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Abstract Various combinations of thirteen regional

climate models (RCM) and six general circulation

models (GCM) were used in FP6-ENSEMBLES. The

response to the SRES-A1B greenhouse gas concentration

scenario over Europe, calculated as the difference

between the 2021–2050 and the 1961–1990 means can

be viewed as an expected value about which various

uncertainties exist. Uncertainties are measured here by

variance explained for temperature and precipitation

changes over eight European sub-areas. Three sources of

uncertainty can be evaluated from the ENSEMBLES

database. Sampling uncertainty is due to the fact that the

model climate is estimated as an average over a finite

number of years (30) despite a non-negligible interannual

variability. Regional model uncertainty is due to the fact

that the RCMs use different techniques to discretize the

equations and to represent sub-grid effects. Global model

uncertainty is due to the fact that the RCMs have been

driven by different GCMs. Two methods are presented to

fill the many empty cells of the ENSEMBLES

RCM 9 GCM matrix. The first one is based on the same

approach as in FP5-PRUDENCE. The second one uses

the concept of weather regimes to attempt to separate the

contribution of the GCM and the RCM. The variance of

the climate response is analyzed with respect to the

contribution of the GCM and the RCM. The two filling

methods agree that the main contributor to the spread is

the choice of the GCM, except for summer precipitation

where the choice of the RCM dominates the uncertainty.

Of course the implication of the GCM to the spread

varies with the region, being maximum in the South-

western part of Europe, whereas the continental parts are

more sensitive to the choice of the RCM. The third

cause of spread is systematically the interannual vari-

ability. The total uncertainty about temperature is not

large enough to mask the 2021–2050 response which

shows a similar pattern to the one obtained for

2071–2100 in PRUDENCE. The uncertainty about pre-

cipitation prevents any quantitative assessment on the

response at grid point level for the 2021–2050 period.

One can however see, as in PRUDENCE, a positive

response in winter (more rain in the scenario than in the

reference) in northern Europe and a negative summer

response in southern Europe.

Keywords Ensemble � Europe � Climate change �
Regional climate model � Weather regime � Uncertainty
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Météo-France, Centre National de Recherches Météorologiques,
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1 Introduction

In Europe the expected response of climate to an increase

in greenhouse gas concentration during the 21st century is

not just the typical 2–3�C warming (IPCC 2007). Many

surface variables are likely to be affected by global

warming. For instance, there is an agreement amongst

models that precipitation should increase in the North and

decrease in the South. However, an agreement on the sign

of the response does not imply that all models converge

towards the same numerical value. Many impacts on

human environment or activities depend on thresholds.

Two different models having the same sign in the response

of temperature and precipitation, but different magnitudes

of change, can lead to very different impacts. The evalu-

ation of uncertainty is fundamental for any application. The

primary source in terms of causality is the future of human

emissions. This is a socio-economic question, not evalu-

able by the climate modeling community. The natural cli-

mate variability is a statistical question which can be

approached by observed past series (Zhang et al. 2007;

Brown et al. 2008), as long as the scope is limited to the

interannual variability of the near future. Numerical cli-

mate models introduce two kinds of uncertainty, one

coming from the large-scale GCMs, the other coming from

the downscaling RCMs (e.g. Lenderink et al. 2007; Giorgi

2008). Since the FP5-PRUDENCE project (Christensen

et al. 2002) a large number of 50 km or higher resolution

simulations are available for Europe. The FP6-ENSEM-

BLES project (Hewitt and Griggs 2004; van der Linden

and Mitchell 2009) has led to an update of the PRUDENCE

database with two major improvements: a higher spatial

resolution and a larger number of RCMs and driving

GCMs.

In Déqué et al. (2007), referred to as D07 in the fol-

lowing, we attempted to quantify the different sources of

uncertainty, despite the few pairs of RCM 9 GCM avail-

able. In D07 four sources of uncertainty were evaluated:

1. the sampling uncertainty, related to the fact that the

model climatology is issued from a limited number of

years (30); it contributes model internal variability,

which includes also longer time scales (see Sect. 5)

2. the model uncertainty associated with the physics and

dynamics features of the different regional climate

models

3. the uncertainty in the lateral boundary conditions

(LBC), that is the GCM used to drive the RCM

4. the uncertainty associated with the scenario (A2 or B2)

of emissions of greenhouse gases (GHG)

The results showed that the largest source of uncertainty

resides in the LBC applied to the RCM. However the small

number of GCMs makes this conclusion preliminary at

best. The aim of this study is to update the D07 results

based on more models, but also with two simplifications.

1. As we concentrate on the first half of the 21st century,

we neglect the uncertainty due to the greenhouse gas

and aerosol concentrations.

2. As the modeling effort has been put on the number of

RCM 9 GCM pairs, each pair has been run only once;

we have thus approximated the model internal vari-

ability with a simple Monte-Carlo method based on

limit central theorem (Gaussian distribution).

In Sect. 2, we describe the data available. In Sect. 3 we

apply the D07 matrix completion method to ENSEMBLES

results and make a first assessment of the partition of

variance at the European level, with comparison with D07

results. Recent works on weather regimes (e.g. Sanchez-

Gomez et al. 2008) suggest another method to complete the

holes in the RCM 9 GCM matrix. This completion and the

resulting new variance partition are presented in Sect. 4,

with regional description for 8 sub-areas. The interannual

variability as a new source of uncertainty is introduced in

Sect. 5. In Sect. 6, we use the total variance of Sect. 5 to

evaluate local confidence intervals over Europe. A sum-

mary of the new features brought by the ENSEMBLES

project with respect to PRUDENCE is given in the con-

clusive Sect. 7.

