ∆t → 0

and isolate the divergence. In section 6, we show how all the other “crossed” interference

diagrams of figure 6 can be related to the xyȳx̄ result, and we show that the small-∆t

divergences cancel among these diagrams. We then discuss in section 7 that the canceling

divergences nevertheless leave behind a finite piece associated with the residue of a pole

– 10 –
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at ∆t = 0. Getting this right requires a discussion of the appropriate iǫ prescriptions

associated with ∆t → 0. Section 8 gives a summary of our final results in terms of a

single convergent ∆t integral which can be performed numerically. In section 9, we discuss

our results in the limit where at least one of the radiated gluons becomes soft and show

agreement between the pieces of our results that match up with pieces of previous authors’

soft-gluon results. Finally, section 10 offers our slightly redundant but extremely short

conclusion. A number of details are left for appendices.

1.5 Note on the scale of αs

The size of αs depends on momentum scale, and there are two parametrically different scales

relevant to the size of couplings in splitting processes such as figure 2. One is the strength

of the interaction of high-energy particles with the medium (the couplings to the black,

vertical gluon lines in figure 2). The smallest momentum transfers that are important are

of order the inverse Debye screening length, mD, which is a characteristic of the medium. In

theoretical studies, one may or may not want to consider αs(mD) as small, but it is certainly

not very small in quark-gluon plasmas created in experiment. The other important scale

is the one associated with the high-energy splitting vertex in figure 2. The relevant scale

there is the typical transverse momentum Q⊥ between the daughters, which depends on

the energy. (This is the scale of the momenta of each daughter in the daughters’ center-of-

momentum frame.) In the simple case of hard bremsstrahlung in a thick medium, the LPM

effect causes Q⊥ to grow slowly with energy as9 Q⊥ ∼ (q̂E)1/4. If E is large enough, the

αs(Q⊥) characterizing the splitting vertex may therefore be small, regardless of whether

αs(mD) is small. This approximation — that the amplitude for each high-energy splitting

vertex is small — is one that we will use implicitly throughout this paper. The factors of

αs in this paper will all implicitly be factors of αs(Q⊥) unless explicitly noted otherwise.

2 Review of single splitting

We will set the stage by summarizing, in our own language, the starting point for the basic

formalism (used in one form or another since BDMPS-Z) describing the LPM effect in

QCD for single splitting as in figure 2. Everything in this section is equivalent to results

already known in the combined literature on this problem, but it will be useful for fixing

our own conventions and in particular fixing the language we will use when we move on to

discuss double splitting.10

9The relative Q⊥ of the transverse momentum between the daughters is of order the total momentum

transfer from the medium during the formation time tform, and so Q2
⊥ ∼ q̂tform. For hard (x ∼ 1 ∼ 1− x)

bremsstrahlung in a thick medium, the LPM effect gives tform ∼
√

ω/q̂ ∼
√

E/q̂, and so Q⊥ ∼ (q̂E)1/4.
10Our formulation of the problem owes the most to Zakharov [8, 9], together with elements from refs. [4,

18, 19]. The notation we use is closest to ref. [19], whose appendix includes a translation table to the notation

of several other works. Other noteworthy formalisms for studying LPM in QCD include BDMPS [5–7], but

also, in various limits or with various extensions, GLV [20, 21], ASW [22, 23], and higher twist [24, 25]. See

ref. [26] for comparative discussion and further references.
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2.1 Relating bremsstrahlung to 3-particle non-Hermitian quantum mechanics

Let’s first discuss the case of QED, as in figure 12 with the dashed line representing a

bremsstrahlung photon. Let δH be the part of the Hamiltonian that contains the splitting

vertices for the high-energy particles. Then, working to leading order in δH, the differential

bremsstrahlung probability dI/dx for producing a photon with momentum fraction x is11

dI

dx
= 2Re

{
E

2πV⊥

∫

tx<tx̄

dtx dtx̄
∑

pol.

∫

pf ,kf

〈〈(∫

px

〈pfkf , tx̄|pxkf , tx〉〈pxkf |−i δH|pi〉
)

×
(∫

p̄x̄

〈pfkf |−i δH|p̄x̄〉〈p̄x̄, tx̄|pi, tx〉
)∗〉〉}

, (2.1)

where the p is the transverse momentum of the charged particle and k is the transverse

momentum of the bremsstrahlung photon, labeled as in figure 12. The high-energy parti-

cles propagate through gauge fields sourced by the medium, and the double angle brackets

denote statistical averaging over those gauge fields. The factors in the first parenthesis give

the amplitude in figure 12, which consists of a splitting matrix element 〈pxkf |−i δH|pi〉
at the first time tx, followed by the propagation 〈pfkf , tx̄|pxkf , tx〉 in the background field

from tx to tx̄. In QED, the bremsstrahlung photon (k) is just a spectator during this prop-

agation. The factors in the second parenthesis give the conjugate amplitude in figure 12,

which has propagation first, followed by splitting at the later time tx̄. The overall 2Re{· · · }
combines (i) the interference term of figure 12, which is the case where emission happens

first in the amplitude, with (ii) its complex conjugate, which is the case where emission

happens first in the conjugate amplitude. The sum in (2.1) is over final state polarizations

of the daughters. The symbol V⊥ represents the (infinite) 2-volume (area) of the transverse

plane, upon which final results will not depend.

In this paper, we will delegate additional discussion of some formulas to appendix A.

In the case at hand, see appendix A if wondering why one need not include time evolution

of the final state |pfkf〉 after tx̄ in (2.1), nor time evolution of the initial state |pi〉 before
tx. We also comment there on the prefactor E/2πV⊥ in (2.1).

It is useful to rewrite the conjugate amplitude to express (2.1) as

dI

dx
= 2Re

{
E

2πV⊥

∫

tx<tx̄

dtx dtx̄
∑

pol.

∫

pf ,kf

〈〈(∫

px

〈pfkf , tx̄|pxkf , tx〉〈pxkf |−i δH|pi〉
)

×
(∫

p̄x̄

〈pi, tx|p̄x̄, tx̄〉〈p̄x̄|i δH|pfkf〉
)〉〉}

. (2.2)

11In this paper, we do not consider bremsstrahlung associated with whatever earlier hard process created

our initial high energy parton in the medium in the first place. We consider only late enough times (t ≫ 1/τel
where τel is the mean free path for collisions with the medium) that the high-energy partons are already

approximately on-shell. (By the uncertainty principle, a particle having collisions roughly every time interval

τel will be off-shell in energy by ∆E ∼ 1/τel, which corresponds to pµpµ ∼ E∆E ∼ E/τel, which is what we

mean here by “approximately on-shell.”) For a recent interesting discussion of the interplay between early

vacuum bremsstrahlung and late medium-induced bremsstrahlung, see Kurkela and Wiedemann [27].
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(

Figure 12. Our conventions for labeling momenta for the interference contribution for single

splitting. In the QED case, kx = kf since the photon does not directly interact with the medium.

Time-evolution in the amplitude is given by the factor

〈pfkf , tx|pxkf , tx〉 = 〈pfkf |e−iH(2)(tx̄−tx)|pxkf〉, (2.3)

where H(2) is the Hamiltonian for propagating two high-energy particles through the

medium: the charged particle and the photon. (Terms δH in the full Hamiltonian which

change the number of high-energy particles are not part of H(2).) The time evolution in

the conjugate amplitude is analogously in the factor

〈pi, tx|p̄x̄, tx̄〉 = 〈pi|e+iH(1)(tx̄−tx)|p̄x̄〉, (2.4)

where H(1) is the Hamiltonian for propagating one high-energy particle through the

medium. Since the interactions with the medium appear only inH(1) andH(2), the medium-

average in (2.2) can be restricted to the pieces

〈〈
e−iH(2)(tx̄−tx)|pxkf〉〈pi|e+iH(1)(tx̄−tx)

〉〉
. (2.5)

This is just time evolution of an initial |pxkf〉〈pi| starting from time tx. The object

|pxkf〉〈pi| lives in the space

H̄e ⊗He,γ = H̄e ⊗He ⊗Hγ , (2.6)

where He is the Hilbert space of states of a high-energy electron, and He,γ is the Hilbert

space of states with both a high-energy electron and high-energy photon. Instead of think-

ing of (2.6) as a product of Hilbert spaces, it is convenient to formally think of a single

Hilbert space of three particles: one electron, one photon, and one conjugated electron.12

Correspondingly, we rewrite (2.5) in the form of a 3-particle evolution

〈〈
e−iH(1̄+2)(tx̄−tx)|p1,p2,p3〉

〉〉
, (2.7)

where H(1̄+2) = H(2) − H(1). Here H(2) operates on the two particles associated with

the amplitude and H(1) on the one associated with the conjugate amplitude. It will be

12This picture is at the heart of Zakharov’s early work [8, 9].
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convenient to choose the convention that a pi above that represents the momentum of a

particle in the conjugate amplitude has been negated. So, for instance, (2.5) may be recast

in the form (2.7) with the identification

(p1,p2,p3) = (−pi,px,k) at t = tx. (2.8)

(Our convention is that the “first” of the three particles is the one from the conjugate

amplitude.) With this sign convention for the pi, momentum conservation pi = px + kf in

figure 12 means that

p1 + p2 + p3 = 0. (2.9)

The medium average in (2.7) only affects the evolution operator (which depends on

the background fields), and so we may rewrite (2.7) as

e−iH(tx̄−tx)|p1,p2,p3〉 ≡
〈〈
e−iH(1̄+2)(tx̄−tx)

〉〉
|p1,p2,p3〉, (2.10)

where H is going to be the Hamiltonian of our effective 3-particle quantum mechanics

problem. Note from this definition that H need not be Hermitian, even though H(1̄+2) is.

2.2 Brief review of the form of H

As we’ll very briefly review, the form of H turns out to be (1.4),

H =
p2
1

2m1
+

p2
2

2m2
+

p2
3

2m3
+ V (b1, b2, b3; t), (2.11a)

with non-relativistic “masses” given in terms of the initial parton energy E by

mi ≡ xiE. (2.11b)

We have used a similar minus sign convention for defining longitudinal momentum fractions

xi as we did above for defining transverse momenta pi: momentum fractions xi appearing

in the conjugate amplitude are negated. In our case here,

(x1, x2, x3) = (−1, 1−x, x), (2.12)

and so m1 is negative while m2 and m3 are positive. Note that, with this sign convention,

x1 + x2 + x3 = 0, (2.13)

which is equivalent to the mass relation (1.2).

The kinetic terms in (2.11) can be understood by taking the limiting case where there

is no medium, so that the high-energy particles are free. Then

H = H(2) −H(1) = (εp2 + εp3)− εp1 , (2.14)

where εp is the energy of a single free particle. Using the large-pz expansion (1.1) in (2.14)

yields the kinetic term of (2.11a) plus a term

M2
1

2x1E
+

M2
2

2x2E
+

M2
3

2x3E
(2.15)
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for the potential. In this paper, we will assume for simplicity that the energy is large enough

that effects of parton masses Mi (including effective parton masses in the medium) are

negligible.13

The dominant effect of interactions with the medium is to add an imaginary part

−iΓH to H related to the differential rate of scattering from the medium. For the case of

a weakly-coupled, QED plasma, this turns out to be

V (b1, b2, b3; t) = −i

[
e2

d2Γ̄el

d2b⊥
(0, t)− e2

d2Γ̄el

d2b⊥
(b2−b1, t)

]
, (2.16)

where e is the charge of the charged high-energy particle, b3 corresponds to the photon,

Γel ≡ e2Γ̄el is the rate of elastic scattering from the medium, and d2Γel/d
2b⊥ is the

differential rate with respect to impact parameter. In terms of transverse momentum

transfer q⊥, this is

dΓ̄el

d2b⊥
≡

∫
d2q⊥

dΓ̄el(t)

d2q⊥
eib·q⊥ =

1

π

∫
d2q⊥

dΓ̄el(t)

d(q2⊥)
eib·q⊥ , (2.17)

which will vary with time if the medium properties along the path of the high-energy

particles vary with time. The second term in (2.16) corresponds to background field

correlations between amplitude and conjugate amplitude in figure 2a. The first term

corresponds to self-energies of the charged particle lines arising from correlations between

the amplitude and itself, or between the conjugate amplitude and itself.14 The relative

sign in (2.16) arises because the second term corresponds, in the language of H, to the

interaction of a charged particle (charge e) and a conjugated charged particle (charge −e).

To generalize to strongly-coupled plasmas (but weakly coupled splitting matrix ele-

ments δH for high-energy particles), it has been argued that the potential V may instead

be related to the value of real-time Wilson loops which contain two long, parallel, light-like

lines separated by b = b2 − b1.
15 In this paper, we will not commit to weakly or strongly

coupled plasmas. We will keep V general in the first part of our analysis, before later

specializing to the multiple scattering approximation.

2.3 Generalization to QCD

The case of QCD is similar, but the bremsstrahlung gluon also interacts with the medium,

and so correlations also arise between the bremsstrahlung gluon (b3) and the other two

particles (b1, b2). For a weakly-coupled plasma, the corresponding potential in (2.11a) is

13For a relativistic plasma and for zero-temperature masses small compared to T , this condition is formally

that the energies be ≫ T . But mass effects can be important for thin media in the harmonic oscillator

approximation. See for example the discussion of mass dependence in ref. [28].
14The correlation of two interactions in the amplitude has a real part in addition to the imaginary part, but

this may be absorbed by replacing the mass of the high-energy particle by its effective mass in the medium.
15For a review see section 7.5 of ref. [29].
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then16,17

V (b1, b2, b3; t) = −i

[
1

2
g2(T 2

1 + T 2
2 + T 2

3 )
d2Γ̄el

d2b⊥
(0, t) + g2T2 · T1

d2Γ̄el

d2b⊥
(b2−b1, t)

+ g2T3 · T2
d2Γ̄el

d2b⊥
(b3−b2, t) + g2T1 · T3

d2Γ̄el

d2b⊥
(b1−b3, t)

]
, (2.18)

where T a
i are the color generators that operate on the color space of particle i, and

Ti · Tj ≡ T a
i T

a
j . The differential rate of elastic scattering from the medium for a particle

with color representation R is normalized here (in weak coupling) as dΓR,el = g2CR dΓ̄el.

The first term in (2.18) is the sum of the self-energies of the three particles. The Ti ·Tj terms

involve correlations between particle i and j, with charges gTi and gTj respectively. This

means that the T2 · T1 and T3 · T1 terms correspond to correlations between interactions in

the amplitude and conjugate amplitude, according to our convention that particle 1 is the

particle in the conjugate amplitude. The T2·T3 involves correlations between background in-

teractions of the two daughter particles in the amplitude.18 Color conservation implies that

T1 + T2 + T3 = 0, (2.19)

similar to p1 + p2 + p3 = 0 and x1 + x2 + x3 = 0. Relation (2.19) can be used19 to express

Ti · Tj in terms of fixed Casimirs Ci ≡ T 2
i , putting (2.18) into the form

V (b1, b2, b3; t) = −ig2
[
1

2
(C1+C2−C3)

∆ d2Γ̄el

d2b⊥
(b2−b1, t)

+
1

2
(C2+C3−C1)

∆ d2Γ̄el

d2b⊥
(b3−b2, t) +

1

2
(C3+C1−C2)

∆ d2Γ̄el

d2b⊥
(b1−b3, t)

]
, (2.20a)

where

∆ d2Γ̄el

d2b⊥
(b) ≡ d2Γ̄el

d2b⊥
(0)− d2Γ̄el

d2b⊥
(b) =

∫
d2q⊥

dΓ̄el(t)

d2q⊥
(1− eib·q⊥). (2.20b)

Note that the potential V depends only on differences bi−bj , which is a consequence of

transverse translation invariance.

It is worth mentioning in passing a simplification in the case of small x: the masses

m1 and m2 in (2.11) then have large magnitudes compared to m3. As a result, there

is little (transverse) motion of particles 1 and 2, and so b1 and b2 stay close together

compared to b3. Then particle 2 and conjugate particle 1 can be thought of as forming a

tiny, fixed color dipole which interacts with particle 3 (e.g. a q̄q or gg dipole interacting

with a softer gluon). This is one way that the 3-particle problem can be reduced to a

1-particle problem (of the small-x particle). However, we will be considering generic x

and will not make such approximations in this work.

16The g2 here in section 2.3 characterizes interactions with the medium, and so the relevant scale for this

running coupling can be as low as the inverse Debye screening length. (We promised earlier to alert readers

to those few cases where the strong coupling in this paper was not evaluated at a scale Q⊥ that grows with

energy E.)
17Note that (gT1, gT2, gT3) → (−e,+e, 0) turns the QCD result (2.18) into the QED result (2.16). Here,

gT3 → 0 represents the charge of the photon.
18The effects of the imaginary part of this correlation dominate over those of the real part.
19For example, (2.19) implies (T1+T2)

2 = T 2
3 , which gives T1 ·T2 = − 1

2
(T 2

1 +T 2
2 −T 2

3 ) = − 1
2
(C1+C2−C3).
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2.4 The (optional) harmonic oscillator approximation

There is no reason that one cannot work hard to numerically solve the quantum mechanics

problem with the full potential V [30–32]. However, at high energy (for a medium thick

compared to the mean free path for elastic scattering) there is an oft-used simplification:

it is difficult to deflect high-energy particles, and so (given that the particles start out

together), the values of bi−bj will be small during the formation time. One might therefore

expect that one can replace the potential V above by a quadratic approximation around

bi−bj = 0. Formally, the small-b limit of (2.20) gives

V (b1, b2, b3; t) = − i

8

[
(q̂1 + q̂2 − q̂3)(b2−b1)

2

+ (q̂2 + q̂3 − q̂1) (b3−b2)
2 + (q̂3 + q̂1 − q̂2) (b1−b3)

2
]
, (2.21)

where q̂R, the average squared transverse momentum transferred from the medium per unit

length, is

q̂R(t) =

∫
d2q⊥

dΓR,el(t)

d2q⊥
q2⊥. (2.22)

In the case of a strongly-interacting plasma, the form of V may be more compli-

cated than the weakly-interacting form of (2.20), but we give an argument in appendix A

that (2.21) holds for any quadratic approximation to the small bi−bj limit.

See appendix A for caveats and further discussion of the definition (2.22) of q̂R.

2.5 Reduction from 3-particle to 1-particle quantum mechanics

In our application, p1 + p2 + p3 = 0, and so there are seemingly only two independent

momenta in the Hamiltonian H (2.11a) in the case of interest. However, we get a further

simplification from the 3-dimensional rotation invariance of our problem. Specifically, we

could choose our z axis to be in a slightly different direction, while still retaining the large-

pz approximations that we have made. In the context of those approximations, the answer

for the splitting rate should accordingly be invariant under transformations of the form

(pi, piz) → (pi + pizξ, piz), (2.23)

where ξ is an arbitrary vector in the transverse plane. The transformation (2.23) cor-

responds to a 3-dimensional rotation by θ = ez × ξ once one linearizes the rotation in

|θ|. (Here, ez is the unit vector in the z direction.) Writing piz as mi ≡ xiE, the above

transformation is

pi → pi +miξ = pi + xiEξ. (2.24)

(In the language of two-dimensional quantum mechanics, this is Galilean boost invariance,

with ξ playing the role of the relative velocity of the frames.20) Because the rate we are

computing is independent of the rotations implemented by (2.24), one expects that the

calculation only depends on invariant combinations of the pi, such as xipj −xjpi. (We will

20Three-dimensional rotations mix (b, z), whereas two-dimensional Galilean boost invariance mixes (b, t).

The two correspond to each other here because z ≃ t in the large-pz approximation.
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give a more precise argument later.) Because p1+p2+p3 = 0 and x1+x2+x3 = 0 in our

problem, there is only one independent such combination:

P ≡ x2p1 − x1p2 = x3p2 − x2p3 = x1p3 − x3p1. (2.25)

And, indeed, the 3-particle kinetic energy term in H (2.11a) can be rewritten in terms of

P in the form of a 1-particle kinetic energy:

p2
1

2m1
+

p2
2

2m2
+

p2
3

2m3
=

P 2

2M
(2.26)

with

M ≡ −x1x2x3E. (2.27)

From (2.12) M = x(1− x)E, which is positive since our x1 is negative.

The most natural choice for a variable conjugate to xjpi − xipj is (bi − bj)/(xi + xj),

noting that the commutator

[
xjpi − xipj ,

bi − bj
(xi + xj)

]
= −i. (2.28)

Given the string of equalities in (2.25), one might expect that in our problem there is

correspondingly a single independent transverse position variable B with

B ≡ b1 − b2
(x1 + x2)

=
b2 − b3
(x2 + x3)

=
b3 − b1
(x3 + x1)

. (2.29)

This is indeed the case, but we will hold off on giving a more precise argument until

section 3, where we will simultaneously work out the generalizations that we need for

the double splitting calculation (where we will additionally reduce 4-particle quantum

mechanics to 2-particle quantum mechanics). Note that we could use x1 + x2 + x3 = 0 to

simplify x1 + x2 to −x3 and so on in (2.29), but the combinations in (2.29) turn out to be

the ones that generalize nicely to the case of more than 3 particles.

Let’s now slightly change notation for the translation-invariant 3-particle potential in

H by writing

V (b1, b2, b3; t) = U(b1−b2, b2−b3, b3−b1; t). (2.30)

Listing three bi−bj combinations on the right-hand side is redundant, since only two

are independent, but the redundancy makes manifest the permutation symmetries.

Taking (2.29) at face value for the moment, the 3-particle Hamiltonian (2.11a) then

reduces to the 1-particle Hamiltonian

H =
P 2

2M
+ U

(
(x1+x2)B, (x2+x3)B, (x3+x1)B; t

)
. (2.31)

As an example, the potential (2.20a) for weakly-coupled plasmas would give (now using

x1 + x2 = −x3, etc.)
21

21Here again, as in footnote 16, the g2 characterizes interactions with the medium.
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H =
P 2

2M
− ig2

[
1

2
(C1+C2−C3)

∆ d2Γ̄el

d2b⊥
(−x3B, t)

+
1

2
(C2+C3−C1)

∆ d2Γ̄el

d2b⊥
(−x1B, t) +

1

2
(C3+C1−C2)

∆ d2Γ̄el

d2b⊥
(−x2B, t)

]
, (2.32)

which is equivalent (with different notation and slight generalization) to the formalism

originally used by BDMPS-Z. As another example (not restricted to weak coupling), the

general harmonic oscillator approximation of (2.21) gives

H =
P 2

2M
+

1

2
M Ω2

0(t)B
2 (2.33a)

with

Ω2
0 = − i

2E

(
q̂1
x1

+
q̂2
x2

+
q̂3
x3

)
. (2.33b)

2.6 Finishing up

In QCD, bremsstrahlung gluons can interact directly with the medium, and so the interme-

diate and final momenta kx and kf need not be the same in figure 12. The single splitting

probability (2.2) for QED correspondingly generalizes to

dI

dx
= 2Re

{
E

2πV⊥

∫

tx<tx̄

dtx dtx̄
∑

pol.

∫

pf ,kf

〈〈(∫

px,kx

〈pfkf , tx̄|pxkx, tx〉〈pxkx|−i δH|pi〉
)

×
(∫

p̄x̄

〈pi, tx|p̄x̄, tx̄〉〈p̄x̄|i δH|pfkf〉
)〉〉}

. (2.34)

(The discussion in this section applies equally well to q → qg, g → gg, and g → qq̄, though

in this paper we will eventually focus solely on gluons.) We will later explicitly discuss the

details of reformulating this formula in terms of P while getting all the factors right. For

now, we jump ahead to review the general expression for the final result, which is

dI

dx
=

αP1→3(x)

[x(1− x)E]2
Re

∫

tx<tx̄

dtx̄ dtx

∫

Px̄,Px

Px̄ · Px 〈Px̄, tx̄|Px, tx〉, (2.35)

where P1→3(x) is the usual (spin-averaged) DGLAP splitting function. In this formula,

〈Px̄, tx̄|Px, tx〉 is the propagator of the 1-particle quantum mechanics problem of (2.31).

The two δH matrix elements in (2.34) are responsible for the two factors of P in (2.35)

and for the factor of αP1→3(x). One may alternatively work in B space instead of P space,

in which case the above formula is [8, 9]

dI

dx
=

αP1→3(x)

[x(1− x)E]2
Re

∫

tx<tx̄

dtx̄ dtx∇Bx̄ ·∇Bx〈Bx̄, tx̄|Bx, tx〉
∣∣∣
Bx̄=Bx=0

. (2.36)

We will find it convenient to work in B space when later deriving our results for double

splitting. In the case of a thick and homogeneous medium, (2.36) reduces to

dΓ

dx
=

αP1→3(x)

[x(1− x)E]2
Re

∫ ∞

0
d(∆t)∇Bx̄ ·∇Bx〈Bx̄,∆t|Bx, 0〉

∣∣∣
Bx̄=Bx=0

(2.37)

for the differential rate of single splitting.
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In order to make use of this formula, one could calculate numerical results for the

propagator [30–32]. With the harmonic oscillator approximation, however, one can be

more analytic. For example, for a thick, homogeneous medium,

〈B,∆t|B′, 0〉 = MΩ0 csc(Ω0∆t)

2πi
exp

(
i

2
MΩ0

[
(B2+B′2) cot(Ω0∆t)−2B ·B′ csc(Ω0∆t)

])
.

(2.38)

Once one takes care of a small technical issue, using this propagator in (2.37) gives the

long-known result (1.5a).

The technical issue has to do with appropriately handling a ∆t → 0 divergence in the

integration in (2.37), which we will defer to section 7.1 where a thorough discussion will

teach us how to handle more substantial issues in the calculation of double splitting.

3 Reducing N particle to N−2 particle quantum mechanics

3.1 Reduction from 2-dimensional point of view

We now give a general argument about reducing N particle quantum mechanics to effec-

tively N−2 particles in the context of splitting rate calculations. First, we will identify a

special sub-space of the Hilbert space that the N -particle Hamiltonian H of (1.4) leaves

invariant, in the special case that
N∑

i=1

mi = 0. (3.1)

Then we will show that this is the relevant sub-space for our problem.

As already noted, transverse translation invariance means that total transverse mo-

mentum
∑

i pi is conserved, [
H ,

∑
i
pi

]
= 0, (3.2)

so that we may focus in particular on the subspace
∑

i
pi = 0 (3.3)

relevant to our problem. We will show that one may simultaneously impose the constraint

that ∑
i
xibi = 0, (3.4)

and that this also characterizes the relevant sector for our problem. From the form (1.4)

of H,

− i

[
H ,

∑
i
mibi

]
=

∑
i
pi, (3.5)

which vanishes in the center-of-mass frame (3.3). In ordinary quantum mechanics, the

relation (3.5) just says that total mass times the time derivative of center-of-mass position

equals total momentum. If the total momentum vanishes, as in (3.3), then [H,
∑

imibi] = 0.

However, this does not normally imply that the operator
∑

imibi is constant when in the

center-of-mass frame because

− i

[∑
i
mibi ,

∑
j
pj

]
=

∑
i
mi (3.6)
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b ,x3 3
b ,x2 2bi2 ,xi2

b ,x1 1bi1 ,xi1

Figure 13. The notation used in (3.10) for the state of the system just before and just after the

first splitting in figure 12.

does not normally vanish, and so we may not simultaneously choose
∑

imibi constant and∑
i pi = 0. In our case (3.1), however, (3.6) does vanish, and so both (3.3) and (3.4) may be

imposed simultaneously. Time evolution with H will keep us in this sector if we start there.

Do we start there? For the sake of concreteness, begin by considering the case of single

splitting, as in figure 12 and eq. (2.34). First consider the state of the system before any

splittings. We start with |pi〉〈pi|, which in our language we would call a “2-particle” initial

state

|p1,p2〉 = |−pi,pi〉 (3.7)

in H̄(1) ⊗ H(1), with (xi1, xi2) = (−1, 1). Because of the symmetry of the problem, we

may formally average over the symmetry transformations (2.24) without changing the final

answer. This replaces |pi〉〈pi| by something proportional to
∫

pi

|pi〉〈pi| =
∫

bi

|bi〉〈bi|, (3.8)

which is ∫

pi

|−pi,pi〉 =
∫

bi

|bi, bi〉 (3.9)

in the language of H̄(1) ⊗H(1). From the left-hand side of (3.9), note that we start in the

sector
∑

i pi = p1+p2 = 0; from the right-hand side, we simultaneously start in the sector∑
i xibi = xi1b1 + xi2b2 = −b1 + b2 = 0.

Now we need to ask whether having xi1bi1 +xi2bi2 = 0 before the splitting at t = tx in

figure 12 means that we will have x1b1+x2b2+x3b3 = 0 just after the splitting. At t = tx,

the conjugate particle (particle 1) is just a spectator, and so (b1, x1) = (bi1, xi1). (See

figure 13 for reference.) As to the remaining particles: the splitting vertex is local, and so

b2 = b3 = bi2. Conservation of longitudinal momentum gives x2 + x3 = xi2. Putting this

together gives

xi1bi1 + xi2bi2 = x1b1 + x2b2 + x3b3, (3.10)

and so the condition of
∑

i xibi = 0 is preserved by splitting. This argument works for

any splitting with any number of particles, and so the condition is preserved by all the

splittings in the double-splitting diagrams of figures 5 and 6 as well.

For the 3-particle case, the constraint x1b1+x2b2+x3b3 = 0 (along with x1+x2+x3 =

0) explains the string of equalities asserted previously in (2.29),

b1 − b2
(x1 + x2)

=
b2 − b3
(x2 + x3)

=
b3 − b1
(x3 + x1)

. (3.11)

Applying these constraints to the 3-particle Hamiltonian H of (2.11a) allows us to reduce

H to the effective 1-particle Hamiltonian (2.31), as described previously.
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3.2 Reduction from 3-dimensional point of view

The constraint on
∑

i xibi may also be understood in 3-dimensional language as a

consequence of invariance under rotations that change the direction of the z axis by a tiny

amount, consistent with our large-pz approximations. The conserved angular momentum

is22

J (3) =
(∑

i

r
(3)
i × p

(3)
i

)
+ S(3), (3.12)

where the superscript “(3)” indicates 3-vectors and S is the spin contribution to the

angular momentum from the helicities of the particles. (In terms of the angular momentum

J in the amplitude and J̄ in the conjugate amplitude, J = J − J̄ .) In the high-energy,

nearly collinear limit, (i) the z positions of the particles are all ≃ t, and (ii) S will be in

the ±z direction. Then the transverse piece J⊥ of (3.12) is given by

J̃⊥ ≃
∑

i
bixiE − t

∑
i
pi, (3.13)

where J̃
a

⊥ ≡ ǫabJ b
⊥ is the 2-dimensional dual of J⊥. Since

∑
ipi = 0, conservation of J⊥

then gives conservation of
∑

ixibi (in the large-pz limit). Since rotational invariance is a

property of the full Hamiltonian (including the δH for splitting), this gives conservation

of
∑

ixibi over the entire process.

4 Double splitting using just N − 2 “particles”

We now turn to writing expressions for contributions to double splitting, focusing first on

the xyȳx̄ interference of figure 11. Before we start, we should clarify something about the

number of particles involved at various times in this diagram.

4.1 N=5 particle evolution unnecessary

The right side of figure 11 is drawn in a way that indicates only three particles (two in

the amplitude and one in the conjugate amplitude) are involved in the final time interval,

tȳ < t < tx̄. However, based on the left-hand side of the figure, one might think there

are five particles in that time region: all three final daughters (x, y, and 1−x−y) in the

amplitude, and two particles (a final daughter y and an intermediate daughter/parent 1−y)

in the conjugate amplitude. That is, the terms corresponding to the evolution during the

time period tȳ < t < tx̄ would be of the form
∫

κf

〈〈
〈pfkfκf , tx̄|pkκ, tȳ〉 〈p̄x̄κf , tx̄|p̄κ̄, tȳ〉∗

〉〉
, (4.1)

with momenta labeled as in figure 14 and where we have also included the integration over

the final-state momentum κf of the y daughter. We can write this in 5-particle notation as
∫

κf

〈〈
〈−p̄x̄,−κf ,κf ,pf ,kf , tx̄|−p̄,−κ̄,κ,p,k, tȳ〉

〉〉
. (4.2)

22For our purposes, the medium does not need to be invariant under large rotations. It is enough for it

to be invariant over transverse distances probed during the formation time. For example, ∆b ∼ 1/Q⊥ ∼

(q̂ω)−1/4 for thick media, where ω is the smallest energy of a daughter.
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Figure 14. Labeling in (4.1) for momenta at beginning and end of time interval tȳ < t < tx̄.

The 5-particle problem could be reduced to an effective 3-particle problem using the

constraints of the last section.

Now recall that in the interval between splittings, the high-energy particles do not

directly interact with each other but instead simply propagate in the background fields of

the medium, which are later averaged with 〈〈· · ·〉〉. So, when computing 〈pfkfκf , tx̄|pkκ, tȳ〉
in (4.1) for a particular background field configuration (before averaging), the three parti-

cles in the amplitude evolve independently with the 1-particle HamiltonianH(1) appropriate

to that particle. That is,

〈pfkfκf , tx̄|pkκ, tȳ〉 = 〈pf , tx̄|p, tȳ〉〈kf , tx̄|k, tȳ〉〈κf , tx̄|κ, tȳ〉, (4.3)

and similarly for the two particles in the conjugate amplitude. We may therefore

rewrite (4.1) as

〈〈
〈pfkf , tx̄|pk, tȳ〉 〈p̄x̄, tx̄|p̄, tȳ〉∗

∫

κf

〈κf , tx̄|κ, tȳ〉 〈κf , tx̄|κ̄, tȳ〉∗
〉〉
. (4.4)

Inside the double angle brackets (before averaging), the 1-particle evolution of the y daugh-

ter is unitary, and so we may use the sum over the final states of the y daughter to simplify

the above expression to

〈〈
〈pfkf , tx̄|pk, tȳ〉 〈p̄x̄, tx̄|p̄, tȳ〉∗

〉〉
(2π)2δ(2)(κ− κ̄). (4.5)

What is left is what we would call (medium averaged) 3-particle evolution (the x and

1−x−y daughters in the amplitude, and the intermediate 1−y daughter/parent in the

conjugated amplitude), which can be reduced to effective 1-particle evolution using the

method of the previous section. The lesson is that the sum over final states of a final-state

daughter may be performed as soon as it has been emitted from both the amplitude and

conjugate amplitude, and one need not worry about its interactions after that.23

23There is a hidden assumption in this argument, which is that when we take the statistical average 〈〈· · ·〉〉

of the background fields we may ignore correlations of interactions just before the splitting time tȳ with

interactions just after tȳ, within one correlation length of the plasma. This sort of assumption is implicit in
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4.2 First expression for xyȳx̄ interference

As mentioned before, the diagrams in figure 6 may therefore be treated as 3-particle evo-

lution followed by 4-particle evolution followed by 3-particle evolution. After reducing

each N particle problem to an (N−2) particle problem, we may reinterpret each diagram

as effectively 1-particle evolution followed by 2-particle evolution followed by 1-particle

evolution. We will work in b-space with the variables

Bij ≡
bi − bj
xi + xj

, (4.6)

of which N−2 are independent for N particle evolution, once we impose the constraint∑
i xibi = 0.

For now, we focus attention on the xyȳx̄ interference depicted by figure 11 and the

first diagrams in figures 5 and 6. We will see later that the other interference diagrams can

be related to the xyȳx̄ calculation, and so most of our task will be the evaluation of xyȳx̄.

For the N=4 particle evolution, we label the xi as shown in figure 15, so that

(x̂1, x̂2, x̂3, x̂4) = (−1, y, 1−x−y, x). (4.7)

(Our numbering convention is not quite arbitrary: avoiding having x and y cyclically

sequential in this list will turn out to be convenient for discussing the large-Nc limit.)

For the sake of avoiding confusion, we find it convenient to put hats atop the xi when

specifically referring to the xi that characterize the N=4 evolution of xyȳx̄, and we will

often use these variables in other time intervals as well. For example, the three longitudinal

momentum fractions associated with the initial 3-particle evolution for tx < t < ty are

(x1, x2, x3) = (x̂1,−x̂1−x̂4, x̂4) = (x̂1, x̂2+x̂3, x̂4) = (−1, 1−x, x), (4.8)

and those associated with the final 3-particle evolution for tȳ < t < tx̄ are

(x1, x2, x3) = (−x̂3−x̂4, x̂3, x̂4) = (x̂1+x̂2, x̂3, x̂4) =
(
−(1−y), 1−x−y, x). (4.9)

For the sake of later relating results for xyȳx̄ to other interference contributions, it will be

useful to keep many things in terms of the x̂i instead of writing formulas directly in terms

of x and y.

In order to help emphasize which variables apply to 4-particle evolution and which to

3-particle evolution, we will refer to the Bij of (4.6) by the symbol Cij in the 4-particle

case. For the splitting matrix elements at the intermediate time ty, it will turn out to

be convenient to choose our two variables describing the 4-particle (effectively 2-particle)

system to be (i) the Cij involving the two spectators to the splitting, and (ii) the Cij

involving the two particles involved in the splitting. The same will be true at the other

many aspects of this work and standard treatments of the LPM effect, and its justification is that the effects

of the background over a single correlation length about t = tȳ should be parametrically small compared

to the effects over the entire formation time tform ∝ E1/2. This is similar to the justification of footnote 6

for using an instantaneous potential V in H, and the same sort of argument is implicit for our treatment

of all the splittings in this paper.
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.

.

.

.

Figure 15. Our labeling conventions for longitudinal momenta xi and helicities hi for the xyȳx̄

interference diagram.

intermediate time tȳ. So, referring to figure 15, the convenient 4-particle variables will

turn out to be (C41,C23) at ty but (C34,C12) at tȳ. With these conventions, the xyȳx̄

interference contribution to double splitting has the form

[
dI

dx dy

]

xyȳx̄

=

(
E

2π

)2 ∫

tx<ty<tȳ<tx̄

∑

pol.

〈|i δH|Bx̄〉 〈Bx̄, tx̄|Bȳ, tȳ〉

× 〈Bȳ|i δH|C ȳ
34,C

ȳ
12〉 〈C ȳ

34,C
ȳ
12, tȳ|Cy

41,C
y
23, ty〉

× 〈Cy
41,C

y
23|−i δH|By〉 〈By, ty|Bx, tx〉 〈Bx|−i δH|〉, (4.10)

where all intermediate transverse momenta are implicitly integrated over — i.e. there is

integration over Bx̄, Bȳ, C ȳ
34, C

ȳ
12, C

y
41, C

y
23, B

y, and Bx above. The superscripts are

just labels for the different intermediate states (and are written as superscripts rather than

subscripts for the sake of compactness of names like C ȳ
34). The initial N=2 (effectively

N−2=0) state is represented by |〉 and will be discussed later, along with the final state

〈|. The specific particles involved in each δH splitting above should be inferred from the

xyȳx̄ diagram in figure 15; we have written δH above to indicate splittings that are in

the conjugate amplitude. For comparison, the single splitting result, corresponding to

figure 10 and its conjugate, has the form

dI

dx
= 2Re

[
dI

dx

]

xx̄

(4.11)

with [
dI

dx

]

xx̄

=
E

2π

∫

tx<tx̄

∑

pol.

〈|i δH|Bx̄〉 〈Bx̄, tx̄|Bx, tx〉 〈Bx|−i δH|〉 (4.12)

in this notation.

We shall discuss the δH matrix elements in sections 4.4 and 4.5. They have the form

〈B|δH|〉 = −igT i→jk ·∇δ(2)(B) (4.13)
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for parent i to split into daughters j and k. Here the two-dimensional vector T i→jk has

the form

T i→jk =
T color
i→jkP i→jk

2E3/2
, (4.14)

where T color is the color factor associated with the vertex [e.g. (T a
A)bc = −ifabc for gluon

splitting g → gg with color indices a → bc]. P is related to square roots of spin-dependent

DGLAP splitting functions and depends on the xi and the helicities of the parent and

daughter particles in i → jk (which also determine the helicity of the vector P). More

details will be given later.

The corresponding matrix elements for δH linking the 3-particle to 4-particle sector

will be reducible to the previous case (4.13). For example, if the daughters are particles 2

and 3, we will find that

〈C41,C23|δH|B〉 = 〈C23|δH|B〉 |x̂4 + x̂1|−1 δ(2)(C41 −B)

= −igT i→23 ·∇δ(2)(C23) |x̂4 + x̂1|−1 δ(2)(C41 −B). (4.15)

Diagrammatic rules which summarize all the splitting matrix elements needed are given in

figure 16.

Let’s now apply these rules to the xyȳx̄ interference depicted in figure 15 for the

case where x and y are bremsstrahlung gluons. In the high-energy limit, the interactions

of high-energy particles with soft background fields preserve the helicities of the high-

energy particles, and so helicities of individual high-energy particles are preserved by the

propagators in figure 15. The color charges of individual particles are not preserved, and so

propagators like 〈C ȳ
34,C

ȳ
12, tȳ|Cy

41,C
y
23, ty〉 in (4.10) generically depend on color. As we’ll

discuss, the large-Nc limit that we will take in this paper simplifies the color dynamics

so that we may ignore this complication. Applying the rules of figure 16 to figure 15,

naively contracting color indices, and using the δ-functions to perform as many integrals

as possible, then yields (see appendix A for more detail)

[
dI

dx dy

]

xyȳx̄

= d−1
R tr(T a

RT
b
RT

a
RT

b
R)

α2
s

4E4
|x̂1 + x̂4|−1|x̂3 + x̂4|−1

∫

tx<ty<tȳ<tx̄

∑

hx,hy,hz,h,h̄

∫

Bȳ,By

×P−hz,h̄,−hx
(−x̂3, x̂3+x̂4,−x̂4) ·∇Bx̄〈Bx̄, tx̄|Bȳ, tȳ〉

∣∣∣
Bx̄=0

×
(
P−h̄,hi,−hy

(x̂1+x̂2,−x̂1,−x̂2) ·∇C
ȳ
12

)(
P−h,hz,hy(−x̂2−x̂3, x̂3, x̂2) ·∇C

y
23

)

〈C ȳ
34,C

ȳ
12, tȳ|Cy

41,C
y
23, ty〉

∣∣∣
C

ȳ
12=0=C

y
23; C

ȳ
34=Bȳ; C

y
41=By

×P−hi,h,hx(x̂1,−x̂1−x̂4, x̂4) ·∇Bx〈By, ty|Bx, tx〉
∣∣∣
Bx=0

, (4.16)

where dR is the dimension of color representation R. For the case considered in this paper

of an initial gluon, the color factor is

d−1
A tr(T a

AT
b
AT

a
AT

b
A) =

1

2
C2
A =

1

2
N2

c . (4.17)
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bi, ai bj , aj

bk, ak

xi, hi

xj , hj

xk, hk
= −g(T ak

R )aj ,ai
2E3/2

Phihjhk
(xi, xj , xk) ·∇δ(2)(Bji)

bn bs

bm brxn xs

xm xr
= × |xm + xn|−1 δ(2)(Bmn−Brs)

Figure 16. The diagrammatic rules for splittings linking (via either −i δH or +i δH) the state |〉 to
|B〉 (top rule) or |B〉 to |C34,C12〉 or permutation thereof (bottom rule). Buv ≡ (bu−bv)/(xu+xv)

and may refer, in different contexts, to ± the 3-particle B, or one of the 4-particle Cuv, or to some

mixture. However, note that Bji = Bkj = Bik in the top rule, which can be used to always

write expressions in terms of 3-particle B and/or 4-particle Cij ’s. The blue arrows on the particle

line indicate color flow of color representation R. (In the case of R=A, appropriate to g → gg

splitting, the direction of the color flow does not matter.) bl, al, xl, and hl indicate the transverse

position, color index, longitudinal momentum, and helicity of each particle. The black arrows give

the convention for the flow of xl and hl in the statement of the rule, and these values should be

negated if they are instead defined by flow in the opposite direction. In the bottom rule, color and

helicity indices and their contractions are not explicitly shown for the spectators because they are

trivially contracted. Conservation of longitudinal momentum means xi + xj + xk = 0 (top) and

additionally xm = xr and xn = xs (bottom).

4.3 Large-Nc limit

When discussing the single splitting rate in section 2, we were able to determine the dot

products Ti · Tj of color charges in the effective potential (2.18) in terms of fixed Casimirs

Ci, and so we avoided having to deal with color dynamics. This simplification is no longer

possible, in general, when analyzing the N=4 particle evolution that appears in double-

scattering: T1+T2+T3+T4 = 0 is not sufficient to determine all the Ti ·Tj for 4 particles.

In this work, we sidestep this complication by focusing on the large-Nc limit.

Because of the kinematics of our problem (high energy particles interacting with the

plasma via momentum transfers that are soft compared to E), it has been convenient in

our analysis to time-order our interference diagrams, as in figure 6. To discuss the large-Nc

limit, however, we would also like to draw our diagrams as planar diagrams. In the case

that all particles are gluons, the diagrams of figure 6 can be drawn as time-ordered planar
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time

A B
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time
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(a) (b)

Figure 17. (a) The xyȳx̄ interference diagram drawn on a cylinder. The top edge AB of the

shaded region is to be identified with the bottom edge AB. (b) The same showing color flow for an

explicit example of medium background field correlations (black) that gives a planar diagram (and

so leading-order in 1/Nc).

diagrams by drawing them on a cylinder (since a cylinder can be mapped into a plane), as

shown in figure 17a for the xyȳx̄ interference.

Figure 17b shows the color flow of figure 17a decorated by an explicit example of

background-field interactions and correlations in the large-Nc limit. The requirement of

planarity means that each fundamental-charge high-energy color line shown in figure 17b

only interacts (via medium correlations) with one other, and those interactions are inde-

pendent of the interactions of other color lines. That is, the general N -particle potential

in H among our adjoint-charge particles reduces to

V (b1, · · · bN ; t) = VF(b2−b1; t) + VF(b3−b2; t) + · · ·+ VF(bN−bN−1; t) + VF(b1−bN ; t),

(4.18)

where VF is the large-Nc potential (in the language of H) between a fundamental charge

and anti-fundamental charge particle, and b1, b2, . . . bN label the high-energy particles

cyclically as one goes around the cylinder (e.g. from bottom to top in figure 17a). In the

harmonic oscillator approximation, this becomes

− iq̂F
4

[
(b2 − b1)

2 + (b3 − b2)
2 + · · ·+ (bN − bN−1)

2 + (b1 − bN )2
]
, (4.19)

which (in the large-Nc limit) is the same as

− iq̂A
8

[
(b2 − b1)

2 + (b3 − b2)
2 + · · ·+ (bN − bN−1)

2 + (b1 − bN )2
]
. (4.20)

Note that for N=3 this agrees with the all-gluon case of the more general formula (2.21),

which did not depend on large Nc.
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4.4 Reduction of states from N to N−2 particles

We now turn to an explicit construction of the N−2 particle states such as |C34,C12〉
appearing earlier. The utility of an explicit construction is that it will allow us to find the

correct normalization factors associated with δH matrix elements, like the |xm+xn| in the

bottom-right of figure 16.

For
∑

i xi = 0, we may project any b-space state onto the subspace with
∑

i xibi = 0

and
∑

i pi = 0 by (i) imposing
∑

i xibi = 0 in b-space, and (ii) averaging over all b-space

translations in order to project onto
∑

i pi = 0. Treating all N particles symmetrically,

this procedure defines

|{Bij}〉 = N
∫

∆b

|b1 +∆b, · · · bN +∆b〉
∣∣∣∣∣∑

xibi=0

, (4.21)

where {Bij} represents the (not independent) set of all of the values of Bij ≡ (bi −
bj)/(xi+xj). N is an xi-independent normalization factor described in appendix B. In the

appendix, we show that this particle-symmetric definition of the projected states normalizes

those states as

〈
{Cij}

∣∣{C ′
ij}

〉
= (x̂3 + x̂4)

−2 δ(2)(C34−C ′
34) δ

(2)(C12−C ′
12) (N=4), (4.22a)

〈
{Bij}

∣∣{B′
ij}

〉
= δ(2)(B12−B′

12) (N=3), (4.22b)

〈|〉 = x21 (N=2), (4.22c)

where we have used our convention of referring to the 4-particle variables as Cij and

x̂i. One may use any permutation of indices on the right-hand sides above. Note that

(x̂3 + x̂4)
2 = (x̂1 + x̂2)

2 in the N=4 case and x21 = x22 in the N=2 case.

The notation |C34,C12〉 that we used earlier is related to the above symmetrically-

defined states by

|C34,C12〉 ≡ |x̂3 + x̂4|
∣∣{Cij}

〉
, (4.23)

so that the N=4 states are more conveniently normalized as

〈C34,C12|C ′
34,C

′
12〉 = δ(2)(C34−C ′

34) δ
(2)(C12−C ′

12). (4.24)

The N=3 state |B〉 used earlier is simply

|B〉 =
∣∣{Bij}

〉
. (4.25)

The normalization (4.22c) of |〉 may seem a bit strange, but |〉 is what we want for the

final state. At the end, after the emission of both the x and y bremsstrahlung gluons, we

want to sum over all possible final states of the emitter,
∫

pf

|pf〉〈pf | =
∫

bf

|bf〉〈bf | (4.26)

which in our N -particle notation is

|end〉 =
∫

bf

|bf , bf〉. (4.27)
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By a shift of integration variable, this is N−1|〉 with |〉 defined by (4.21) as

|〉 ≡ N
∫

∆b

|b1+∆b, b2+∆b〉
∣∣∣
x1b1+x2b2=0

, (4.28)

noting that x1b1 + x2b2 = 0 enforces b1 = b2, given that x1 + x2 = 0. A similar argument

can be made about the initial state if we first use the symmetry of the problem to average

over small changes in the directions of the initial momentum pi as in (3.7)–(3.9). Details

of how the normalization factor N cancels in the final result are given in appendix B.

In the next sub-section, we will discuss in detail the form of the δH matrix elements

for individual particles. For splitting i → jk in the amplitude, this has the form

〈pj ,pk|δH|pi〉 = gT i→jk · Pjk (4.29)

with Pjk ≡ xkpj − xjpk.
24 We then need to project this result from N particle language

to N−2 particle language. In appendix B, we show that (4.29) implies, in our constrained

subspace, the results (4.13) and (4.15) quoted previously for the matrix elements 〈B|δH|〉
and 〈C41,C23|δH|B〉.

4.5 Splitting matrix elements

The matrix elements for nearly-collinear bremsstrahlung (or pair creation) is textbook

material, used, for instance, in discussions of DGLAP evolution. In our case, we will

need individual helicity-dependent matrix elements (e.g. from ref. [33]) and not just

helicity-averaged matrix elements. We also need a few conversions compared to the stan-

dard literature. Our states |p〉 have been normalized with non-relativistic normalization

〈pi|p′
i〉 = (2π)2δ(2)(pi − p′

i) because we have cast our problem into the language of non-

relativistic quantum mechanics. Results in the literature are instead for states with rela-

tivistic normalization 〈pi|p′
i〉 = 2Ei(2π)

2δ(2)(pi − p′
i) [times 2π δ(piz − p′iz)],

25 and so the

matrix elements differ by factors of
√
2Ei =

√
2|xi|E. Secondly, results in the literature are

typically specialized to a choice of z axis that is exactly aligned with the direction of the ini-

tial particle: pi = 0 for pi → pjpk. We will want to generalize to slightly different directions

of the z axis and so will express results in terms of the invariant Pjk ≡ xkpj −xjpk instead

of, say, pk. Finally, results in the literature are generally expressed with the convention that

E is the energy of the parent particle. In our problem, the parent of the second splitting is

a daughter of the first splitting, and so we will write parent energies more generally as |xi|E
instead of E. Doing this will also make manifest in our formulas the symmetry between

the three particles (parent and daughters) participating in a single splitting process.

We are going to just present here the formulas for the matrix elements. Readers

interested in details about the connection to standard formulas in the literature should see

24Note that Pjk = Pki = Pij if we were to pick the convention that all xl flow away from the vertex, so

that xi is negative, and were to similarly negate pi.
25In this paper, we have generally swept the longitudinal momentum conservation factors 2π δ(piz − p′iz)

under the rug. See appendix A on (4.29)–(4.31) for a more detailed discussion.
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appendix C. The matrix elements are given by (4.29) with26

T i→jk =
T color
i→jkP i→jk

2E3/2
(4.30)

and

P i→jk =
e(±)

|xixjxk|

√
Pi→jk(xi, xj , xk)

CR
, (4.31)

where the Pi→jk are helicity-dependent DGLAP splitting functions and

e(±) ≡ ex ± iey (4.32)

are ± helicity basis vectors in the transverse plane with sign determined by the conservation

of the z-component Jz of angular momentum in the nearly-collinear limit. This is easiest to

state if we adopt the convention that each helicity flows away from the vertex. So, instead

of thinking of the helicities in a splitting as, for example, + → ++, we will think of them

as (hi, hj , hk) = (−,+,+). With this convention, (4.31) is, more precisely,

P i→jk =
e(hi+hj+hk)

|xixjxk|

√
Phi,hj ,hk

(xi, xj , xk)

CR
. (4.33)

For g → gg with xi → xjxk, the DGLAP splitting functions (for |xj |, |xk| > 0) are

P+→++ = CA
x4i

|xixjxk|
, P+→+− = CA

x4j
|xixjxk|

, P+→−+ = CA
x4k

|xixjxk|
,

P+→−− = 0, (4.34)

corresponding to

P+→++ = P−,+,+ =
x2i

|xixjxk|3/2
e(+), (4.35a)

P+→+− = P−,+,− =
x2j

|xixjxk|3/2
e(−), (4.35b)

P+→−+ = P−,−,+ =
x2k

|xixjxk|3/2
e(−), (4.35c)

P+→−− = P−,−,− = 0. (4.35d)

The remaining cases are obtained by negating all helicities and the subscript of e(±). Note

that the P ’s do not depend on the signs of the xl. Note also that in the soft bremsstrahlung

limit |xk| ≪ |xi|, helicity is conserved among the harder particles (i.e. + → ++ and

+ → +− are unsuppressed but + → −+ is suppressed) and |P+→++| ≃ |P+→+−|. These
simplifications account for the fact that a careful treatment of intermediate helicities was

not generally necessary in earlier work [10–12] focused on the soft bremsstrahlung limit.

(See appendix F.2 for a caveat.)

26See appendix A for a note on dimensional analysis.
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4.6 Helicity sums

It is now time to do the helicity sum in our expression (4.16) for the xyȳx̄ interference.

The only things that depend on helicities are the P factors. These factors will be the same

for all of the diagrams in the first row of figures 5 and 6, and in this case it will be more

convenient to write in terms of x and y explicitly rather than in terms of the 4-particle

x̂i’s. Specifically, we need

∑

hx,hy,hz,h,h̄

P n̄
−hz,h̄,−hx

(
−(1−x−y), 1−y,−x

)
Pm̄
−h̄,hi,−hy

(
−(1−y), 1,−y

)

× Pn
−h,hz,hy

(
−(1−x), 1−x−y, y

)
Pm
−hi,h,hx

(
−1, 1−x, x

)
, (4.36)

where Pn are the Cartesian components of P . If one prefers, this can be written equiva-

lently as

∑

hx,hy,hz

[∑

h̄

P n̄
h̄→hz,hx

(
1−y → 1−x−y, x

)
Pm̄
hi→h̄,hy

(
1 → 1−y, y

)]∗

×
[∑

h

Pn
h→hz,hy

(
1−x → 1−x−y, y

)
Pm
hi→h,hx

(
1 → 1−x, x

)]
, (4.37)

which (reading right to left) shows more clearly how the successive splittings tie together

in both the amplitude and conjugate amplitude.

Because of parity/reflection symmetry in the transverse plane, the rate (4.16) is inde-

pendent of the initial helicity hi, and so we may replace (4.37) by its helicity average over

hi. Then, because of rotation invariance of the transverse plane, the above helicity sum

(averaged over hi) must have the form

α(x, y) δn̄nδm̄m + β(x, y) δn̄m̄δnm + γ(x, y) δn̄mδnm̄ (4.38)

for some functions α, β, and γ. Using (4.35) in (4.37), we find




α

β

γ


 =




−
+

+




[
x

y3(1−x)3(1−y)3(1−x−y)
+

y

x3(1−x)3(1−y)3(1−x−y)

+
1−x

x3y3(1−y)3(1−x−y)
+

1−y

x3y3(1−x)3(1−x−y)

]

+




+

−
+




[
x

y3(1−x)(1−y)(1−x−y)3
+

y

x3(1−x)(1−y)(1−x−y)3

+
1−x−y

x3y3(1−x)(1−y)
+

1

x3y3(1−x)(1−y)(1−x−y)3

]
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+




+

+

−




[
1−x

xy(1−y)3(1−x−y)3
+

1−y

xy(1−x)3(1−x−y)3

+
1−x−y

xy(1−x)3(1−y)3
+

1

xy(1−x)3(1−y)3(1−x−y)3

]
(4.39)

for the case studied in this paper, where all high-energy particles are gluons. Substitut-

ing (4.38) for (4.36) in the xyȳx̄ expression (4.16) gives
[

dI

dx dy

]

xyȳx̄

=
C2
Aα

2
s

8E4

(αδn̄nδm̄m+βδn̄m̄δnm+γδn̄mδnm̄)

|x̂1 + x̂4||x̂3 + x̂4|

∫

tx<ty<tȳ<tx̄∫

Bȳ,By

∇n̄
Bx̄〈Bx̄, tx̄|Bȳ, tȳ〉

∣∣∣
Bx̄=0

×∇m̄
C

ȳ
12
∇n

C
y
23
〈C ȳ

34,C
ȳ
12, tȳ|Cy

41,C
y
23, ty〉

∣∣∣
C

ȳ
12=0=C

y
23; C

ȳ
34=Bȳ; C

y
41=By

×∇m
Bx〈By, ty|Bx, tx〉

∣∣∣
Bx=0

. (4.40)

Note that α, β, and γ are all symmetric under x ↔ y.

This is as far as we can go without either doing numerics or making additional approx-

imations, to which we now turn.

5 xyȳx̄ in harmonic and thick-media approximations

We can make further analytic progress by (i) restricting attention to the harmonic approxi-

mation, and (ii) assuming that the medium is sufficiently homogeneous that q̂ does not vary

significantly over distances of order the formation length. In this section, we will continue

to focus for now on the xyȳx̄ interference. We will tackle the N=3 particle ends of the evo-

lution in figure 15 and integrate over the first and last splitting times, tx and tx̄. Then we

tackle the N=4 particle piece of the evolution by solving the harmonic oscillator problem

for the propagator in the large-Nc limit, and then we do theB integrals remaining in (4.40).

This will leave the result in the form of a single 1-dimensional integral over ∆t ≡ tȳ − ty.

5.1 Integrating over first and last times tx and tx̄

During the 3-particle phases of the evolution of the xyȳx̄ interference of figure 15, our H is

given by (2.33) and (2.27). For the initial 3-particle evolution corresponding to tx < t < ty,

we’ll write this as

H =
P 2

2Mi
+

1

2
MiΩ

2
i B

2 (5.1)

with

Mi = x̂1x̂4(x̂1+x̂4)E = x(1− x)E (5.2a)

and (when all particles are gluons)

Ωi =

√
− iq̂A
2E

(
1

x̂1
+

1

x̂4
− 1

x̂1+x̂4

)
=

√
− iq̂A
2E

(
−1 +

1

x
+

1

1−x

)
. (5.2b)
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For the final 3-particle evolution corresponding to tȳ < t < tx̄,

H =
P 2

2Mf
+

1

2
Mf Ω

2
fB

2 (5.3)

with

Mf = (x̂3+x̂4)x̂4x̂3E = (1− y)x(1− x− y)E (5.4a)

and

Ωf =

√
− iq̂A
2E

(
− 1

x̂3 + x̂4
+

1

x̂4
+

1

x̂3

)
=

√
− iq̂A
2E

(
− 1

1−y
+

1

x
+

1

1−x−y

)
. (5.4b)

(Throughout this paper, one should understand
√
±i to refer to the root e±iπ/4.)

The propagator (2.38) for a harmonic oscillator is

〈B, t|B′, 0〉 = MΩcsc(Ωt)

2πi
exp

(
i

2
MΩ

[
(B2 +B′2) cot(Ωt)− 2B ·B′ csc(Ωt)

])
. (5.5)

The factor corresponding to the initial 3-particle evolution in (4.40) is of the form

∇B′〈B, t|B′, t′〉
∣∣∣
B′=0

= −M2Ω2 csc2
(
Ω(t− t′)

)

2π
B exp

(
i

2
MΩcot

(
Ω(t− t′)

)
B2

)
. (5.6)

Integrating over the initial time t′ < t above gives

∫ t

−∞
dt′ ∇B1〈B, t|B′, t′〉

∣∣∣∣
B1=0

=
iMB

πB2
exp

[
i

2
MΩB2 cot

(
Ω(t− t′)

)]∣∣∣∣
t′=t

t′=−∞
. (5.7)

The term with t′ = t has a divergent exponent, corresponding to infinitely oscillatory

behavior inB. Naively, one might expect to be able to drop it, since an infinitely oscillatory

function vanishes if later integrated against a smooth function. We will drop it here but will

later have to return and be more careful about what happens when times become coincident.

[In particular, if a third time in the double splitting problem becomes coincident with t

and t′ above, then (5.7) is not integrated against a smooth function of B.]

In our problem, Ω has a negative imaginary part, so that cot(Ω∞) = i, and so the

t′ = −∞ term in (5.7) leaves us with

∫ t

−∞
dt′ ∇B1〈B, t|B′, t′〉

∣∣∣∣
B1=0

= − iMB

πB2
exp

(
−1

2
MΩB2

)
. (5.8)

For the sake of evaluating other interference diagrams in the future, it will be useful to

generalize to include cases where Ω may have a positive imaginary part. See appendix A

for an argument that the more general result may be cast in the convenient form
∫ t

−∞
dt′ ∇B1〈B, t|B′, t′〉

∣∣∣∣
B1=0

= − iMB

πB2
exp

(
−1

2
|M |ΩB2

)
. (5.9a)

A similar analysis, relevant to the final 3-particle evolution, gives (with the same caveats)

∫ +∞

t′
dt∇B〈B, t|B′, t′〉

∣∣∣∣
B=0

= − iMB′

πB′2 exp

(
−1

2
|M |ΩB′2

)
. (5.9b)
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Using (5.9) on the expression (4.40) for the rate gives

[
dΓ

dx dy

]

xyȳx̄

= −C2
Aα

2
sMiMf

8π2E4

(αδn̄nδm̄m+βδn̄m̄δnm+γδn̄mδnm̄)

|x̂1 + x̂4||x̂3 + x̂4|
(5.10)

×
∫ ∞

0
d(∆t)

∫

Bȳ,By

Bȳ
n̄

(Bȳ)2
By

m

(By)2
exp

(
−1

2
|Mf |Ωf(B

ȳ)2 − 1

2
|Mi|Ωi(B

y)2
)

×∇m̄
C

ȳ
12
∇n

C
y
23
〈C ȳ

34,C
ȳ
12,∆t|Cy

41,C
y
23, 0〉

∣∣∣
C

ȳ
12=0=C

y
23; C

ȳ
34=Bȳ; C

y
41=By

,

where ∆t ≡ tȳ − ty, and we have used time translation invariance (in our thick-media

approximation) to convert the expression for the probability I into an expression for the

rate Γ.

5.2 4-particle normal modes and frequencies in large Nc

We now turn to the N=4 particle propagator 〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉.

5.2.1 Reduced Lagrangian

Consider the 4-particle Lagrangian

L =
1

2
m1ḃ

2
1 +

1

2
m2ḃ

2
2 +

1

2
m3ḃ

2
3 +

1

2
m4ḃ

2
4 − V (5.11)

in the translation invariant case that V depends only on differences bij ≡ bi − bj of the

coordinates. In the particular case where
∑

imi = 0, we now want to impose the constraint∑
imibi = 0 on L above. The result can be written in the form

L =

[
1

2
m1ḃ

2
14 +

1

2
m2ḃ

2
24 +

1

2
m3ḃ

2
34 − V (b14, b24, b34)

]

∑
i mibi=0

, (5.12)

as can be seen by expanding the factors of (ḃi−ḃ4)
2 and using the constraint and

∑
imi = 0

to recover (5.11). The constraint may be rewritten in the form m1b14+m2b24+m3b34 = 0,

and so we may rewrite L in terms of just two variables as, for example,27

L =

[
1

2
m1ḃ

2
14 +

1

2
m2ḃ

2
24 +

1

2
m3ḃ

2
34 − V (b14, b24, b34)

]

b24=−(m1b14+m3b34)/m2

=
1

2

(
ḃ14

ḃ34

)⊤

M(2)

(
ḃ14

ḃ34

)
− V (b14, b24, b34)

∣∣∣
b24=−(m1b14+m3b34)/m2

(5.13a)

with

M(2) ≡
(
m1

m3

)
+

1

m2

(
m2

1 m1m3

m3m1 m2
3

)
=




1
m4

+ 1
m1

1
m4

1
m4

1
m4

+ 1
m3




−1

. (5.13b)

27For readers wondering how we could get from the 4-particle description to the 2-particle description

without ever explicitly imposing the condition p1+p2+p3+p4 = 0 for our subspace: whenever we can

consistently project to
∑

i mibi = 0 for all times (as demonstrated by the earlier arguments of section 3.1),

then
∑

i pi = 0 follows automatically from (3.5).
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We could now solve this 2-particle problem. However, it will be convenient to first

change to one of the sets of variables that we actually use in our rate expression (5.10).

We will trade the b14 and b34 used above for C12 ≡ b12/(x1+x2) and C34 ≡ b34/(x3+x4).

Using
∑

i xi = 0 and
∑

i xibi = 0, one can show that

b12 = (x1 + x2)C12, (5.14a)

b13 = x2C12 − x4C34, (5.14b)

b14 = x2C12 + x3C34, (5.14c)

b23 = −x1C12 − x4C34, (5.14d)

b24 = −x1C12 + x3C34, (5.14e)

b34 = (x3 + x4)C34. (5.14f)

Then (5.13) becomes

L =
1

2

(
Ċ34

Ċ12

)⊤

M

(
Ċ34

Ċ12

)
− V

(
bij → eqs. (5.14)

)
(5.15)

with

M =

(
x3x4(x3 + x4)

x1x2(x1 + x2)

)
E =

(
x3x4

−x1x2

)
(x3 + x4)E. (5.16)

A nice feature of these variables is that the kinetic term is diagonal, unlike in (5.13). Note

that, for the xi of (4.7) relevant to the xyȳx̄ interference, M above is positive definite.

In harmonic approximation, (5.15) will reduce to the form

L =
1

2

(
Ċ34

Ċ12

)⊤

M

(
Ċ34

Ċ12

)
− 1

2

(
C34

C12

)⊤

K

(
C34

C12

)
, (5.17)

with K depending on specific details that will be given in a moment. The squares Ω2
j

of the normal mode frequencies will be given by the eigenvalues of M−1/2
KM

−1/2. The

corresponding normal modes (Cj
34,C

j
12) will be orthogonal with respect to M, and we will

normalize them as (
Cj

34

Cj
12

)⊤

M

(
Cj′

34

Cj′

12

)
= δjj

′

. (5.18)

We will now turn to specifics by deriving normal mode results in the large-Nc approx-

imation when all particles are gluons. But we will then package our results so that we

can continue to simplify our rate expression (5.10) in a way that is independent of those

details, so that our results can easily be adapted at a future date to other situations.

5.2.2 Specifics for large-Nc gluons

Combining the large-Nc harmonic potential

− iq̂A
8

(b212 + b223 + b234 + b241) (5.19)
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of (4.20) for gluons with (5.14) gives

K = − iq̂A
4

(
2(x23 + x3x4 + x24) x2x3 + x1x4

x2x3 + x1x4 2(x21 + x1x2 + x22)

)
. (5.20)

in (5.17). Note that, since this is a harmonic oscillator problem, the two transverse

dimensions decouple, and so this may be treated as a problem in one transverse dimension

rather than two. The result for the normal mode frequencies Ω± should have the same

symmetry with respect to exchanging particle labels as (5.19) has, and (mostly for

aesthetic reasons) we use
∑

i xi = 0 to algebraically manipulate the result into a form

where this is manifest. We find

Ω± =

[
− iq̂A
4E

(
1

x1
+

1

x2
+

1

x3
+

1

x4
±
√
∆

)]1/2
, (5.21)

where

∆ ≡ 1

x21
+

1

x22
+

1

x23
+

1

x24
− 1

x1x2
− 1

x2x3
− 1

x3x4
− 1

x4x1
− 2

x1x3
− 2

x2x4
> 0 . (5.22)

A more compact (but slightly less manifestly symmetric) expression is

∆ =
1

x21
+

1

x22
+

1

x23
+

1

x24
+

(x3+x4)
2 + (x1+x4)

2

x1x2x3x4
. (5.23)

With normalization (5.18), the normal modes (C+
34, C

+
12) and (C−

34, C
−
12) are

28

C±
34 =

x2
x3 + x4

√
x1x3
2N±E

[
1

x3
− 1

x1
+

1

x4
+

x1
x3x2

±
√
∆

]
, (5.24a)

C±
12 = − x4

x1 + x2

√
x1x3
2N±E

[
1

x1
− 1

x3
+

1

x2
+

x3
x1x4

±
√
∆

]
, (5.24b)

with

N± ≡ −x1x2x3x4(x1 + x3)∆± (x1x4 + x2x3)(x1x2 + x3x4)
√
∆. (5.25)

For the xi of (4.7) relevant to the xyȳx̄ interference, the x1x3/2N±E under the square

root in (5.24) is positive.

5.2.3 General form

Whatever the specific formulas for the normal modes are in a given problem of interest, we

can write any (C34,C12) as a superposition

(
C34

C12

)
= A+

(
C+
34

C+
12

)
+A−

(
C−
34

C−
12

)
(5.26)

28The right-hand sides of (5.24) are in fact symmetric under 12, 34 → 21, 43 (which takes N± → −N∓),

but we have not found an appealing way (i.e. other than brute force symmetrization) to write them that

makes this symmetry manifest. [Also, one might think that 12, 34 → 21, 43 should take (C±
34, C

±
12) →

(C±
43, C

±
21) = (−C±

34,−C±
12) instead of to (+C±

34,+C±
12), but the overall sign of a normal mode is an arbitrary

normalization choice, reflected by the ambiguity of the square root in (5.24).]
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of normal modes with superposition coefficients A+ and A−. We will write this in matrix

form as (
C34

C12

)
= aȳ

(
A+

A−

)
(5.27)

with

aȳ ≡
(
C+
34 C−

34

C+
12 C−

12

)
. (5.28)

We use the subscript ȳ because (C34,C12) are the variables we want to use at tȳ in (5.10).

Because of the normalization (5.18) of our modes, the Lagrangian (5.17) in terms of

A± is simply

L =
∑

±

[
1

2
Ȧ2

± − 1

2
Ω2
±A

2
±

]
. (5.29)

The corresponding propagator is

〈A+,A−, t|A′
+,A

′
−, 0〉 =

∏

±

[
Ω± csc(Ω±t)

2πi
exp

(
i

[
1

2
(A2

± +A′2
±)Ω± cot(Ω±t)−A± ·A′

±Ω± csc(Ω±t)

])]
. (5.30)

At t = ty in (5.10), the variables we want to use are (C41,C23) instead of (C34,C12).

However, it is easy to convert: (5.14) and Cij ≡ bij/(xi+xj) give

(
C41

C23

)
=

1

(x1 + x4)

(
−x3 −x2

x4 x1

)(
C34

C12

)
, (5.31)

and so (
C41

C23

)
= ay

(
A+

A−

)
, (5.32)

with

ay ≡ 1

(x1 + x4)

(
−x3 −x2

x4 x1

)
aȳ. (5.33)

The changes of variables (5.27) and (5.32) give29

〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉 =

〈Aȳ
+,A

ȳ
−,∆t|Ay

+,A
y
−, 0〉

| det aȳ|| det ay|
. (5.34)

From (5.28) and the normalization (5.18), a⊤ȳ Maȳ = 1, and so

a−1
ȳ

⊤
a−1
ȳ = M (5.35)

(which we will find useful later) and

| det aȳ|−1 = | detM|1/2 = |x1x2x3x4|1/2|x3+x4|E. (5.36)

29See appendix A for comments.
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By symmetry, or from (5.33), similarly

| det ay|−1 = |x1x2x3x4|1/2|x1+x4|E, (5.37)

so that

〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉 = |x1x2x3x4||x1+x4||x3+x4|E2〈Aȳ

+,A
ȳ
−,∆t|Ay

+,A
y
−, 0〉.

(5.38)

Combining with (5.27), (5.30), and (5.32),

〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉 =

(2πi)−2(−x1x2x3x4)|x1+x4||x3+x4|E2Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

× exp

[
i

2

(
Cy

41

Cy
23

)⊤

a−1⊤
y Ωcot(Ω∆t) a−1

y

(
Cy

41

Cy
23

)

+
i

2

(
C ȳ

34

C ȳ
12

)⊤

a−1⊤
ȳ Ωcot(Ω∆t) a−1

ȳ

(
C ȳ

34

C ȳ
12

)

− i

(
Cy

41

Cy
23

)⊤

a−1⊤
y Ωcsc(Ω∆t) a−1

ȳ

(
C ȳ

34

C ȳ
12

)]
, (5.39)

where

Ω ≡
(
Ω+

Ω−

)
. (5.40)

We have used (4.7) to rewrite |x1x2x3x4| above as −x1x2x3x4 for reasons that are described

in appendix E.1.2, having to do with relating the result for the xyȳx̄ interference to other

interference contributions.

5.3 Doing the B integrals

We will now assemble our results and then carry out all remaining integrals except for the

∆t integral.

We want to use the propagator (5.39) in the expression (5.10) for the rate. It is

convenient to first combine all of the exponential factors (before taking derivatives and

setting various Cij to zero) and rewrite them as

exp

[
−1

2

(
By

Cy
23

)⊤(
Xy Yy

Yy Zy

)(
By

Cy
23

)
− 1

2

(
Bȳ

C ȳ
12

)⊤(
Xȳ Yȳ

Yȳ Zȳ

)(
Bȳ

C ȳ
12

)

+

(
By

Cy
23

)⊤(
Xyȳ Yyȳ

Y yȳ Zyȳ

)(
Bȳ

C ȳ
12

)]
, (5.41)
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where30

(
Xy Yy

Yy Zy

)
≡

(
|Mi|Ωi 0

0 0

)
− ia−1⊤

y Ωcot(Ω∆t) a−1
y , (5.42a)

(
Xȳ Yȳ

Yȳ Zȳ

)
≡

(
|Mf |Ωf 0

0 0

)
− ia−1⊤

ȳ Ωcot(Ω∆t) a−1
ȳ , (5.42b)

(
Xyȳ Yyȳ

Y yȳ Zyȳ

)
≡ −ia−1⊤

y Ωcsc(Ω∆t) a−1
ȳ . (5.42c)

With this notation, the rate (5.10) becomes

[
dΓ

dx dy

]

xyȳx̄

=
C2
Aα

2
sMiMf

32π4E2
(−x̂1x̂2x̂3x̂4)(αδ

n̄nδm̄m+βδn̄m̄δnm+γδn̄mδnm̄)

×
∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
∫

Bȳ,By

Bȳ
n̄

(Bȳ)2
By

m

(By)2
[
(YyB

y − Y yȳB
ȳ)n(YȳB

ȳ − YyȳB
y)m̄ + Zyȳδnm̄

]

× exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]
. (5.43)

The B integrals may be performed using

I0 ≡
∫

By,Bȳ

exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]

=
4π2

(XyXȳ −X2
yȳ)

, (5.44a)

I1 ≡
∫

By,Bȳ

By ·Bȳ

(By)2(Bȳ)2
exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]

= − 2π2

Xyȳ
ln

(
1−

X2
yȳ

XyXȳ

)
, (5.44b)

I2 ≡
∫

By,Bȳ

(By ·Bȳ)2

(By)2(Bȳ)2
exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]

=
2π2

X2
yȳ

ln

(
1−

X2
yȳ

XyXȳ

)
+

4π2

(XyXȳ −X2
yȳ)

, (5.44c)

I3 ≡
∫

By,Bȳ

By ·Bȳ

(By)2
exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]

=
4π2Xyȳ

Xy(XyXȳ −X2
yȳ)

, (5.44d)

30Using (5.35), one may rewrite the factors of a−1
ȳ in (5.42) as a−1

ȳ = a⊤
ȳ M, if desired. A similar

relation between a−1
y and ay holds if one cyclically permutes (x1, x2, x3, x4) → (x2, x3, x4, x1) in the

expression (5.16) for M.
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I4 ≡
∫

By,Bȳ

By ·Bȳ

(Bȳ)2
exp

[
−1

2
Xy(B

y)2 − 1

2
Xȳ(B

ȳ)2 +XyȳB
y ·Bȳ

]

=
4π2Xyȳ

Xȳ(XyXȳ −X2
yȳ)

, (5.44e)

giving

[
dΓ

dx dy

]

xyȳx̄

=
C2
Aα

2
sMiMf

32π4E2
(−x̂1x̂2x̂3x̂4)

∫ ∞

0
d(∆t) Ω+Ω− csc(Ω+∆t) csc(Ω−∆t) (5.45)

×
{
(βYyYȳ + αY yȳYyȳ)I0 + (α+ β + 2γ)ZyȳI1

+
[
(α+ γ)YyYȳ + (β + γ)Y yȳYyȳ

]
I2 − (α+ β + γ)(Y yȳYȳI3 + YyYyȳI4)

}
.

5.4 Small-time divergence

The ∆t integration in the xyȳx̄ result (5.45) has both a linear and a log UV divergence

associated with ∆t → 0. Specifically, if we expand the integrand in powers of ∆t (see

appendix D.1 for a little more detail), we find something of the form

[
dΓ

dx dy

]

xyȳx̄

=

∫ ∞

0
d(∆t)

{
stuff

(∆t)2
+

iC2
Aα

2
s

16π2∆t

(
Ωi sgnMi +Ωf sgnMf

)

× x̂21x̂2x̂
2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

[
(α+ β)− (α+ γ)x̂2x̂4

(x̂1+x̂4)(x̂3+x̂4)

]
+O

(
(∆t)0

)
}
. (5.46)

We have not bothered to explicitly show the coefficient “stuff” of 1/(∆t)2 because that

divergence is easy to dispense with. Here is one argument that is easy to make now. The

coefficient “stuff” turns out not to depend on any of the frequencies Ω and so does not

depend on q̂. It is therefore the contribution to (5.46) that comes from radiation in vacuum;

it gives the result we would have gotten if we had set q̂ to zero. However, the total rate for

bremsstrahlung in vacuum must be zero by energy and momentum conservation, and so31

[
dΓ

dx dy

]

total

=

[
dΓ

dx dy

]

total

−
[

dΓ

dx dy

]vacuum

total

. (5.47)

Thus no harm is done if we subtract the vacuum piece for each individual contribution that

we compute and so compute

[
dΓ

dx dy

]

xyȳx̄

−
[

dΓ

dx dy

]q̂→0

xyȳx̄

(5.48)

31The vacuum rate is zero because we are analyzing the thick medium limit, which can be thought of

as an infinite medium. If we had instead restricted splitting time integrals in (2.1) and (4.10) to start at

some initial time 0, then there would be vacuum radiation associated with the initial appearance of the

particle, related to the vacuum radiation associated with the hard process that created our initial particle

(except lacking an ultraviolet cut-off). The usual analysis technique in this case would be to subtract off

the vacuum result in order to isolate the part of dI/dx (or in our case dI/dx dy) due to medium effects.
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Figure 18. A depiction of the (i) Ωi/∆t and (ii) Ωf/∆t divergence of the xyȳx̄ interference as

arising from the simultaneous approach of (i) ty, tȳ, tx̄ versus (ii) tx, ty, tȳ. These divergences

correspond to the short-time approximation of vacuum evolution in the shaded regions.

instead of [dΓ/dx dy]xyȳx̄. This simply subtracts out the 1/(∆t)2 piece of (5.46). (We will

give an alternative argument later that the 1/(∆t)2 divergences cancel without relying on

a priori knowledge that the total vacuum contribution must vanish.)

In contrast, the 1/∆t divergences in (5.46) do depend on the medium, but in a very

specific way: they are the sum of terms which depend on the medium (i.e. depend on q̂)

either (i) only via Ωi or (ii) only via Ωf . In the first case, regarding the Ωi/∆t terms,

this means that only the contribution from the evolution before ty in figure 15 depends

on the medium, and so (regarding the same terms) the 3- and 4-particle evolution after

ty is equivalent to vacuum evolution. One expects the medium to be irrelevant over very

short times, and indeed we show explicitly in appendix D.2 that the Ωi/∆t divergence

arises specifically from the limit where ty, tȳ, and tx̄ approach each other simultaneously in

figure 15. Similarly, the Ωf/∆t divergence arises when tx, ty, and tȳ approach each other

simultaneously. These two situations are depicted in figure 18 for future reference.

We will later see that the 1/∆t divergences cancel among different interference contri-

butions, and so we will be able to carry out the ∆t integral numerically if we first combine

results for different interference contributions before integrating. However, as will be dis-

cussed later, we will nonetheless have to be careful to account for an additional contribution

associated with the pole at ∆t = 0.

6 Other crossed interference contributions

We now turn to relating the other crossed interference diagrams in figure 6 to the result

just derived for the xyȳx̄ interference. Details are given in appendix E, and here we will

instead loosely motivate and then describe the results.
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Figure 19. The xȳyx̄ interference contribution of figures 5 and 6 with individual splitting times

labeled. The numbers depict our labeling of the 4-particle xi in (6.1).

6.1 xȳyx̄ interference

The second diagram of figures 5 and 6 describes what we call the xȳyx̄ interference contri-

bution, which we depict with time labels in figure 19. One difference with the xyȳx̄ case

analyzed previously is that the xi during the period of 4-particle evolution are different.

In contrast to (4.7), we have

(x′1, x
′
2, x

′
3, x

′
4) =

(
−(1−y),−y, 1−x, x

)
, (6.1)

numbered (for the sake of large-Nc) in the cyclic order one would get if drawing the diagram

on a cylinder, analogous to the xyȳx̄ case of figure 17. Note that there are now two negative

xi because two of the high-energy particles are in the conjugate amplitude during the 4-

particle evolution (tȳ < t < ty). We have chosen to indicate the 4-particle xi for xȳyx̄

using primes, as in (6.1), and we will reserve the hats for the xyȳx̄ case, as in (4.7). The

two are related by

(x′1, x
′
2, x

′
3, x

′
4) =

(
−(x̂3+x̂4),−x̂2,−(x̂1+x̂4), x̂4

)
. (6.2)

In this notation, one of the changes in going from xyȳx̄ to xȳyx̄ can then be summarized

as x̂i → x′i.

Another difference between xȳyx̄ and xyȳx̄ can be seen by considering the splittings

that occur at the start (tȳ) and end (ty) of the 4-particle evolution. At t=tȳ in figure 19,

particles 3 and 4 are spectators to the splitting, and so the natural variables for describing

the system (following our discussion in section 4.2) are (C ȳ
34,C

ȳ
12). Similarly, the natural

variables at the end of the 4-particle evolution, t=ty, are (Cy
41,C

y
23). Looking only at the

variable names, this seems like the same choices as for the xyȳx̄ analysis in (4.10). The

difference is that (C ȳ
34,C

ȳ
12) are the variables at the start of the 4-particle evolution of

xȳyx̄ but the end of the 4-particle evolution of xyȳx̄. As a result, (C ȳ
34,C

ȳ
12) will be tied

by the splitting matrix element to the initial 3-particle evolution (tx < t < tȳ) for xȳyx̄

but was tied to the final 3-particle evolution (tȳ < t < tx̄) for xyȳx̄. The treatment of

the initial and final 3-particle evolution was fairly symmetric in section 5, and the effect

of the 3-particle evolutions in the final result (5.45) appeared only through the parameters

(Mi,Ωi) and (Mf ,Ωf). So one might expect that one can account for this difference between

xyȳx̄ and xȳyx̄ simply by interchanging those parameters: (Mi,Ωi) ↔ (Mf ,Ωf). In fact,
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Figure 20. Relation between labeling of splitting vertices and (6.4) for (a) our previous xyȳx̄

calculation, (b) what we would get attempting to relate that calculation to xȳyx̄ by only taking

x̂i → x′

i [and so also (M,Ω)i ↔ (M,Ω)f ], and (c) how the labeling should actually be for xȳyx̄.

this change is automatic under x̂i → x′i if one chooses to write 3-particle M and Ω in terms

of the 4-particle xi, as in the middle expressions in (5.2) and (5.4):

Mi = x̂1x̂4(x̂1+x̂4)E −→
x̂i→x′

i

x′1x
′
4(x

′
1+x′4)E = (x̂3+x̂4)x̂4x̂3E = Mf , (6.3)

and similarly Mf → Mi and Ωi ↔ Ωf .

However, there is one additional element to the relation between xyȳx̄ and xȳyx̄, which

are the contractions of the helicity amplitudes associated with each splitting matrix to make

the combination (4.38),

α(x, y) δn̄nδm̄m + β(x, y) δn̄m̄δnm + γ(x, y) δn̄mδnm̄, (6.4)

discussed for xyȳx̄ back in section 4.6, where the indices (m,n, m̄, n̄) were associated with

the splitting vertices as in figure 20a. Holding x and y fixed in α, β, and γ, the rules that we

have discussed so far for relating xyȳx̄ to xȳyx̄, which swap the initial and final 3-particle

evolutions, would correspond to (6.4) contracted with vertices for xȳyx̄ as in figure 20b.

However, as discussed earlier and exemplified by (4.37), the helicity sums should be the

same for all of the diagrams in the first line of figures 5 and 6. Reading from (4.37), the

vertices should be labeled as in figure 20c instead of figure 20b. That is, we need to swap

m ↔ n̄. From (6.4), this is equivalent to instead swapping α ↔ β.

Readers who find the above arguments a little too impressionistic should refer to

appendix E. In particular, the discussion above completely sweeps under the rug a subtlety

concerning the overall sign of the xȳyx̄ contribution, which is related to why we presciently

replaced |x1x2x3x4| by −x1x2x3x4 back in (5.39). (Though these are the same for xyȳx̄,

they differ by a sign for xȳyx̄.)

In summary, the steps necessary to change the result (5.45) for xyȳx̄ to a result for

xȳyx̄ are

• x̂i → x′i (to include the formulas for Ω±, ay, and aȳ);

• (Mi,Ωi) ↔ (Mf ,Ωf) if this change was overlooked when applying the x̂i → x′i rule;

• α(x, y) ↔ β(x, y) .
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The interpretation of the 4-particle evolution time ∆t in the resulting formula is now

∆t = ty − tȳ rather than ∆t = tȳ − ty, so that ∆t is still positive.

Applying these rules on the 1/∆t divergence of (5.46), the corresponding divergence

for xȳyx̄ is the ∆t integral of

iC2
Aα

2
s

16π2∆t

(
Ωf sgnMf+Ωi sgnMi

)
x′1

2
x′2x

′
3
2
x′4(x

′
1+x′4)

2(x′3+x′4)
2

[
(β + α)− (β + γ)x′2x

′
4

(x′1+x′4)(x
′
3+x′4)

]
.

(6.5)

Using (6.2), this can be rewritten as

iC2
Aα

2
s

16π2∆t

(
Ωi sgnMi +Ωf sgnMf

)
x̂21x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

[
−(α+β)− (β + γ)x̂2x̂4

x̂1x̂3

]
.

(6.6)

Note that the (α+β) term will cancel when (5.46) and (6.6) are added together. To see the

complete cancellation of all 1/∆t divergences, we must go on to analyze other interference

contributions.

6.2 xȳx̄y interference

The xȳx̄y interference is our name for the third diagram in figures 5 and 6. We will label

the particles during the 4-particle evolution as in figure 21 and designate the 4-particle xi
with tildes:

(x̃1, x̃2, x̃3, x̃4) =
(
−y,−(1−y), x, 1−x

)
. (6.7)

This is just a permutation of the x′i in (6.1),

(x̃1, x̃2, x̃3, x̃4) = (x′2, x
′
1, x

′
4, x

′
3). (6.8)

It is a convenient permutation of the labels because, as seen from comparing figures 19

and 21, it preserves the labels of which particles are involved in the splitting at the

beginning and end of the 4-particle evolution: particles 3 and 4 are the spectators at the

beginning (t=tȳ), and 1 and 3 are the spectators at the end (t=ty for xȳyx̄ and t=tx̄ for

xȳx̄y). So the structure of the two diagrams is the same, and the first rule of converting

the results for xȳyx̄ is simply x′i → x̃i, or equivalently 1 ↔ 2 and 3 ↔ 4. Note that if we

also apply this rule to the formulas for Mi and Mf in terms of x′i, it gives the appropriate

initial and final 3-particle masses M associated with figure 21: Mi = (x′3+x′4)x
′
4x

′
3E does

not change under 13 ↔ 24, and

Mf = x′1x
′
4(x

′
1+x′4)E −→

x′
i→x̃i

M̃f ≡ x̃1x̃4(x̃1+x̃4)E = x′2x
′
3(x

′
2+x′3)E. (6.9)

Here,

M̃f = −y(1−x)(1−x−y) (6.10)

is different from our previous M ’s because the particles in the final 3-particle evolution of

xȳx̄y are different than those for xyȳx̄ and xȳyx̄. Unlike Mi and Mf , this M̃f is negative.

Similarly, the transformation gives us the appropriate

Ω̃f =

√
− iq̂A
2E

(
1

x̃1
+

1

x̃4
− 1

x̃1+x̃4

)
=

√
− iq̂A
2E

(
−1

y
+

1

1−x
− 1

1−x−y

)
. (6.11)
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Figure 21. The xȳx̄y interference contribution of figures 5 and 6 with individual splitting times

labeled. The numbers depict our labeling of the 4-particle xi as in (6.7).
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Figure 22. As figures 20(b,c) but here for xȳx̄y.

Unlike the Ωi and Ωf discussed previously, Ω̃f is proportional to
√
+i rather than

√
−i and

so has a positive rather than negative imaginary part. This is the reason that we earlier

made the (at that time unnecessary) generalization from (5.8) to (5.9) in our discussion

of integrating out the first and last splitting times.

We can now express the transformation directly from xyȳx̄ to xȳx̄y in one step by

rewriting (6.8) in terms of the x̂i:

(x̃1, x̃2, x̃3, x̃4) =
(
−x̂2,−(x̂3+x̂4), x̂4,−(x̂1+x̂4)

)
. (6.12)

Now remember that, by itself, the transformation from x̂i to x′i gave us figure 20b instead

of what we needed for xȳyx̄, figure 20c. If we now make the further transformation 12 ↔ 34

that takes us from x′i to x̃i, figure 20b will become figure 22b for xȳx̄y.32 But what we

need, as read from (4.37), is figure 22c. This requires mnn̄ → nn̄m, which, from (6.4), is

equivalent to αβγ → γαβ.

In summary, the steps necessary to change the result (5.45) for xyȳx̄ to a result for

xȳx̄y are

• x̂i → x̃i (to include the formulas for Ω±, ay, and aȳ);

• (Mi,Ωi;Mf ,Ωf) → (M̃f , Ω̃f ;Mi,Ωi) if this change was overlooked when applying the

x̂i → x̃i rule;

•
(
α(x, y), β(x, y), γ(x, y)

)
→

(
γ(x, y), α(x, y), β(x, y)

)
.

The interpretation of the 4-particle evolution time ∆t in the resulting formula is now

∆t = tx̄ − tȳ > 0.

32Again, see appendix E is this be less than clear.
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Figure 23. A subset of crossed diagrams for which all 1/∆t divergences cancel.

Applying these rules on the 1/∆t divergence of (5.46), the corresponding divergence

for xȳyx̄ is the ∆t integral of

iC2
Aα

2
s

16π2∆t

(
Ω̃f sgn M̃f+Ωi sgnMi

)
x̃21x̃2x̃

2
3x̃4(x̃1+x̃4)

2(x̃3+x̃4)
2

[
(γ + α)− (γ + β)x̃2x̃4

(x̃1+x̃4)(x̃3+x̃4)

]
.

(6.13)

Using (6.12), this can be rewritten as

iC2
Aα

2
s

16π2∆t

(
Ωi sgnMi + Ω̃f sgn M̃f

)
x̂21x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

×
[

(α+ γ)x̂2x̂4
(x̂1+x̂4)(x̂3+x̂4)

+
(β + γ)x̂2x̂4

x̂1x̂3

]
. (6.14)

Note that all of the Ωi terms now cancel between (5.46), (6.6), and (6.14) — that is,

between the three diagrams shown in the first line of figures 5 and 6.

7 1/∆t divergences and iǫ prescriptions

We have now seen a subset of 1/∆t divergences cancel in the first line of figure 6. To get the

rest of the cancellations just requires a slightly bigger subset of diagrams: all of the 1/∆t

divergences cancel between the six diagrams shown in figure 23. The second line of figure 23

is just the conjugate of the first line permuted by x ↔ y. One may check that adding

together the 1/∆t terms of (5.46), (6.6), (6.14) and their conjugates with x ↔ y gives zero.

The complete set of crossed diagrams depicted by figure 6 can be written as the sum

of figure 23 and its conjugate, plus the remaining possible permutations of the three final

daughters (x, y, 1−x−y). So 1/∆t divergences will cancel for the complete set of crossed

diagrams as well. That means that, if we combine results for the crossed diagrams before

doing the ∆t integral, and we subtract the corresponding vacuum results as in (5.47)

and (5.48), the ∆t integral will be finite and can be performed numerically. Before we

summarize formulas for the final result, however, we need to take care of a subtlety with

the contribution from ∆t=0 to which we have previously alluded. And before we do that,

it will be enlightening to first review some technical details of the calculation of single (as

opposed to double) splitting.
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7.1 iǫ prescription in single splitting

Return to the formula (2.37) for the single splitting rate. Using the propagator (2.38), this

formula becomes

dΓ

dx
= −αP1→3(x)

π
Re

∫ ∞

0
d(∆t) Ω2

0 csc
2(Ω0∆t), (7.1)

where ∆t ≡ tx̄ − tx. The integrand blows up like 1/(∆t)2 as ∆t → 0. A simple way to

avoid this problem altogether is to subtract out the vanishing rate of splitting in vacuum,

analogous to (5.47):

dΓ

dx
=

dΓ

dx
−
[
dΓ

dx

]vacuum
=

dΓ

dx
− lim

Ω0→0

dΓ

dx

= −αP1→3(x)

π
Re

∫ ∞

0
d(∆t)

[
Ω2
0 csc

2(Ω0∆t)− 1

(∆t)2

]
. (7.2)

This integral is convergent and gives the result

dΓ

dx
=

αP1→3(x)

π
Re(iΩ0), (7.3)

which in turn gives (1.5a).

However, it will be useful to see how to get the result without making the vacuum

subtraction. We’ll see how to deal with the 1/(∆t)2 singularity in (7.1) directly, but the

argument will perhaps look more familiar if we first transform the ∆t integral from 0 to ∞
to an integral from −∞ to +∞.

7.1.1 An integral from −∞ to +∞

For the sake of interpretation of ∆t, it will be useful to consider how we would have arrived

at (7.1) if we had computed the xx̄ interference diagram of figure 10 and its conjugate x̄x

separately, as depicted in figure 24. The 3-particle Ω given by (2.33b),

Ω =

√
− i

2E

(
q̂1
x1

+
q̂2
x2

+
q̂3
x3

)
, (7.4)

gives (1.5b),

Ω0 =

√
− iq̂A
2E

(
−1 +

1

1−x
+

1

x

)
, (7.5)

for the xx̄ interference diagram [for which (x1, x2, x3) = (−1, 1−x, x)]. But it gives Ω∗
0

for the x̄x diagram [for which (x1, x2, x3) =
(
1,−(1−x),−x

)
]. The results for these two

diagrams, after following the same steps as in section 2, are
[
dΓ

dx

]

xx̄

= −αP1→3(x)

2π

∫ ∞

0
d(∆t) Ω2

0 csc
2(Ω0∆t) (7.6a)

with ∆t ≡ tx̄ − tx and
[
dΓ

dx

]

x̄x

= −αP1→3(x)

2π

∫ ∞

0
d(∆t) Ω∗2

0 csc
2(Ω∗

0∆t) (7.6b)
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Figure 24. The interference diagrams contributing to single splitting.

with ∆t ≡ tx − tx̄. Adding them together reproduces (7.1), as it should. Now let’s take

∆t → −∆t in (7.6b) to write the sum of (7.6) as

dΓ

dx
= −αP1→3(x)

2π

∫ +∞

−∞
d(∆t)

{
Ω∗
0
2 csc2(Ω∗

0∆t), ∆t < 0;

Ω2
0 csc

2(Ω0∆t), ∆t > 0,
(7.7)

where now ∆t ≡ tx̄ − tx in both cases.

If the integrand in (7.7) were an analytic function of ∆t, we could now say that the

problem of the singularity at ∆t = 0 is just a problem of understanding how one should

integrate around the pole. The integrand is not analytic because of the various high-energy

approximations that have been made, but the divergent piece at ∆t = 0 is analytic. We

can rewrite (7.7) as the sum of a convergent integral

dΓ

dx
=

αP1→3(x)

2π

∫ +∞

−∞
d(∆t)

{
Ω∗
0
2 csc2(Ω∗

0∆t)− (∆t)−2, ∆t < 0;

Ω 2
0 csc2(Ω0∆t)− (∆t)−2, ∆t > 0

(7.8)

[which is equivalent to (7.2)] and a potentially divergent integral
[
dΓ

dx

]

div

∝
∫ +∞

−∞

d(∆t)

(∆t)2
. (7.9)

It doesn’t really matter how we integrate around the double pole in (7.9) because we will

get zero however we do it. However, getting straight the prescription will help deal with

the 1/∆t divergences that arise in the double splitting case. So we now discuss the iǫ

prescription that should be used for ∆t.

7.1.2 The iǫ prescription

Consider the δH matrix elements that appeared in the formula (2.2) for single splitting,
∫

pf ,kf

(∫

px

〈pfkf , tx̄|pxkf , tx〉〈pxkf |−i δH|pi〉
)(∫

p̄x̄

〈pi, tx|p̄x̄, tx̄〉〈p̄x̄|i δH|pfkf〉
)
. (7.10)

Using completeness relations, (7.10) can be rewritten as

〈pi|δH(tx̄) δH(tx)|pi〉. (7.11)

This is a Wightman correlator: the δH for the splitting at tx̄ is always ordered to the left of

the δH for the splitting at tx, regardless of the time order of tx̄ and tx. The iǫ prescription

for the small-∆t divergence of a Wightman correlator is

t−t′ → t−t′−iǫ for 〈A(t)B(t′)〉. (7.12)
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See, for example, the argument in Wilson [34] with regard to the singularity behavior

of A(x)B(y) in the operator product expansion. (We provide our own summary of the

argument in appendix A.) In our context, we can summarize this rule as follows:

Regard times in the conjugate amplitude as displaced by −iǫ with respect to

times in the amplitude.

7.1.3 Other ways to use the prescription

In our analysis of double splitting, we have always defined our ∆t to be positive. In single

splitting, the analog is to use the 0 < ∆t < ∞ integrals of (7.1) or (7.6) instead of the

−∞ < ∆t < ∞ integral of (7.7). It is useful to notice that the iǫ prescription works just

as well in this form. In the case of (7.1), ∆t ≡ tx̄ − tx. Since tx is in the amplitude and tx̄
in the conjugate amplitude, (7.1) becomes

dΓ

dx
= −αP1→3(x)

π
Re

∫ ∞

0
d(∆t) Ω2

0 csc
2
(
Ω0 (∆t− iǫ)

)
. (7.13)

The divergent piece is proportional to

Re

∫ ∞

0

d(∆t)

(∆t− iǫ)2
= Re

1

−iǫ
= 0. (7.14)

Equivalently (and most like what we will do for double splitting) we can get the same

result from (7.6) by realizing that ∆t ≡ tx̄ − tx → ∆t − iǫ in the xx̄ piece (7.6a) but

∆t ≡ tx − tx̄ → ∆t + iǫ in the x̄x piece (7.6b), so that the divergent piece of the sum is

proportional to ∫ ∞

0

d(∆t)

(∆t− iǫ)2
+

∫ ∞

0

d(∆t)

(∆t+ iǫ)2
= 0. (7.15)

7.2 Consequences for double splitting

Just like in the single splitting case, the vacuum 1/(∆t)2 divergences in double splitting

will be canceled by adding diagrams to their conjugates, or can be discarded by simply

subtracting the (vanishing) vacuum result. However, the sub-leading 1/∆t divergences give

something non-trivial.

7.2.1 A warm-up example

As a simple, warm-up example from calculus, imagine the integral

I ≡
∫ +R

−R
d(∆t)

Ω

∆t− iǫ
= iπΩ, (7.16)

for some complex frequency Ω and some bound R. We may replace ∆t → −∆t for ∆t < 0

to rewrite the integral as

I =

∫ R

0
d(∆t)

Ω

∆t− iǫ
+

∫ R

0
d(∆t)

−Ω

∆t+ iǫ
, (7.17)
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Figure 25. The contours C1 and C2 of (7.18) in the complex ∆t plane.

which is a 1/∆t analogy to the 1/(∆t)2 integrals we had in (7.15). Now combine the two

integrands in (7.17). If we ignored the important iǫ prescriptions in (7.17), we would naively

conclude that the 1/∆t terms cancel each other, leading to the incorrect answer I = 0.

One can equivalently write (7.17) as

I =

∫

C1

d(∆t)
Ω

∆t
+

∫

C2

d(∆t)
−Ω

∆t
, (7.18)

where the contours C1 and C2 are shown in figure 25. The integrals indeed cancel except

for the contributions from the tiny region around ∆t = 0, where the contours differ. The

integrals around each quarter-circle give ±iπ/2 times the residue at the origin, which

brings (7.17) to the same result I = iπΩ as (7.16).

A quick mnemonic for all of this is to use the standard relation

1

∆t∓ iǫ
= P.P.

1

∆t
± iπ δ(∆t), (7.19a)

where “P.P.” indicates the principal part prescription, and with the understanding that

∫ R

0
d(∆t) δ(∆t) =

1

2
(7.19b)

integrates over only half of the δ function. The principal part pieces then cancel between

the two terms in (7.17), and the δ function pieces account for the answer I = iπΩ. (In

this context, the principal part prescription does not really do anything since we are not

integrating over negative ∆t.)

7.2.2 Double splitting

Let us now apply (7.19) to the 1/∆t divergences found previously for double splitting. For

the xyȳx̄ result, this divergence was given in (5.46), where ∆t ≡ tȳ− ty. Since times in the

conjugate amplitude should get a −iǫ, we take ∆t → ∆t− iǫ in (5.46). After then apply-

ing (7.19), we will have a 1/∆t piece and a +iπδ(∆t) piece. The 1/∆t pieces will cancel

between diagrams, as already noted in the discussion of figure 23. The +iπδ(∆t) piece will

give an additional contribution to the xyȳx̄ interference that we need to retain, given by

[
dΓ

dx dy

]pole

xyȳx̄

= −C2
Aα

2
s

32π

(
Ωi sgnMi +Ωf sgnMf

)
x̂21x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

×
[
(α+ β)− (α+ γ)x̂2x̂4

(x̂1+x̂4)(x̂3+x̂4)

]
. (7.20)

– 51 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
0

)*

xt yt xt ty

(

/ ∆Ωf t divergence
~

)*

xt yt xt ty

(

/ ∆Ωi t divergence

Figure 26. As figure 18 but instead for the xȳx̄y interference of figure 21.

For xȳyx̄, we have a similar situation, but ∆t in (6.6) is ∆t ≡ ty − tȳ → ∆t+ iǫ, and

so the iπδ(∆t) in (7.19) has the opposite sign. As a result, the corresponding contribution

arising from (6.6) is

[
dΓ

dx dy

]pole

xȳyx̄

= +
C2
Aα

2
s

32π

(
Ωi sgnMi +Ωf sgnMf

)
x̂21x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

×
[
−(α+ β)− (β + γ)x̂2x̂4

x̂1x̂3

]
. (7.21)

The xȳx̄y contribution of figure 21 is a little more subtle because there ∆t ≡ tx̄ − tȳ
does not pick up a ±iǫ prescription from what we have discussed so far. Here, we will

indicate how one might guess the answer, and we leave a more precise argument to

appendix D.3. Analogous to the earlier discussion of figure 18 for xyȳx̄, the Ωi/∆t and

Ω̃f/∆t divergences of (6.14) arise from the situations depicted in figure 26. Looking at

the figure for the Ω̃f/∆t divergence, remember that, in the derivations of our expressions

(section 5.1 in particular), we have already integrated the first time tx all the way up to

the second time (in this case tȳ). And so one might guess that the tx̄ − tȳ will inherit the

iǫ prescription of tx̄ − tx, which is tx̄ − tx − iǫ. Our guess is that ∆t ≡ tx̄ − tȳ → ∆t − iǫ

will give the correct result for the Ω̃f/∆t divergence.

In contrast, for the Ωi/∆t divergence in figure 26, tx is not close to tȳ, but instead

ty is close to tx̄. One might guess that tx̄ − tȳ then inherits the iǫ prescription of ty − tȳ,

which is ty − tȳ + iǫ. So our guess is that ∆t → ∆t+ iǫ will give the correct result for the

Ωi/∆t divergence of xȳx̄y. These guesses are correct (see appendix D.3) and put together

with (6.14) and (7.19) give

[
dΓ

dx dy

]pole

xȳx̄y

=
C2
Aα

2
s

32π

(
Ωi sgnMi − Ω̃f sgn M̃f

)
x̂21x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

×
[

(α+ γ)x̂2x̂4
(x̂1+x̂4)(x̂3+x̂4)

+
(β + γ)x̂2x̂4

x̂1x̂3

]
. (7.22)
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The sum of the Ωi terms of (7.20)–(7.22) is

C2
Aα

2
s

16π
Ωix̂

2
1x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

[
−(α+ β) +

(α+ γ)x̂2x̂4
(x̂1+x̂4)(x̂3+x̂4)

]
(7.23)

(where we’ve finally used the fact that sgnMi = +1 since we will no longer be considering

variable substitutions that will change the sign). If we add (7.20)–(7.22) to their conjugates

with x ↔ y, as in the subset of diagrams of figure 23, then we get

[
dΓ

dx dy

]pole

figure 23
=

{
C2
Aα

2
s

16π
(Ωi + Ω̃f) x̂

2
1x̂2x̂

2
3x̂4(x̂1 + x̂4)

2(x̂3 + x̂4)
2

×
[
−(α+ β) +

(α+ γ)x̂2x̂4
(x̂1+x̂4)(x̂3+x̂4)

]}
+ {x ↔ y}∗. (7.24)

(where we have now used the fact that sgn M̃f = −1). So, even though the 1/(∆t) terms

naively cancel between the diagrams of figure 23, the pole contributions arising from the

±iǫ’s do not.

Recalling that the (α, β, γ) of (4.39) are symmetric under x ↔ y, (7.24) can be written

more explicitly as

[
dΓ

dx dy

]pole

figure 23
= −C2

Aα
2
s

16π
[Ω−1,1−x,x +Ω−(1−y),1−x−y,x +Ω∗

−1,1−y,y +Ω∗
−(1−x),1−x−y,y]

× xy(1−x)2(1−y)2(1−x−y)2
[
(α+ β) +

(α+ γ)xy

(1−x)(1−y)

]}
(7.25a)

where

Ωx1,x2,x3 ≡
√
− iq̂A
2E

(
1

x1
+

1

x2
+

1

x3

)
. (7.25b)

8 Summary of result

We now collect our final result for the sum of all crossed diagrams, depicted by figure 5

or 6, for gluons in the large-Nc limit in a form appropriate for (convergent) numerics. The

result is [
dΓ

dx dy

]

crossed

= A(x, y) +A(1−x−y, y) +A(x, 1−x−y), (8.1)

where A(x, y) is the result for the six diagrams of figure 23 plus their conjugates, with

vacuum result subtracted. We will write this as

A(x, y) ≡ 2Re

{[
dΓ

dx dy

]

figure 23
− lim

q̂→0

[
dΓ

dx dy

]

figure 23

}

= 2Re

[
dΓ

dx dy

]pole

figure 23
+

∫ +∞

0
d(∆t) 2Re

[
B(x, y,∆t) +B(y, x,∆t)

]
, (8.2)

where B(x, y) is the ∆t integrand for the first three diagrams of figure 23 (with vacuum

results subtracted). This is

B(x, y,∆t) = C({x̂i}, α, β, γ,∆t) + C({x′i}, β, α, γ,∆t) + C({x̃i}, γ, α, β,∆t)
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= C(−1, y, 1−x−y, x, α, β, γ,∆t) + C
(
−(1−y),−y, 1−x, x, β, α, γ,∆t

)

+ C
(
−y,−(1−y), x, 1−x, γ, α, β,∆t

)
, (8.3)

where the three terms correspond to xyȳx̄, xȳyx̄, and xȳx̄y respectively, and α(x, y),

β(x, y), and γ(x, y) are given by (4.39). C is defined to have the vacuum result subtracted,

so write

C = D − lim
q̂→0

D. (8.4)

D, defined as the integrand for xyȳx̄, is given by (5.45) as

D(x1,x2, x3, x4, α, β, γ,∆t) =

C2
Aα

2
sMiMf

32π4E2
(−x1x2x3x4)Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{
(βYyYȳ + αY yȳYyȳ)I0 + (α+ β + 2γ)ZyȳI1

+
[
(α+ γ)YyYȳ + (β + γ)Y yȳYyȳ

]
I2 − (α+ β + γ)(Y yȳYȳI3 + YyYyȳI4)

}
(8.5)

with the In defined by (5.44); the (X,Y, Z)’s defined by (5.42); the 4-particle normal modes

and frequencies used in their definition given by (5.21)–(5.25), (5.28), (5.33), and (5.40);

and the 3-particle M ’s and Ω’s in these formulas defined specifically in terms of the 4-

particle xi (the arguments of D above) as

Mi = x1x4(x1+x4)E, Mf = x3x4(x3+x4)E (8.6)

and

Ωi =

√
− iq̂A
2E

(
1

x1
+

1

x4
− 1

x1+x4

)
, Ωf =

√
− iq̂A
2E

(
1

x3
+

1

x4
− 1

x3 + x4

)
. (8.7)

The pole contribution in (8.2) is given by (7.25).

The q̂ → 0 limit for the vacuum piece in (8.4) corresponds to taking all Ω’s to zero.

The vacuum piece in (8.4) could be worked out algebraically, but it is simpler to just use

the same numerical code as for (8.5) but with the replacements

Ωi → 0, Ωf → 0, Ωcot(Ω∆t) → (∆t)−1, Ωcsc(Ω∆t) → (∆t)−1 (8.8)

[and so also Ω± csc(Ω±∆t) → (∆t)−1 in the prefactor of (8.5)].

It is possible to scale out the factors of q̂A and E from the above expressions by

replacing ∆t by the dimensionless variable ∆t ≡ (q̂A/E)1/2∆t. For numerics, it is

convenient to work in units where q̂A=1 and E=1, which then gives the result for the rate

dΓ/dx dy in units of (q̂A/E)1/2.

9 Behavior of result

Though this paper calculates only a subset of the diagrams contributing to dΓ/dx dy, it is

interesting to examine the behavior of the results in the soft bremsstrahlung limit.
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9.1 Comparison to earlier results for y ≪ x ≪ 1

As mentioned before, refs. [10–12] have studied the effect of double splitting on energy loss

when one of two soft bremsstrahlung gluons becomes extremely soft compared to the other

(y ≪ x ≪ 1). They find that the double-splitting correction to energy loss is enhanced by a

double logarithm that, at leading logarithmic order, can be absorbed into the single splitting

result (1.5) for energy loss by a redefinition of q̂. This energy-dependent correction δq̂ to q̂ is

seemingly universal and was computed yet earlier by Liou, Mueller, and Wu [16], with result

δq̂A ≃ αsCA

2π
q̂A ln2

(
L

l0

)
. (9.1)

In the current context of a thick medium, the relevant distance scale L is the formation

time associated with emission of the x gluon:

L ∼
√

xE

q̂A
. (9.2)

[The fact that this is a parametric statement (∼) rather than an exact equality does not

matter at the level of identifying the leading logarithmic result.] The l0 above characterizes

the small distance scale, characteristic of the medium, at which the multiple scattering

(harmonic oscillator) approximation breaks down. A discussion of resumming the leading

logarithmic terms at all orders may be found in refs. [10, 12, 16, 17]. The results are very

interesting because they can change the power law dependence of how energy loss depends

on energy. For instance, the stopping distance of a high-energy parton due to repeated

single-splitting processes scales with energy as E1/2, but Blaizot and Mehtar-Tani [10] have

discussed how resumming the double logarithm above can modify the scaling to E
1
2
−#

√
αs .

These earlier results provide a useful check on our own results: do they agree if we take

the y ≪ x ≪ 1 limit? We will focus on a comparison with Blaizot and Mehtar-Tani [10] and

Wu [12]. Comparison is slightly complicated by the fact that in this paper we have only

calculated certain contributions to dΓ/dx dy but have not calculated virtual corrections

like figure 8 that are needed for the energy loss calculation. On the flip side, the processes

studied by refs. [10, 12] do not include all possible time orderings of the splittings (presum-

ably because only certain orderings are relevant to the double logarithm). So, we will need

to compare a subset of our diagrams to a subset of theirs. In our terminology, this subset is

xyȳx̄+xȳyx̄+ zyȳz̄+ zȳyz̄ (plus their conjugates). For reasons explained in appendix F.3,

the xyȳx̄ + xȳyx̄ contributions are difficult to disentangle from the virtual processes also

included in the analysis of refs. [10, 12], and so we shall content ourselves with checking the

contribution from zyȳz̄+zȳyz̄, which are just the xyȳx̄ and xȳyx̄ diagrams analyzed earlier

with the substitution x → z ≡ 1−x−y. An alternative depiction of zyȳz̄ was given earlier in

figure 9. (In Wu [12], our zyȳz̄ and zȳyz̄ are respectively the second diagram of his (30) and

the first diagram of his (32).33 In Blaizot and Mehtar-Tani [10], they are called A3 and C1.)

33Here and throughout, we refer to Wu’s equations [12] by their numbering in the arXiv version of the

paper (versions 1 or 2) rather than the JHEP version of the paper, in part to make it a little easier to

distinguish references to our equations from references to his.
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The work of Wu [12] is closest in technique to our own. In appendix F, we briefly

sketch the relationship between Wu’s expressions and the y . x ≪ 1 limit of our formal

expressions. Wu then goes on to extract the double log behavior (getting the same result

as others) to which we now turn.

The contributions from zyȳz̄ + zȳyz̄ that give rise to double log corrections turn out

to be √
y

x

√
yE

q̂
≪ ∆t ≪

√
yE

q̂
, (9.3)

which is equivalent to the regions found to give the double logarithms in refs. [10, 12] (see

appendix F for details). When we expand our own final results (from section 8) in this

range, also taking y ≪ x ≪ 1, we find

2Re

[
dΓ

dx dy

]

zyȳz̄+zȳyz̄

=


(2 + 0 + 0)

1 + ln
(

y√
2x∆t

)

π2xy(∆t)2
+

(12− 3 + 1)

8π2yx3/2∆t
+ · · ·


C2

Aα
2
s

√
q̂A
E

.

(9.4)

Here, we have distinguished which contributions arise from interaction of the y gluon with

the medium, using notation that we will explain in a moment. Specifically, the evolution

of the y gluon for zyȳz̄ + zȳyz̄ is only relevant during the 4-particle part of the evolution,

during which non-zero q̂ only enters the calculation via non-zero values of Ω±. In the

y ≪ x ≪ 1 limit, the relevant values of Ω± (5.21) approach

Ω2
+ → Ω2

y ≡ −iq̂A
2yE

, Ω2
− → Ω2

x ≡ −3iq̂A
8xE

(9.5)

for zyȳz̄ and

Ω2
+ → Ω2

x, Ω2
− → −Ω2

y (9.6)

for zȳyz̄. The “(12− 3 + 1)” in (9.4) means that the contributions that do not depend at

all on Ω± (and so correspond to no interactions of the y gauge boson with the medium)

give “12” there; contributions that are proportional to |Ωx|2 give −3; and contributions

that are proportional to |Ωy|2 give +1. Similarly for the “(2+0+0).”

The 1/(∆t)2 and 1/(∆t) pieces of (9.4) have nothing to do with the small-∆t diver-

gences discussed back in sections 5.4 and 7. Those divergences and their cancellations

arise in the limit of arbitrarily small ∆t rather than the ∆t range (9.3) being considered

here. (Specifically, the small-∆t cancellations in [zyȳz̄ + zȳyz̄ + zȳz̄y] + [z ↔ y]∗ require

∆t ≪
√
y/x

√
yE/q̂.)

The double log effects which are found in the energy loss calculations of refs. [10, 12]

arise from single interactions of the soft y gluons with the medium, and so, when comparing

similar diagrams, correspond to just the pieces

(0− 3 + 1)

8π2yx3/2∆t
C2
Aα

2
s

√
q̂A
E

(9.7)

of (9.4). Now integrate over y and ∆t, and compare to the single splitting result (1.5) for

dΓ/dx in the limit x ≪ 1, which is

dΓ

dx
≃ CAαs

πx3/2

√
q̂A
E

. (9.8)
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The result is that the double-splitting contribution considered above can be absorbed (up

to higher order corrections) into the single splitting result (9.8) by q̂A → q̂A + δq̂A with

(see appendix A)

δq̂A ≃ (−3+1)

4

αsCA

π
q̂A

∫
dy d(∆t)

y ∆t
≃ (−3+1)

4

αsCA

2π
q̂A ln2

(
L

l0

)
(9.9)

[where now we show only the contributions arising from Ωx and Ωy in the notation

“(−3+1)”]. Even after adding in xyȳx̄ + xȳyx̄ (and conjugate) contributions, this will

not exactly match (9.1) because in this paper we have not included the virtual corrections

relevant to energy loss. However, we have checked that the contribution to δq̂A from just

the zyȳz̄+zȳyz̄ (and conjugate) diagrams in refs. [10, 12] would have led to the same result

for the double log pieces, i.e.

[
δq̂A
q̂A

]

zyȳz̄+zȳyz̄
+conjugates

=
(−3+1)

4

δq̂A
q̂A

(9.10)

with δq̂A/q̂A on the right-hand side representing the total δq̂A/q̂A ≃ (αs/2π) ln
2(L/l0)

of (9.1).

9.2 Small y behavior of full result

Our calculation contains other diagrams and effects besides the ones considered in the

double log works of [10, 12]. Numerically taking the y ≪ x ≪ 1 limit of our full result for

the crossed diagram contributions to dΓ/dx dy, we find that the result behaves as34

[
dΓ

dx dy

]

crossed

∝ 1

x3y3/2
, (9.11)

as shown, for example, by the numerical results of figure 27. In combination with the x−3,

the crossed contribution to dΓ/dx dy is very divergent in the infrared. If we cut off x and

y at some lower value xmin, (9.11) implies that the crossed contribution to the total rate Γ

for double splitting into non-virtual daughters scales as x
−5/2
min . In contrast, the total rate

for single splitting diverges as a relatively mild x
−1/2
min . However, we have only computed a

subset of diagrams (figure 6), and infrared divergences in gauge theories are notorious for

requiring a complete set of diagrams to mitigate. We will not be surprised if this divergence

is softened in a more complete calculation, which remains to be done.

Our crossed interference diagrams do not sum to be the square of something and so,

unlike total dΓ/dx dy, the result for [dΓ/dx dy]crossed need not be positive. As an example,

the values shown in figure 27 are all negative, though [dΓ/dx dy]crossed is positive in other

cases such as (x, y) = (0.3, 0.6).35

34See appendix A for a discussion of how the pole terms (7.25) make a partial but incomplete cancellation

of the leading y−3/2 behavior of (9.11).
35As a numerical check for anyone who ever desires to implement our formulas of section 8, our value of

[dΓ/dx dy]crossed is 10.437054610798 C2
Aα

2
s

√

q̂A/E for (x, y) = (0.3, 0.6).
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dΓ ∝ y -3

y 
= 

 x

dΓ ∝ y -3/2

Figure 27. Our numerical results for the total crossed diagram contribution to dΓ/dx dy [in units

of C2
Aα

2
s

√
q̂A/E ] vs. y for fixed x = 10−3. The dΓ ∝ y−3/2 dashed lines shows the y−3/2 behavior

of the y ≪ x ≪ 1 power law quoted in (9.11). The dΓ ∝ y−3 dashed line shows the x−3 behavior

of the same power law if one switches the labels x and y.

10 Conclusion

A complete calculation of dΓ/dx dy outside of the x ≪ 1 and/or double log approximation

will require a little further work. But the analysis in this paper of all of the crossed diagrams

provides most of the techniques that will be necessary for the full analysis, and we look

forward to filling in the rest.

The reason that we have saved un-crossed diagrams such as figure 7 for later work

is that their 1/∆t divergences do not cancel as simply as figure 23. One must in-

stead take great care in separating the overlapping formation time corrections for dou-

ble bremsstrahlung from the naive calculation of two independent, consecutive single-

bremsstrahlung processes. But that is a story for another day.
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A More details on some formulas

Eq. (2.1) and (2.2): we use non-relativistic normalization convention for |p〉, so that

〈p′|p〉 = (2π)2δ(2)(p − p′) and
∫
p
≡

∫
d2p/(2π)2. The factor of V −1

⊥ is just the square

of the normalization factor associated with the initial state |pi〉, since 〈pi|pi〉 = V⊥ in

our normalization. [In these formulas, we have been a little sloppy about factors of V⊥
associated with the normalization of the photon state because we wanted to emphasize
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that kf = kx. If concerned about the details of all factors of V⊥, refer to the more general

formula (2.34) instead. If you want to see how engineering dimensions match up, then also

see (4.29)–(4.31) and the discussion of them in this appendix.] The factor of E/2π in (2.1)

comes from rewriting the longitudinal phase space factor dkz/2π in

dΓ =
d3k

(2π)3
· · · (A.1)

as dkz/2π = (E/2π) dx and dividing both sides by dx. Evolution of the final state |pfkf〉
after tx̄ can be ignored by unitarity of time evolution (before taking the statistical average

〈〈· · ·〉〉) and the completeness relation
∫
pf ,kf

|pfkf〉〈pfkf | = 1 within the two-particle sector.

See section 4.1 for a more detailed argument in a different but closely related context. (The

same hidden assumption discussed in footnote 23 applies to the argument here.) A similar

argument can be made for time evolution of the initial state before tx by invoking rotational

invariance. Rotational invariance of the rate we are computing means that we can average

the initial pi over small rotations, which in the context of our large-pz approximation

is discussed in detail in appendix B.2, with the result that one may replace |pi〉〈pi| by
something proportional to

∫
pi
|pi〉〈pi|. The same unitarity and completeness arguments

used for the final state for t > tx̄ then imply that we also need not follow the evolution of

the initial state for t < tx in (2.1) and (2.2).

Eq. (2.21): here is a more general argument for (2.21). In general, any translation-

invariant harmonic approximation for 3 particles can be put into the form

V (b1, b2, b3) = A21(b2 − b1)
2 +A32(b3 − b2)

2 +A13(b1 − b3)
2 (A.2)

with some coefficients Aij . In the special case of b1 = b2, this gives

V (b1, b1, b3) = (A32 +A13)(b3 − b1)
2. (A.3)

However, in this case we have color charge T3 at b3 and total color charge T1 + T2 = −T3

at b1 = b2. This is effectively a two-particle problem with separation b = b3 − b1, and the

small-b limit of that problem is precisely what is used in proposals to non-perturbatively

define (using real-time Wilson loops [29]) the parameter q̂ for color representation T3, which

means that

V (b1, b1, b3) = − i

4
q̂3(b3 − b1)

2. (A.4)

Combined with (A.3), this gives a constraint on the values of the coefficients Aij . Per-

muting the particle labels on this argument gives three constraints on the three unknown

coefficients Aij , which determines (A.2) to be (2.21).

Eq. (2.22): in weak coupling, q̂ defined by (2.22) is UV logarithmically divergent,

∝ α2
sn

∫
d2q⊥/q

2
⊥ where n is the density of partons in the medium. In the harmonic

approximation, q̂ then has a mild logarithmic dependence on b, and the harmonic approxi-

mation is effectively a leading-log approximation (to which sub-leading-log corrections may

be systematically computed36). However, if the coupling αs is replaced by running αs(q⊥),

36See, for example, refs. [35, 36].
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q̂ defined by (2.22) is convergent. This form of q̂ is only relevant if the total momentum

transfer Q⊥ during a formation time is large enough that the integral (2.22) is not signif-

icantly modified if restricted to q⊥ . Q⊥. This happens when αs(Q⊥) ≪ αs(mD), where

mD is the inverse screening distance in the medium. For thick media, Q⊥ ∼ (q̂E)1/4 for

hard bremsstrahlung, and note that our assumption throughout this paper is that αs(Q⊥)

can be treated as small. Finally, q̂L describes the average Q2
⊥ picked up from the medium

over a distance L and characterizes a Gaussian probability distribution for Q⊥ after a

large number of collisions. However, power-law tails of the probability distribution for Q⊥,

representing rare collisions, can dominate certain types of calculations.37

Eq. (4.16): in this formula, we make use of
∑

i xi = 0 to occasionally rewrite, for ex-

ample, −x̂3−x̂4 as x̂1+x̂2. Other than that, the expression follows from the rules of fig-

ure 16 together with the overall factor of (E/2π)2 of (4.10), which comes from rewriting

dkz/2π = (E/2π) dx and dκz/2π = (E/2π) dy, similar to the single factor of E/2π in (2.1).

The one thing to be careful about in applying the rules is the signs of the Bij . For instance,

consider the rule associated with the vertex at t = tx in figure 15. Using the top rule in fig-

ure 16, the vertex is associated with a factor of ∇δ(2)(Bji) according to the labeling of that

rule, but we may just as well write ∇δ(2)(Bik) using the identity Bji = Bkj = Bik noted

in the caption. Comparing figure 16 to figure 15, this ∇δ(2)(Bik) translates to ∇δ(2)(B14)

in the index labeling used in the latter figure. In (4.16), however, we have used Cy
41 at the

start t = ty of the 4-particle evolution. As a result of this choice, it was then convenient to

define our B for the initial 3-particle evolution tx < t < ty as B ≡ B41 instead of B ≡ B14.

So our factor of ∇δ(2)(B14) at t = tx is −∇δ(2)(Bx). In contrast, the B defined for the

final 3-particle evolution tȳ < t < tx̄ is B ≡ B34, which is the same B that comes from

applying the top rule of figure 16 to the splitting at t = tx̄. So the corresponding factor

for that splitting is +∇δ(2)(Bx̄). In a similar vein, the rules of figure 16 give factors of

∇δ(2)(C ȳ
21) = −∇δ(2)(C ȳ

12) at t = tȳ and ∇δ(2)(C ȳ
23) at t = ty. We then integrate all the

δ-functions (integrating by parts as necessary) to get (4.16).

Eqs. (4.29)–(4.31): we offer here a quick note on the scaling dimensions of our formulas.

Since we use non-relativistic normalization 〈p|p′〉 = (2π)2δ(2)(p−p′), then |pi〉 has dimen-

sions mass
−1 and 〈pj ,pk| has dimension mass

−2, and so one would expect 〈pj ,pk|δH|pi〉 to
have dimension mass

−2. The right-hand side of (4.29) has an implicit (2π)2δ(2)(pi−pj−pk).

Including this factor gives the right-hand side dimensions of mass
−5/2. The discrepancy

has to do with the normalization of the states of the longitudinal momentum. Here

are two ways to handle the normalization. Method 1: if we normalize states so that

〈p, x|p′, x′〉 = (2π)2δ(2)(p − p′) δx,x′ , with a Kronecker δ for the x’s, then there is really

a factor of V
−1/2
z on the right-hand side of (4.29), where Vz is the (infinite) length of the

z-direction. (This Vz should not be confused with the finite physical width of the medium

in cases where the medium is finite.) This fixes up the dimensions of (4.29). With this

normalization convention for states of longitudinal momentum, the sum over the longitu-

37See, for example, the discussion of power law tails in section 3.1 of BDMPS [7]; Zakharov [37];

Arnold [38]; appendix A of Peigne and Smilga [39]; and D’Eramo et al. [40].
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dinal momentum of the bremsstrahlung particle in single splitting, for example, becomes∫
Vz dpz/2π instead of

∫
dpz/2π, and so the single-splitting formula (2.1) should have in-

cluded an overall factor of Vz. This Vz then cancels the two factors of V
−1/2
z that we get from

the two δH matrix elements. Similar cancellations occur in the double-splitting case. We

have not bothered to include any of these canceling factors of Vz in our formulas. Method

2: alternatively, one could normalize states as 〈p, x|p′, x′〉 = (2π)3δ(2)(p−p′) δ(pz−p′z) and

avoid ever introducing Vz. This normalization would change the dimensional analysis to

make the two sides of (4.29) agree dimensionally, without any additional factor of V
−1/2
z , if

we take there to be an implicit (2π)3δ(2)(pi−pj−pk) δ(piz−pjz−pkz) on the right-hand side.

Eq. (5.9): if Ω has a negative imaginary part, we get cot(Ω∞) = i and (5.8). If Ω

had a positive imaginary part, we would instead get cot(Ω∞) = −i and so (5.8) with

exp(−1
2 MΩB2) replaced by exp(+1

2 MΩB2). We could therefore write the exponential in

the general case as exp
(
1
2 MΩB2 sgn(ImΩ)

)
. However, there is a correlation between the

sign of M and the sign of ImΩ that makes for a more compact expression. First note that

if the 3-particle effective Hamiltonian H of (2.33) makes any sense for our problem, then

it should have a negative imaginary part, corresponding to exponential decay rather than

exponential growth. This means it should have M ImΩ2
0 < 0, and so, also using (2.33b),

sgn ImΩ = sgn ImΩ2 = − sgnM. (A.5)

This allows us to rewrite our general-case exponential above in the form of (5.9a), as

promised.

Readers may wonder whether the condition that M ImΩ2
0 < 0 could ever be violated.

Using x1 + x2 + x3 = 0 for 3-particle evolution, (2.27), and (2.33b),

M ImΩ2 = −1

4

(
(q̂2+q̂3−q̂1)x

2
1 + (q̂3+q̂1−q̂2)x

2
2 + (q̂1+q̂2−q̂3)x

2
3

)
. (A.6)

Requiring the right-hand side to be negative for all allowed values of xi satisfying x1+x2+

x3 = 0 is equivalent to requiring that the largest value of
√
q̂i be smaller than the sum of

the two others.38 So, if q̂3 is the largest, the condition would be
√
q̂3 <

√
q̂1 +

√
q̂2. (A.7)

In the weakly-coupled case, this would be
√
C3 <

√
C1 +

√
C2, which can be rewritten as

‖T1+T2‖ < ‖T1‖+ ‖T2‖, (A.8)

where Ti are the color generators associated with each particle, acting on a 3-particle color

singlet. The inequality (A.8) follows from the triangle inequality, given that the action of T1

and T2 on the 3-particle color singlet are not simply proportional to each other. [We are not

sure how to argue mathematically that (A.7) must also hold outside of the weak-coupling

limit, but a violation would mean that there is some instability in the problem.]

38One (perhaps inelegant) way to derive this condition is to plug x3 = −(x1 + x2) into (A.6) and then

rewrite the condition in terms of the ratio r ≡ x1/x2, which gives q̂2r
2 + (q̂1+q̂2−q̂3)r + q̂1 > 0, which we

require for all values of r. Requiring the minimum with respect to r to be positive gives a condition that

can be written in the form q̂21 + q̂22 + q̂23 < 2(q̂1q̂2 + q̂2q̂3 + q̂3q̂1). By investigating what happens if the “<”

is replaced by an equal sign and then solving for any one of the q̂i, this condition can then be translated

into the one quoted in the main text above.
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Eq. (5.34): 〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉 and 〈Aȳ

+,A
ȳ
−,∆t|Ay

+,A
y
−, 0〉 are the same except

for how the states are implicitly normalized: e.g. (4.24) vs. 〈A+,A−|A′
+,A

′
−〉 = δ(2)(A+−

A′
+) δ

(2)(A−−A′
−). The different δ functions of A± and of Cij are related by the Jacobian

of the corresponding change of variables (5.28) and (5.33), giving the determinant factors

in (5.34): 〈C ȳ
34,C

ȳ
12| = | det aȳ|−1〈Aȳ

+,A
ȳ
−| and |Cy

41,C
y
23〉 = |Ay

+,A
y
−〉| det ay|−1. Note

that we get | det aȳ|−1 (and similarly | det ay|−1) on the right-hand side because there is a

factor of | det aȳ|−1/2 associated with each of the two dimensions of the transverse plane.

Eq. (7.12): consider the short-time (t → 0) divergence of any matrix element

〈ω1|A(t)B(0)|ω2〉, where the |ωi〉 are energy eigenstates with energies ωi. Insert a complete

set of states to write the matrix element as
∑

E〈ω1|A(t)|E〉〈E|B(0)|ω2〉. The short-time

divergence will come from intermediate states with arbitrarily high E, and in particular

E ≫ ω1, ω2. Fourier transforming from t to ω gives ω = E − ω1, and so we see that the

short-term divergence is associated with purely positive frequencies ω. Now return to the

original correlator 〈ω1|A(t)B(0)|ω2〉 in t space, and consider the Fourier transform integral∫
dteiωt〈ω1|A(t)B(0)|ω2〉 taking it to ω space. For ω < 0, the contour may be closed in the

lower-half complex t plane. In order for a short-time divergence of the integrand at t = 0

such as t−n not to contribute when ω < 0, the prescription for that divergence should then

be (t− iǫ)−n, which is the prescription of (7.12).

Eq. (9.9): following ref. [10], for example, the last equality of (9.9) is obtained by doing

the y integral first after recasting the range (9.3) as

(∆t)2
q̂

E
≪ y ≪ ∆t

√
xq̂

E
. (A.9)

The result is ∫
dy d(∆t)

y ∆t
≃

∫
d(∆t)

∆t
ln

(
L

∆t

)
, (A.10)

with L defined parametrically by (9.2) in our case. Then take the parametric range of the

∆t integration to be ℓ0 to L.

Eq. (9.11): in both the cases of A(x, y) and A(1−x−y, y) in (8.1), there are some inter-

esting cancellations between the pole and the integral pieces in (8.2). Individually, both of

these pieces scale with y as

O
(
y1/2(α+β)

)
+O(y3/2γ) (A.11)

for small y (and fixed x). When the two are added together as in (8.2), there is a cancellation

among the leading contribution from α and β to give

dΓ

dx dy
= O(y3/2α) +O(y3/2β) +O(y3/2γ). (A.12)

There is no similar cancellation for the terms involving γ. In the small y limit, (α, β, γ)

scale with y as

α ∼ β ∼ y−2, γ ∼ y−3. (A.13)

In consequence, both (A.11) and (A.12) scale as y−3/2, and so the cancellation of the

leading α+β term does not completely cancel the leading y−3/2 behavior.
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B Details on reduction of states from N to N−2 particles

B.1 Normalization of projected states

We first turn to the normalization factors, such as N in the definition (4.21) of |{Bij}〉, nec-
essary to define our projection from N particle states to effective N−2 particle states. One

of our constraints is that
∑

i pi = 0, and in our discussion we will encounter corresponding

p-space δ-functions evaluated at zero argument:

δ(2)(
∑

pi)
∣∣∣∑

pi=0
=

∫

∆b

1 = V⊥, (B.1)

where V⊥ is the 2-volume (area) of the transverse spatial directions. Final results will not

depend on V⊥, which is taken to be infinite. Our other constraint is that
∑

i xibi = 0, and

it will be convenient to give a name Ṽ⊥ to the analogous b-space δ-function evaluated at

zero argument:

Ṽ⊥ ≡ δ(2)(
∑

xibi)
∣∣∣∑

xibi=0
. (B.2)

Final results will not depend on Ṽ⊥, which is also infinite.

The projection P of an N -particle state |b〉 onto the subspace with
∑

i pi = 0 and∑
i xibi = 0 is

P|b1, · · · , bN 〉 = δ∑xibi,0 V
−1
⊥

∫

∆b

|b1+∆b, · · · , bN+∆b〉. (B.3)

(Here, δ∑xib0,0 is a Kronecker δ rather than Dirac δ-function and gives 1, rather than Ṽ⊥,

when
∑

xibi = 0.) One may verify that P2|~b〉 = P|~b〉. Because P|~b〉 above depends only

on the differences bi − bj of transverse positions, it is a state that can be characterized

as depending only on the values of Bij ≡ (bi − bj)/(xi+xj). Except for normalization

convention, it is the state |{Bij}〉 that we defined in (4.21).

The normalization of P|b〉 is

〈b′1, · · · , b′N |P|b1, · · · , bN 〉 = V −1
⊥

∫

∆b′
〈b′1, · · · , b′N |b1+∆b, · · · , bN+∆b〉

= V −1
⊥

∫

∆b

N∏

i=1

δ(2)(b′i − bi −∆b)

= V −1
⊥

N∏

i=2

δ(2)(b′i1 − bi1), (B.4)

where bij ≡ bi − bj and we have assumed that bi and b′i have been chosen with
∑

i xibi =

0 =
∑

i xib
′
i. These last constraints, together with

∑
i xi = 0, imply that

N∑

i=2

xi(b
′
i1 − bi1) = 0, (B.5)

and so the N−1 δ-functions left in the final expression in (B.4) are not independent. (B.4)

is therefore equivalent to N−2 independent δ-functions times a factor of δ(2)(0). In order
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to relate this factor to the normalization factors we have defined, we must take care how

we write things. Ignore (B.5) for a moment and rewrite the i=2 δ-function in (B.4) as

δ(2)(b′21 − b21) = δ(2)
(
x−1
2

[ N∑

i=2

xi(b
′
i1 − bi1)−

N∑

i=3

xi(b
′
i1 − bi1)

])

= x22 δ
(2)

( N∑

i=1

xi(b
′
i − bi)−

N∑

i=3

xi(b
′
i1 − bi1)

)
. (B.6)

In the presence of the other δ-functions, this can be replaced by

δ(2)(b′21 − b21) → x22 δ
(2)

( N∑

i=1

xi(b
′
i − bi)

)
. (B.7)

Given the constraint (B.5), this is

δ(2)(b′21 − b21) → x22Ṽ⊥. (B.8)

Combining with (B.4) gives

〈b′1, · · · , b′N |P|b1, · · · , bN 〉 = x22Ṽ⊥
V⊥

N∏

i=3

δ(2)(bi1−b′i1) =
x22Ṽ⊥
V⊥

N∏

i=3

(xi+x1)
−2δ(2)(Bi1−B′

i1).

(B.9)

In order to get rid of the nuisance factors of V⊥ and Ṽ⊥, we find it useful to define

|{Bij}〉 ≡
(
V⊥

Ṽ⊥

)1/2

P|b1, · · · , bN 〉, (B.10)

so that

〈{B′
ij}|{Bij}〉 = x22

N∏

i=3

δ(2)(bi1 − b′i1) = x22

N∏

i=3

(xi + x1)
−2δ(2)(Bi1 −B′

i1). (B.11)

Combining (B.3) and (B.10) determines the normalization factor N of (4.21) in the main

text to be

N = (V⊥Ṽ⊥)
−1/2. (B.12)

Eq. (B.11) withN=2 andN=3 directly gives (4.22c) and (4.22b) for the normalizations

in those cases. For N=4, it gives

〈
{Bij}

∣∣{B′
ij}

〉
= x22(x1 + x3)

−2(x1 + x4)
−2 δ(2)(B31 −B′

31) δ
(2)(B41 −B′

41). (B.13)

One may then use the transformations (5.14) to compute the Jacobian for trading variables

(B31,B41) in the δ-functions for (C34,C12), remembering that we typically rename the Bij

as Cij in the N=4 case. The result of this change of variables is (4.22a).
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B.2 Cancellation of normalization factors

As discussed surrounding eqs. (4.26)–(4.28), the final state in the N -particle language of

H̄⊗H is

|end〉 =
∫

bf

|bf , bf〉 = N−1|〉. (B.14)

Now consider the initial state in this language. We have not yet picked a precise

direction for the z-axis in our calculation — much of the formalism has been designed

precisely to avoid that. For simplicity of presentation in the present argument, pick it for

now to be exactly in the direction of the initial parton at the initial time. Then the system

starts as |pi=0〉〈pi=0|, which in the language of H̄⊗H is

|start〉 = V −1
⊥ |p1=0,p2=0〉 = V −1

⊥

∫

b1,b2

|b1, b2〉. (B.15)

Here, the factor of V −1
⊥ is the initial state normalization factor, just as described for (2.1)

in appendix A.

Because the projection onto the subspace of
∑

i pi = 0 and
∑

i xibi = 0 is preserved

by time evolution and splitting, and because the final state |end〉 lies in this subspace, no

harm is done if we also project the initial state onto this subspace. That is,

〈end| · · · |start〉 = 〈end|P · · · |start〉 = 〈end| · · · P|start〉, (B.16)

and so we may replace

|start〉 → P|start〉 = V −1
⊥ P

∫

b1,b2

|b1, b2〉. (B.17)

Using (B.3) and (B.2), this is

|start〉 → V −2
⊥

∫

b1,b2,∆b

δx1b1+x2b2,0|b1+∆b, b2+∆b〉

= V −2
⊥ Ṽ −1

⊥

∫

b1,b2,∆b

δ(x1b1 + x2b2) |b1+∆b, b2+∆b〉. (B.18)

For the initial particle, (x1, x2) = (−1, 1), and the above evaluates to

|start〉 → (V⊥Ṽ⊥)
−1

∫

bi

|bi, bi〉 = (V⊥Ṽ⊥)
−1|end〉 = (V⊥Ṽ⊥)

−1N−1|〉 = N|〉, (B.19)

where the last equality uses (B.12). Combining (B.14) and (B.19),

〈end| · · · |start〉 = 〈| · · · |〉. (B.20)

All the nuisance factors of V⊥ and Ṽ⊥ have canceled, as promised.
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b ,x3 3
b ,x2 22,x’

b ,x4 4,x’3
b ,x3 3

b ,x1 1

b ,x2 2

,x’1

2,x’

b’1

2b’ 2b’

b ,x1 1,x’1b’1

b’3

(b)(a)

Figure 28. The notation used in (a) appendix B.3 and (b) appendix B.4 to label different particle

states immediately before and after a splitting. (a) is similar to figure 13, but it was convenient to

introduce slightly more general notation here. The use of primes (′) here is completely unrelated

to their use in (6.1).

B.3 〈B|δH|〉 matrix elements

Here we work out the formula for the matrix element 〈B|δH|〉. For simplicity and defi-

niteness, we will focus on the case where the initial particle in the amplitude splits into

two daughters, using the labeling conventions of figure 28a. The starting point is the δH

matrix element in the amplitude, written more conventionally in terms of the individual

particles in the Hilbert space H (rather than H̄⊗H), given by (4.29). In p-space, this is

〈p2,p3|δH|p′
2〉 = gT 2′→23 · P23 = gT 2′→23 · (x3p2 − x2p3), (B.21)

which in b-space becomes

〈b2, b3|δH|b′2〉 = −igT 2′→23 · (x3∇b2 − x2∇b3)
[
δ(2)(b2 − b′2) δ

(2)(b2 − b3)
]
. (B.22)

Now turn to H̄ ⊗ H notation and our effective N − 2 particle description. Use the

definition (B.10) and (B.3) of the projected states to write

〈B|δH|〉 = V⊥

Ṽ⊥
〈1, 2, 3|P δH P|1′, 2′〉 = V⊥

Ṽ⊥
〈1, 2, 3|δH P|1′, 2′〉

=
1

Ṽ⊥

∫

∆b

〈b1, b2, b3|δH|b′1+∆b, b′2+∆b〉 (B.23)

(where we have suppressed writing the Kronecker δ-functions — the initial and final po-

sitions are to be understood as both satisfying the constraint
∑

i xibi = 0). Using the

amplitude matrix element (B.22), this is

〈B|δH|〉=− ig

Ṽ⊥
T 2′→23 · (x3∇b2−x2∇b3)

∫

∆b

δ(2)(b1−b′1−∆b) δ(2)(b2−b′2−∆b) δ(2)(b2−b3).

(B.24)

At this point, the simplest way to proceed that will most easily generalize to other δH

matrix elements is to note that (B.24) can be rewritten, using (B.3), in terms of the N=2

state normalization as

〈B|δH|〉 = − igV⊥

Ṽ⊥
T 2′→23 · (x3∇b2 − x2∇b3)

[
〈b1, b2|P|b′1, b′2〉x′

1,x
′
2
δ(2)(b2−b3)

]
, (B.25)

– 66 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
0

where the subscripts (x′1, x
′
2) on the matrix element show the two xi values that are to be

used for both the bra and the ket.39 Now we can use the N=2 version of the normalization

formula (B.9) to get

〈B|δH|〉 = −ig(x′2)
2T 2′→23 · (x3∇b2 − x2∇b3) δ

(2)(b2−b3). (B.26)

The action of the combination x3∇b2 − x2∇b3 on a function of b2−b3 is the same as the

action of ∇B, where B ≡ B23 ≡ (b2−b3)/(x2+x3) is the same 3-particle B we defined

in (2.29). Also, we can absorb the overall factor of (x′2)
2=(x2+x3)

2 into δ(2)(b2−b3) to get

δ(2)(B), with result

〈B|δH|〉 = −igT 2′→23 ·∇B δ(2)(B). (B.27)

This is eq. (4.13) of the main text.

B.4 〈C41, C23|δH|B〉 matrix elements

The analysis proceeds similarly for δH matrix elements between N=3 and N=4 particle

states, where we label particles as in figure 28b. The analog of (B.25) is

〈{Cij}|δH|B′〉=− igV⊥

Ṽ⊥
T 2′→23·(x3∇b2−x2∇b3)

[
〈b1, b2, b4|P|b′1, b′2, b′3〉x′

1,x
′
2,x

′
3
δ(2)(b2−b3)

]
.

(B.28)

Noting that b4 is the third bi in the bra in (B.28), the N=3 version of the normalization

formula (B.9) then gives

〈{Cij}|δH|B′〉 = −ig(x′2)
2(x′3+x′1)

−2 δ(2)(C41−B′)T 2′→23 · (x3∇b2 −x2∇b3) δ
(2)(b2−b3).

(B.29)

The rest follows as before. Noting that x′3 + x′1 = x4 + x1 in the notation of figure 28b, we

can write the result as

〈{Cij}|δH|B′〉 = −ig(x4 + x1)
−2 δ(2)(C41−B′)T 2′→23 ·∇δ(2)(C23). (B.30)

Using an appropriate permutation of the definition (4.23),

|C41,C23〉 ≡ |x4 + x1|
∣∣{Cij}

〉
, (B.31)

we have

〈C41,C23|δH|B′〉 = −ig|x4 + x1|−1 δ(2)(C41−B′)T 2′→23 ·∇δ(2)(C23), (B.32)

which is equivalent to (4.15). The difference between this and the previous result (B.27)

for 〈B|δH|〉 is a factor of

|x4 + x1|−1δ(2)(C41−B′) (B.33)

associated with the spectators. This is equivalent to the diagrammatic rule that we pre-

sented in the main text at the bottom of figure 16.

39Readers may reasonably wonder why these xi values instead of some other. The reason has to do

with maintaining the consistency of our normalization convention (B.2) for δ(
∑

xibi) for both 3-particle

and 2-particle states. In the above expression, b2 = b3 and (from longitudinal momentum conservation)

x′
1 = x1 and x′

2 = x2 +x3, which means that the 3-particle expression x1b1 +x2b2 +x3b3 for the final state

is identical, in this context, to the 2-particle version x′
1b1 + x′

2b2 used for the final state in (B.25).
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C Connecting our δH matrix elements to standard formulas

In this appendix, we show how to connect the formulas given in section 4.5 to the usual

textbook result

∣∣∣〈−p⊥, (1−z)E;p⊥, zE|δH|0, E〉rel
∣∣∣
2
=

2g2p2⊥
z(1− z)

P (z), (C.1)

where the subscript “rel” indicates that the states are normalized using relativistic nor-

malization. (This use of the notation “z” is unrelated to our z ≡ 1−x−y elsewhere.)

We first note that the xi=1 case of our splitting functions (4.34) correspond to the

usual DGLAP splitting functions, with the even more usual helicity-averaged/summed

result being given by

Pg→gg =
∑

hj ,hk

P+→hj ,hk
=

∑

hj ,hk

P−→hj ,hk
. (C.2)

For xi different than 1, we can factor out the xi dependence from (4.34) and rewrite these

expressions in terms of the branching fractions

z ≡ zk ≡ xk
|xi|

and 1− z = zj ≡
xj
|xi|

(C.3)

of the particular splitting. The relationship is

P (xi, xj , xk) = |xi|P (−1, zj , zk) = |xi|P (z) (C.4)

for each helicity case.

Now consider the square of our matrix element (4.29),

∣∣∣〈pj ,pk|δH|pi〉
∣∣∣
2
= g2|T i→jk · Pjk|2, (C.5)

implicitly summed/averaged over color here. Using our definitions (4.30) and (4.31) of T

and P , this is
∣∣∣〈pj ,pk|δH|pi〉

∣∣∣
2
=

g2|e(±) · Pjk|2
4x2ix

2
jx

2
kE

3
P (xi, xj , xk) (C.6)

(where for brevity we again suppress helicity indices on P ). For the choice of axis made

in (C.1), where (pi,pj ,pk) = (0,−p⊥,p⊥), we have Pjk ≡ xkpj − xjpk = −(xk + xj)p⊥ =

xip⊥. Because Pjk is real, we have |e(±) ·Pjk|2 = P 2
jk. Then, converting (C.6) to relativistic

normalization by multiplying by (2Ei)(2Ej)(2Ek) = 8|xixjxk|E3,

∣∣∣〈pj ,pk|δH|pi〉rel
∣∣∣
2
=

2g2p2⊥|xi|
|xjxk|

P (xi, xj , xk). (C.7)

Using (C.3) and (C.4) then reproduces the standard result (C.1).
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D More details on 1/∆t divergences

D.1 ∆t→0 limit of xyȳx̄

Here, we will give some more details about how to take the small ∆t limit of xyȳx̄ that gives

rise to (5.46). For small ∆t, Ω cot(Ω∆t) and Ω csc(Ω∆t) both become (∆t)−1 + O(∆t).

Then (5.42) becomes

(
Xy Yy

Yy Zy

)
= − i

∆t
a−1⊤
y a−1

y +

(
|Mi|Ωi 0

0 0

)
+O(∆t), (D.1a)

(
Xȳ Yȳ

Yȳ Zȳ

)
= − i

∆t
a−1⊤
ȳ a−1

ȳ +

(
|Mf |Ωf 0

0 0

)
+O(∆t), (D.1b)

(
Xyȳ Yyȳ

Y yȳ Zyȳ

)
= − i

∆t
a−1⊤
y a−1

ȳ +O(∆t). (D.1c)

Except for the MΩ terms (coming from the evolution before and after the ∆t inter-

val), this is the result one would get in vacuum (Ω± = 0). Now use the simple formu-

las (5.16), (5.33), (5.35), which do not depend on details of the normal mode solutions, to

get

(
Xy Yy

Yy Zy

)
= − iE(x1+x4)

∆t

(
x1x4 0

0 −x2x3

)
+

(
|Mi|Ωi 0

0 0

)
+O(∆t), (D.2a)

(
Xȳ Yȳ

Yȳ Zȳ

)
= − iE(x3+x4)

∆t

(
x3x4 0

0 −x1x2

)
+

(
|Mf |Ωf 0

0 0

)
+O(∆t), (D.2b)

(
Xyȳ Yyȳ

Y yȳ Zyȳ

)
=

iE

∆t

(
x1x3x4 x1x2x4

x2x3x4 x1x2x3

)
+O(∆t). (D.2c)

Using the definitions (5.2a) and (5.4a) of Mi and Mf , the combination XyXȳ −X2
yȳ that

appears in the integrals (5.44) can be written in the form

XyXȳ −X2
yȳ =

x1x2x3x
3
4E

2

(∆t)2
− iMiMf

∆t
(Ωi sgnMi +Ωf sgnMf) +O

(
(∆t)0

)
. (D.3)

The fact that Yy and Yȳ vanish at the order of interest means that (5.45) simplifies to

[
dΓ

dx dy

]

xyȳx̄

=
C2
Aα

2
sMiMf

32π4E2
(−x̂1x̂2x̂3x̂4)

∫ ∞

0

d(∆t)

(∆t)2

×
[
Y yȳYyȳ(αI0 + βI2 + γI2) + Zyȳ(α+ β + 2γ)I1

]
+O

(
(∆t)0

)
. (D.4)

Using (D.2) and the integrals (5.44), expanding in ∆t, and using
∑

xi = 0 to simplify,

gives eq. (5.46) of the main text.
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D.2 Triple time coincidence associated with 1/∆t

Here we justify more explicitly the claim in section 5.4 that the Ωf/∆t divergent terms

in (5.46) for xyȳx̄ arise from the first three splitting times tx, ty, and tȳ simultaneously

approaching each other.

In deriving results for xyȳx̄, we integrated the first splitting time tx from −∞ up to

ty in (5.8) to get

∫ ty

−∞
dtx ∇Bx〈By, ty|Bx, tx〉

∣∣∣∣
Bx=0

= − iMiBy

πB2
y

exp

(
−1

2
|Mi|ΩiB

2
y

)
. (D.5)

In order to determine whether the region where tx is close to ty is important, let us instead

integrate only from ty −∆τ to ty for some ∆τ :

∫ ty

ty−∆τ
dtx ∇Bx〈By, ty|Bx, tx〉

∣∣∣∣
Bx=0

= − iMiBy

πB2
y

exp

(
i

2
MiΩiB

2
y cot(Ωi∆τ)

)
. (D.6a)

Comparing (D.5) with (D.6a), we see that the only effect that the change of integration

region has on our results is to replace

Ωi → Ωeff
i (∆τ) ≡ −i sgn(Mi) Ωi cot(Ωi∆τ) (D.6b)

in (5.42) and therefore in the divergent pieces of (5.46). This change has no effect at all on

the Ωf/∆t term in (5.46), and so the Ωf/∆t term arises from tx no more than ∆τ away from

ty. This conclusion breaks down only if we make ∆τ so small that Ωeff
i becomes so large

that the small-∆t expansion made in (D.2) breaks down. That happens when ∆τ . ∆t. So

the Ωf/∆t term arises from the case where tx, ty, and tȳ all lie within O(∆t) of each other.

A similar argument holds for the Ωi/∆t divergence, with the replacement

∫ +∞

tȳ

dtx̄ →
∫ tȳ+∆τ

tȳ

dtx̄ (D.7a)

being equivalent to

Ωf → Ωeff
f (∆τ) ≡ −i sgn(Mf) Ωf cot(Ωf∆τ). (D.7b)

D.3 iǫ prescription for double splitting (especially xȳx̄y)

In this section, we will more precisely justify the application of the iǫ prescription in

section 7.2.2, especially as regards the xȳx̄y calculation. As discussed above and in the

main text, the 1/∆t divergences arise when three times become coincident, e.g. (ty, tȳ, tx̄).

In order to sort things out, it will be helpful to know the explicit dependence on those

three times as they approach each other. Unfortunately, we have already integrated over

one of those times in our derivation of results like (5.46), (6.6), and (6.14). So let us step

back and undo that integration. We could go back and rederive all our results (including

doing all the B and Cij integrals) without integrating over the last (or first) time, but

happily there is a trick that will allow us to extract the time dependence we want from the

integrated results that we already have.
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D.3.1 xyȳx̄

We start by discussing xyȳx̄, since this was the exemplar to which we related all other

results. We will focus on the case where the last three times approach each other, giving

rise to the Ωi/∆t divergence. In (D.7), we saw how to integrate the last time tx̄ over

the interval (tȳ, tȳ + ∆τ) instead of the interval (tȳ,∞). If we take that result and then

differentiate with respect to ∆τ , it is equivalent to never having integrated over tx̄ in the

first place. Using (D.7b), this operation is equivalent to

· · · = d

d∆τ

∫ tȳ+∆τ

tȳ

dtx̄ · · · = d

d∆τ

[∫ ∞

tȳ

dtx̄ · · ·
]

Ωf→Ωeff
f (∆τ)

, (D.8)

with the understanding that ∆τ should be re-interpreted as tx̄ − tȳ after all of these oper-

ations have been completed. We are interested in what happens when the last three times

approach each other, which is the case where both ∆τ and ∆t are small. So we may use

the small ∆τ limit of (D.7b), giving

· · · ≃ d

d∆τ

[∫ ∞

tȳ

dtx̄ · · ·
]

Ωf→−i sgn(Mf)/∆τ

. (D.9)

Now carry out this procedure on (5.45) to recover the tx̄ integrand. Then expand the

integrand for simultaneously small ∆t and small ∆τ , treating them as the same order. We

find the result40

[
dΓ

dx dy

]

xyȳx̄

−
[

dΓ

dx dy

]vac

xyȳx̄

(D.10a)

≃ C2
Aα

2
s

16π2
iΩi sgn(Mi)x̂

2
1x̂

2
2x̂

2
3x̂

2
4(x̂1+x̂4)

2(x̂3+x̂4)
2

∫ ∞

0
d(∆t)

∫ ∞

0
d(∆τ)

×
[
4(∆t+∆τ)

D3
x̂2x̂4(x̂1x̂3−x̂2x̂4)(α+β+γ) +

x̂1x̂3
D2

(α+β+2γ)− x̂2x̂4
D2

(2α+3β+3γ)

]
,

where ∆t ≡ tȳ − ty, ∆τ ≡ tx̄ − tȳ, and

D ≡ −x̂2x̂4∆τ + (x̂1 + x̂4)(x̂3 + x̂4)∆t. (D.10b)

One may check that doing the ∆τ integral indeed recovers the Ωi/∆t divergence in (5.46).

The details of (D.10a) will be mostly irrelevant to the present discussion: all we need to

take away is that the only singularities of the integrand are associated with inverse powers

of the denominator D defined by (D.10b). D is proportional to the leading behavior of

(XyXȳ−X2
yȳ)(∆t)2∆τ [with Ωf → −i sgn(Mf)/∆τ ]. And so one could have gotten what we

will need for discussing iǫ prescriptions simply by looking at the structure of XyXȳ −X2
yȳ

rather than deriving (D.10a) in detail.

40Note that here [dΓ/dx dy]vac, which is the q̂ → 0 limit of dΓ/dx dy, does not correspond to all Ω’s → 0

because Ωf has been replaced by −i sgn(Mf)/∆t, which does not vanish as q̂ → 0.
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D.3.2 Permutations, and the Ωi/∆t divergence of xȳx̄y

We may write (D.10) more explicitly in terms of the last three times by writing (D.10b) as

D = −(x̂1 + x̂4)(x̂3 + x̂4)ty + x̂1x̂3tȳ − x̂2x̂4tx̄

= x̂1x̂3(tȳ − ty)− x̂2x̂4(tx̄ − ty) (D.11)

and rewriting the integration
∫
d(∆t) d(∆τ) as

∫
dty dtȳ dtx̄ divided by a factor of total

time (and restricted to the appropriate ordering of the three times). In this form, the

result turns out to describe the Ωi/∆t divergences of not only xyȳx̄ but also of xȳyx̄ and

xȳx̄y as well. As a check, one may integrate the result over the last time in the xȳyx̄ and

xȳx̄y cases (tx̄ and ty) appropriately and obtain (6.6) and (6.14) with ∆t ≡ ty − tȳ and

∆t ≡ tȳ − ty respectively.41

Now let’s consider iǫ prescriptions in the denominator D of (D.11). The times tȳ and

tx̄ in the conjugate amplitude should have small negative imaginary parts compared to

the time ty in the amplitude, as explained in section 7. For completeness, however, we

should also consider the iǫ prescriptions of tȳ and tx̄ relative to each other. Two operators

associated with times t1 and t2 both in the amplitude should be time-ordered, and so

t2 − t1 → t2 − t1 − iǫ sgn(t2−t1). (D.12)

Two operators with times t̄1 and t̄2 in the conjugate amplitude should be anti-time-ordered,

corresponding to the conjugate of (D.12),

t̄2 − t̄1 → t̄2 − t̄1 + iǫ sgn(t̄2−t̄1). (D.13)

A quick way to remember all of the iǫ prescriptions is to think of a Schwinger-Keldysh

contour that runs from t = −∞ to t = +∞ for times in the amplitude and then turns

around and runs back again from t = +∞ to t = −∞ for the times in the conjugate

amplitude. The rule is that any time t2 that appears further along this contour than

another time t1 should have a more negative (infinitesimal) imaginary part.

So, for instance, we can implement all of the relative imaginary parts for the relevant

times in xȳx̄y (for which tȳ < tx̄ < ty) by

(tȳ, tx̄, ty) →
(
tȳ − i(ǫ1 + ǫ2), tx̄ − iǫ2, ty

)
. (D.14)

Using the explicit values (4.7) of the x̂i, (D.11) can be put in the form

D = (1− x− y)(tx̄ − tȳ) + (1− x)(1− y)(ty − tx̄), (D.15)

for which the prescription (D.14) gives

D → (1− x− y)(tx̄ − tȳ + iǫ1) + (1− x)(1− y)(ty − tx̄ + iǫ2) = D + iǫ. (D.16)

41On a related note, the formula (D.11) for D is invariant, up to an overall sign, under (i) x̂i → x′
i with

(ty, tȳ, tx̄) → (tȳ, ty, tx̄) and under (ii) x̂i → x̃i with (ty, tȳ, tx̄) → (tȳ, tx̄, ty). The
∫

dty dtȳ dtx̄ integral

representation of (D.10) is invariant under the same transformations with additionally (i) (α, β, γ) →

(β, α, γ) and (ii) (α, β, γ) → (γ, α, β) respectively, as in section 6.
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The important point here is that we could get the same prescription by instead writing

D → (1− x− y)(tx̄ − tȳ + iǫ) + (1− x)(1− y)(ty − tx̄), (D.17)

which is ∆t → ∆t+iǫ for the ∆t ≡ tx̄−tȳ relevant to xȳx̄y. This agrees with the prescription

guessed in section 7.2.2 of the main text for the Ωi/∆t divergences of xȳx̄y. [In this case, it

happens to also be the same as the prescription one would get from simply applying (D.13)

in isolation to ∆t ≡ tx̄ − tȳ. However, that is an accident, as we will see in a moment.]

One may similarly check the iǫ prescriptions used for all of the other Ωi/∆t terms in

section 7.2.2.

D.3.3 Ω̃f/∆t divergence of xȳx̄y

Now consider the Ω̃f/∆t divergence of xȳx̄y, which arises from the first three times

(tx, tȳ, tx̄) approaching each other. The corresponding value of D ∝ (XyXȳ−X2
yȳ)(∆t)2∆τ

[now with Ωi → −i sgn(Mi)/∆τ ] is

D̃ ≡ −x̃2x̃4∆τ + (x̃1 + x̃4)(x̃3 + x̃4)∆t, (D.18)

where ∆t ≡ tx̄ − tȳ and ∆τ ≡ tȳ − tx. This can be written explicitly as

D̃ = (1− x)(1− y)(tȳ − tx) + (1− x− y)(tx̄ − tȳ). (D.19)

The relative iǫ prescriptions for tx < tȳ < tx̄ in xȳx̄y can be organized as

(tx, tȳ, tx̄) →
(
tx, tȳ − i(ǫ1 + ǫ2), tx̄ − iǫ2

)
. (D.20)

It is convenient to reorganize (D.19) as

D̃ = (1− x)(1− y)(tx̄ − tx) + xy(tȳ − tx̄), (D.21)

from which is it particularly easy to read off that (D.20) gives

D̃ → D̃ − iǫ. (D.22)

This is the same prescription as just taking ∆t → ∆t − iǫ in (D.19), which matches the

guess that we made back in section 7.2.2 of the main text. [Note that this is not the

prescription we would have gotten by applying (D.13) in isolation to ∆t ≡ tx̄ − tȳ.]

One may similarly check all of the other 1/∆t divergences of section 7.2.2.

E Relating different crossed interference contributions

In this appendix, we show more explicitly how to relate the xȳyx̄ and xȳx̄y contributions

to the xyx̄ȳ contribution.
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E.1 xȳyx̄

E.1.1 The basic discussion

For xȳyx̄, the analog of the xyȳx̄ formula (4.16) is

[
dI

dx dy

]

xȳyx̄

= d−1
R tr(T a

RT
b
RT

a
RT

b
R)

α2
s

4E4
|x′1 + x′4|−1|x′3 + x′4|−1

∫

tx<tȳ<ty<tx̄

∑

hx,hy,hz,h,h̄

∫

Bȳ,By

×P∗
h̄→hz,hx

(
1−y → 1−x−y, x

)
·∇Bx̄〈Bx̄, tx̄|By, ty〉

∣∣∣
Bx̄=0

×
(
P∗

hi→h̄,hy

(
1 → 1−y, y

)
·∇

C
ȳ
12

)(
Ph→hz,hy

(
1−x → 1−x−y, y

)
·∇C

y
23

)

〈Cy
41,C

y
23, ty|C ȳ

34,C
ȳ
12, tȳ〉

∣∣∣
C

ȳ
12=0=C

y
23; C

ȳ
34=Bȳ; C

y
41=By

×Phi→h,hx

(
1 → 1−x, x

)
·∇Bx〈Bȳ, ty|Bx, tx〉

∣∣∣
Bx=0

(E.1)

[where we have used the notation of (4.37) rather than (4.36) for the splitting functions

P ]. Substituting (4.38) for (4.37) and then using (5.9), the analog of (5.10) is

[
dΓ

dx dy

]

xȳyx̄

= −C2
Aα

2
sMiMf

8π2E4

(αδn̄nδm̄m+βδn̄m̄δnm+γδn̄mδnm̄)

|x′1 + x′4||x′3 + x′4|

×
∫ ∞

0
d(∆t)

∫

Bȳ,By

By
n̄

(By)2
Bȳ

m

(Bȳ)2
exp

(
−1

2
|Mf |Ωf(B

y)2 − 1

2
|Mi|Ωi(B

ȳ)2
)

×∇m̄
C

ȳ
12
∇n

C
y
23
〈Cy

41,C
y
23,∆t|C ȳ

34,C
ȳ
12, 0〉

∣∣∣
C

ȳ
12=0=C

y
23; C

ȳ
34=Bȳ; C

y
41=By

(E.2)

with ∆t ≡ ty − tȳ. The Cij and 4-particle propagator are now implicitly defined in terms

of xi = x′i instead of xi = x̂i. The derivation of (5.39) is symmetric in such a way that

〈Cy
41,C

y
23,∆t|C ȳ

34,C
ȳ
12, 0〉 = 〈C ȳ

34,C
ȳ
12,∆t|Cy

41,C
y
23, 0〉. (E.3)

Using this relation, the xȳyx̄ result (E.2) is superficially the same as making the substitu-

tions summarized in section 6.1 on the xyȳx̄ expression (5.10). We say superficially only

because there is a sign issue that must be addressed when replacing x̂i → x′i in the formula

for 〈C ȳ
34,C

ȳ
12,∆t|Cy

41,C
y
23, 0〉, which we discuss next.

E.1.2 A sign issue

When the 4-particle xi are the x̂i (4.7) appropriate for xyȳx̄, then there are a number of

important and related properties of the 4-particle normal mode formulas in section 5.2.2:

• λ± ≡ 1
x1

+ 1
x2

+ 1
x3

+ 1
x4

±
√
∆ is always positive, so that the normal mode frequencies

Ω+ and Ω− given by (5.21) are both proportional to
√
−i.

• x1x3/2N+E and x1x3/2N−E are both positive, so that the normal modes (C+
34, C

+
12)

and (C−
34, C

−
12) of (5.24) are normalized to be real.

• As a result, the normal mode degrees of freedom A± defined by (5.26), which were

implicitly assumed to be real, are indeed real.

– 74 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
0

In contrast, when the 4-particle xi are the x′i (6.1) appropriate for xȳyx̄, the situation

changes:

• λ+ defined above is still positive but λ− is negative, so that Ω+ ∝
√
−i but Ω− ∝

√
+i.

• x1x3/2N+E is positive but x1x3/2N−E is negative, so that the normal mode

(C+
34, C

+
12) has been normalized to be real by (5.24), but the normal mode (C−

34, C
−
12)

has been normalized to be imaginary.

• As a result, the definition (5.26) makes A− imaginary instead of real.

Imaginary values for (C−
34, C

−
12) confuse the analysis that follows in section 5.2.3, especially

the normalization of the relation (5.34). The easiest way to clear this up is to keep to real

normalizations for the normal modes:

(
C−
34

C−
12

)new

≡ i

(
C−
34

C−
12

)
(E.4)

and

(A+,A−)
new ≡ (A+,−iA−). (E.5)

This means that the Lagrangian (5.29) for A± is then normalized as

L =
∑

±
±
[
1

2
(Ȧnew

± )2 − 1

2
Ω2
±(A

new
± )2

]
. (E.6)

Now the Anew
± are both real, but the Lagrangian for Anew

− has an unusual overall sign. To

understand the effect of the sign, it is useful to look at the corresponding Hamiltonian

H =
∑

±
±
[
1

2
P 2
A±

+
1

2
Ω2
+A

2
±

]new
. (E.7)

In time evolution exp(−iHt), negating a Hamiltonian has the same effect as negating time

t. So the A− part of the time evolution (5.30) changes from

〈A−, t|A′
−, 0〉 =

Ω− csc(Ω−t)

2πi
exp

(
i

[
1

2
(A2

− +A′2
−)Ω− cot(Ω−t)−A− ·A′

−Ω− csc(Ω−t)

])

(E.8)

to its conjugate

〈A−, t|A′
−, 0〉new =

− Ω− csc(Ω−t)

2πi
exp

(
−i

[
1

2
(A2

−+A′2
−)

newΩ± cot(Ω−t)−(A− ·A′
−)

newΩ− csc(Ω−t)

])
.

(E.9)

The one change here that matters is the appearance of an overall minus in the prefactor,

which we will address in a moment. The other change is to the sign of the argument of the
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exponential, which we now show is inconsequential. Combined with (E.4), its effect is to

change expressions of the form

a−1⊤Ωcot(Ω∆t) a−1 and a−1⊤Ωcsc(Ω∆t) a−1 (E.10)

in the propagator (5.39) to

a−1⊤
new

(
1

−1

)
Ωcot(Ω∆t) a−1

new and a−1⊤
new

(
1

−1

)
Ωcsc(Ω∆t) a−1

new, (E.11)

where, based on (5.28), (5.33) and (E.4),

anew = a
(

1

i

)
. (E.12)

Using the fact that Ω is a diagonal matrix (5.40), the new expressions (E.11) are the same

as the old (E.10).

The one important change is the overall minus sign in the prefactor of (E.9), but we

have already accounted for it in the main text when we decided in the formula (5.39) for

the N=4 propagator to rewrite the overall factor |x1x2x3x4| as −x1x2x3x4. For xyȳx̄, for

which the xi are x̂i (4.7), this had no effect because

− x̂1x̂2x̂3x̂4 = |x̂1x̂2x̂3x̂4|. (E.13)

For xȳyx̄, however, the xi are x′i (6.1), and

− x′1x
′
2x

′
3x

′
4 = −|x′1x′2x′3x′4|; (E.14)

so using −x1x2x3x4 instead of |x1x2x3x4| introduces precisely the additional overall sign

that we need to account for in the prefactor of (E.9).

E.2 xȳx̄y

A similar analysis applies to xȳx̄y. The analog of the xyȳx̄ formula (4.16) is

[
dI

dx dy

]

xȳx̄y

= d−1
R tr(T a

RT
b
RT

a
RT

b
R)

α2
s

4E4
|x̃1 + x̃4|−1|x̃3 + x̃4|−1

∫

tx<tȳ<tx̄<ty

∑

hx,hy,hz,h,h̄

∫

Bȳ,Bx̄

×Ph→hz,hy

(
1−x → 1−x−y, y

)
·∇By〈By, ty|Bx̄, tx̄〉

∣∣∣
By=0

×
(
Phi→h̄,hy

(
1 → 1−y, y

)
·∇

C
ȳ
12

)(
P∗

h̄→hz,hx

(
1−y → 1−x−y, x

)
·∇Cx̄

23

)

〈C x̄
41,C

x̄
23, tx̄|C ȳ

34,C
ȳ
12, tȳ〉

∣∣∣
C

ȳ
12=0=Cx̄

23; C
ȳ
34=Bȳ; Cx̄

41=Bx̄

×Phi→h,hx

(
1 → 1−x, x

)
·∇Bx〈Bȳ, ty|Bx, tx〉

∣∣∣
Bx=0

, (E.15)

and the analog of (5.10) is

[
dΓ

dx dy

]

xȳx̄y

= −C2
Aα

2
sMiM̃f

8π2E4

(αδn̄nδm̄m+βδn̄m̄δnm+γδn̄mδnm̄)

|x′1 + x′4||x′3 + x′4|
(E.16)
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×
∫ ∞

0
d(∆t)

∫

Bȳ,Bx̄

Bx̄
n

(Bx̄)2
Bȳ

m

(Bȳ)2
exp

(
−1

2
|M̃f |Ω̃f(B

x̄)2 − 1

2
|Mi|Ωi(B

ȳ)2
)

×∇m̄
C

ȳ
12
∇n̄

Cx̄
23
〈C x̄

41,C
x̄
23,∆t|C ȳ

34,C
ȳ
12, 0〉

∣∣∣
C

ȳ
12=0=Cx̄

23; C
ȳ
34=Bȳ; Cx̄

41=Bx̄

with ∆t ≡ tx̄−tȳ. This result is related to the other diagrams by the transformations given

in section 6.2.

There is also exactly the same sign issue as the one discussed above for xȳyx̄, which

is accounted for in the same way by our choice of using −x1x2x3x4 instead of |x1x2x3x4|
in (5.39).

F More details on comparison with refs. [10, 12]

Here we give a few details on making contact with Blaizot and Mehtar-Tani [10] and

Wu [12], which explored energy loss in the limiting case y . x ≪ 1. We will focus mostly

on the comparison with Wu, which uses language closest to our own.

F.1 The double log region (9.3)

In Blaizot and Mehtar-Tani [10] (50),42 the double log arises, in their notation, from q̂τ ≪
q2 ≪ p2. Using their definition43 τ ≡ ω′/q2, these conditions may be rewritten as

ω′

p2
≪ τ ≪

√
ω′

q̂
. (F.1)

The relevant p2 is identified as ≃ √
ωq̂ after their eq. (77). Their ω, ω′, and τ correspond

to our xE, yE, and ∆t. With this change of notation, (F.1) above becomes our (9.3).

In Wu [12], the second inequality of our (9.3) is given explicitly in his (38). The

first inequality is used implicitly in the expansion of his (43) into (44), which assumes [in

addition to the explicit conditions of Wu’s (38)] that ω2x
2
2/t2 ≪ 1 (in Wu’s notation).

Given that x22 ∼ 1/q̂L, the two conditions can be written as

ω2

q̂L
≪ t2 ≪

√
ω2

q̂
. (F.2)

In our notation, ω2 and t2 are yE and ∆t. In our thick-media approximation, the relevant

L is the formation length ∼
√
xE/q̂ of the x gluon, which then makes (F.2) above

equivalent to our (9.3).

In our own work, the second inequality of (9.3) corresponds to max(Ω+∆t,Ω−∆t) ≪ 1

and so corresponds to the small-∆t expansions of (D.2) [but one must include more terms

of the expansion than shown there to obtain (9.4)]. In contrast, the first inequality of (9.3)

guarantees that XyXȳ −X2
yȳ is not given by its small-∆t expansion (D.3) in the cases of

(x1, x2, x3, x4) = (−1, y, 1−z−y, z) = (−1, y, x, 1−x−y) (F.3)

42Similar to our convention for Wu (our footnote 33), we number equations from Blaizot and Mehtar-

Tani [10] according to the arXiv version of their paper (version 2).
43They write τ ≡ ω/q2 just before their (50), but the relevant frequency in their later discussion of

radiation in section 4 is what they call ω′ there.
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Wu y . x ≪ 1 limit of our zyȳz̄

z t

ω1 xE

ω2 yE

(K1,K2) (Ω−,Ω+)

(Ω1,Ω2) ( 2√
3
Ω−,Ω+) when y ≪ x ≪ 1

(x,B) (b34, b24) =
(
(x3+x4)C34,−x1C12+x3C34

)
≃ (C34,C12)

m
1/2
1 x̃ A−

m
1/2
2 B̃ A+

G(3) 〈B, t|B′, 0〉
(m1m2)

−1G(4) 〈A+,A−, t|A′
+,A

′
−, 0〉

Table 1. Some translations between Wu [12] and the y . x ≪ 1 limit of the zyȳz case of this

paper.

for zyȳz̄ [given by x → z ≡ 1−x−y in (4.7)] and

(x1, x2, x3, x4) =
(
−(1−y),−y, 1−z, z

)
=

(
−(1−y),−y, x+y, 1−x−y

)
(F.4)

for zȳyz̄ [similarly from (6.1)]. The different behavior of XyXȳ −X2
yȳ is due to an approx-

imate cancellation of the leading terms when y ≪ x ≪ 1.

F.2 y . x ≪ 1 formulas of ref. [12]

Let’s focus on our zyȳz̄, which corresponds to the second diagram in Wu’s eq. (30) for his

e1 contribution to energy loss. Wu’s formula for our dΓ/dx dy, extracted from his (33),

would be
[

dI

dx dy

]

zyȳz̄

=
α2
sNcCAE

2

2ω3
1ω

3
2

∫

z1<z2<z3<z4

∫
d2x2 d

2x3

∇x1 ·∇x4

[
G(3)(x4, z4;x3, z3;ω1)G

(3)(x2, z2;x1, z1;ω1)
]x1=0=x4

×∇B2 ·∇B3G
(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

∣∣∣
B2=x2,B3=0

, (F.5)

where the notation on the left-hand side is ours and the notation on the right-hand side

is his, except that the first integral sign is just our way of writing the
∫
dz4 dz3 dz2 dz1

integration. G(3) and G(4) are given by Wu (14–16) and (20). A translation table between

Wu’s notation and the y . x ≪ 1 limit of our notation is given in table 1. When comparing

to our formulas in the main text, keep in mind that the 4-particle xi for zyȳz̄ are given

by (F.3) and not (4.7). Using the translations of table 1, one may verify that Wu’s formula

(21) for relating (x̃, B̃) to (x,B) is equivalent to the y . x ≪ 1 limit of our formula (5.27)

[with (5.24) and (5.28)] for relating A± to (C34,C12).

With these translations, we find that the y ≪ x ≪ 1 limit for the zyȳz̄ version

of (4.40), combined with (5.38), reproduces (F.5). However, for y ∼ x ≪ 1, we find
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some differences. One difference is that Wu (20) is missing a factor of the Jacobean of

the transformation between the variables (x,B) and (x̃, B̃) [as can be seen by taking

the z3 → z2 limit, in which all the Green functions become δ-functions]. The corrected

relation can be written in the form

G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2) ≃
m1m2

ω1ω2
G(x̃3, x̃2, z3−z2,m1,K1)G(B̃3, B̃2, z3−z2,m2,K2). (F.6)

Another difference appears to be in the treatment of the triple gluon vertex in Wu (30). We

find multiple terms, associated with the different helicity amplitudes in our section 4.5 and

their combination into (4.38). The derivative associated with that vertex (our ∇C
y
23
) is also

more complicated than Wu’s ∇B2 . Finally, the two 3-particle evolution frequencies in (F.5)

should not both be ω1 when x ∼ y. Altogether, our result for y . x ≪ 1 replaces (F.5) by

[
dI

dx dy

]

zyȳz̄

≃ α2
sNcCAE

2

2ω2
1ω

2
2(ω1+ω2)2

(
δn̄nδm̄m

ω1
− δn̄m̄δnm

ω1+ω2
+

δn̄mδnm̄

ω2

)∫

z1<z2<z3<z4

∫
d2x2 d

2x3

∇m
x1
∇n̄

x4

[
G(3)(x4, z4;x3, z3;ω1)G

(3)(x2, z2;x1, z1;ω1+ω2)
]x1=0=x4

× (ω1∇n
B2

− ω2∇n
x2
)∇m̄

B3
G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

∣∣∣
B2=x2,B3=0

.

(F.7)

Note that, in momentum space, the combination ω1∇B2 − ω2∇x2 above is (proportional

to) simply one of our rotationally-invariant combinations Pij ≡ xjpi − xipj of the

transverse momenta associated with that vertex.

F.3 Problem with comparing the double log contribution of xyȳx̄ + xȳyx̄

There is a subtle problem comparing (i) our results for the xyȳx̄ + xȳyx̄ contribution

to the double log to (ii) corresponding pieces of refs. [10, 12]. (These contributions

correspond respectively to the second diagram in Wu (31) [12] and the third diagram in

Wu (32), and they correspond to B3 and C2 of Blaizot and Mehtar-Tani [10].) A simple

indication of the problem can be found by comparing (i) our potential (5.19) applied to

the x, y ≪ 1 limit of xyȳx̄ or xȳyx̄ to (ii) the potential of Wu (17). Consider xyȳx̄, where

our notational convention (4.7) was that b2 is the position of the y gluon and b4 is the

position of the x gluon. In the x, y ≪ 1 limit, the two harder particles stay extremely

close together (relative to other transverse distance scales), corresponding to b1 → b3.

Adopting Wu’s convention of using x for the separation of the x parton from the hard

partons (our b41 ≃ b43 in this case), and B for the y parton from the hard partons (our

b21 ≃ b23 here), the corresponding limit of (5.19) is

V ≃ − iq̂A
8

(2x2 + 2B2). (F.8)

This does not agree with Wu’s

V ≃ − iq̂A
8

[
x2 +B2 + (x−B)2

]
. (F.9)
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xyyx

singlet

adjoint

adj
adj

(a) (b)

Figure 29. (a) A depiction of possible total dipole color at different times for xyȳx̄ for the case

y . x ≪ 1. (b) A virtual correction to single bremsstrahlung that conspires to suppress the range

of dipole color possibilities in energy loss calculations.

singlet

adjoint

adjoint

zyyz

Figure 30. Similar to figure 29a but for zyȳz̄ (figure 9).

The reason for the discrepancy is that Wu assumes that the two hardest particles form

a color dipole with total color in the adjoint representation A. When those particles are

gluons, however, they could in principle form a dipole in any color state contained in

A⊗A, which contains many more possibilities than A itself (especially in the large Nc

limit). This situation is depicted in figure 29a (which is drawn by distorting figure 11

into a style similar to Wu’s diagrams to depict relative transverse separations). In this

picture, the initial singlet dipole first emits a gluon and must become an adjoint dipole to

balance color. The emission of the second gluon in principle allows the dipole to become

anything in A⊗A. However, all of these possibilities other than A itself will be suppressed

by the small dipole size once we also add in virtual processes where the y boson connects

to the other particle in the dipole, as in figure 29b. Since in this paper we are just

computing dΓ/dx dy (for fixed x and y) and not energy loss, we have not included virtual

processes, and so the other color possibilities are not suppressed. The color dynamics

of our calculation is therefore different than Wu’s, which makes it difficult to directly

compare partial results. (The same holds for comparison to Blaizot and Mehtar-Tani.)

For zyȳz̄, however, all is well, as depicted in figure 30: in the x, y ≪ 1 limit, the

calculation of [dΓ/dx dy]zyȳz̄ is also restricted to an adjoint color dipole at intermediate

times. On a related note, following the numbering convention of (F.3), b4 → b1 for

x, y ≪ 1, and our x and y gluons correspond to b3 and b2 respectively. Wu’s x is then

our b34 ≃ b31, and his B is our b21 ≃ b24. In this limit, our potential (5.19) then indeed

agrees with Wu’s potential (F.9).
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