2 The ENSEMBLES-RT2B database

One of the greatest successes of the PRUDENCE project is

the publicly available database with a large variety of state-

of-the-art RCM experiments. In D07, 10 RCMs out of this

database were used (see D07 for details about the models):

CNRM, DMI, ETHZ, GKSS, HadC, ICTP, KNMI, MPI,

SMHI, UCLM

These RCMs were driven by one or more of 3 GCMs:

CNRM, HadC, MPI

All were driven by HadC, some RCMs were also driven

by the other two GCMs.

In ENSEMBLES, there are 13 RCMs run by 11 partners

(most of them use updated versions of PRUDENCE

RCMs):

• C4I (Jones et al. 2004) uses a version of the RCM

developed at the Swedish meteorological service

(RCA)

• CNRM (Radu et al. 2008) uses the RCM of French

meteorological service

• DMI (Christensen et al. 1996) uses the RCM of Danish

Meteorological Institute

• ETHZ (Böhm et al. 2006) uses the RCM of the Federal

Institute of Technology in Zürich (CH)
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• HadC (Collins et al. 2006) uses the RCM of the UK

Met Office. In fact, three versions have been used (HC-

lo, HC-med and HC-hi)

• ICTP (Giorgi and Mearns 1999) uses the RCM of the

International Center for Theoretical Physics in Trieste

(Italy)

• KNMI (an Van Meijgaard et al. 2008) uses the RCM of

the Dutch meteorological service

• METN (Haugen and Haakensatd 2006) uses the RCM

of the Norwegian meteorological service

• MPI (Jacob 2001) uses the RCM of the Max Planck

Institute for Meteorology in Hamburg (Germany)

• SMHI (Kjellström et al. 2005) uses the RCM of the

Swedish Meteorological and Hydrological Institute

• UCLM (Sanchez et al. 2004) uses the RCM of the

University of Toledo (Spain)

Out of the 13 models, 3 use the same modelling system:

HC-lo, HC-med and HC-hi. These models share the same

dynamics and a very similar description of the sub-grid

processes. We have kept them as separate RCMs, however,

because they have been produced by arbitrary perturbations

of several sensitive but empirical model parameters, which

lead to very different responses to GHG concentration in

their GCM version (Murphy et al. 2007). Other models

share some parenthood: SMHI and C4I are based on RCA;

The dynamics of DMI, KNMI, METN, SMHI and C4I

come from the HIRLAM forecast model.

The RCMs have been run from 1950 to 2050 (some of

them to 2100) on a common domain covering the whole of

Europe (from South Mediterranean coast to Cape North) at

25 km horizontal resolution. Beyond 2000 they use the

A1B scenario for GHG concentration. They have been

driven by one or more of 6 GCMs (again, most of them

were also used in PRUDENCE at an earlier cycle of model

development):

• BCM (Furevik et al. 2004) is the GCM of the

University of Bergen (Norway), the horizontal resolu-

tion is 300 km.

• CNRM (Gibelin and Déqué 2003) uses the global

version of CNRM RCM with variable resolution

(300 km in the Pacific to 100 km at the lateral

boundaries of the RCM).

• HadC (Gordon et al. 2000) uses the global version of

HadC RCM; 3 driving runs are available (HC-lo, HC-

med and HC-hi). The resolution is 300 km.

• MPI (Roeckner et al. 2003) uses the global version of

MPI RCM. The resolution is 200 km.

Here again, we consider that the 3 versions of the HadC

model are 3 different GCMs, because their climate

responses are, by construction, very different. The para-

meter perturbations in the 3 GCMs are the same as in the 3

RCMs. One can also mention that BCM and CNRM use the

same atmospheric component, namely ARPEGE, with

different resolutions. Table 1 indicates which GCM is

driving each RCM. One can note that all GCMs drive at

least two RCMs, and three RCMs (DMI, METN and

SMHI) are driven by more than one GCM. There are 3

other RCM simulations in the ENSEMBLES database, but

they involve 3 other GCMs (each of them would have

added a new row and a new column to Table 1): they

contribute to the total spread and are therefore very

important when estimating uncertainty, but they cannot

help here to discriminate the respective roles of the GCM

and the RCM, and have therefore been discarded. In

addition, one of these RCMs uses the so-called spectral

nudging technique (von Storch et al. 2000; Biner et al.

2000) and the spread due to the RCM alone would be less

than in the other interior-free RCMs.

In the following we will concentrate on winter (DJF)

and summer (JJA) averages of 2 m temperature and pre-

cipitation for two periods 1961–1990 (the same reference

period as in PRUDENCE) and 2021–2050. The restriction

to temperature and precipitation, as well as to two seasons,

has been done to maintain a reasonable size for the study,

whilst focussing on the most widely documented aspects of

climate change. The methodology is of course suitable for

wind, soil moisture, snow and other variables. The model

response we analyze is the difference between the two

30-year means. We restrict this analysis to the model land

grid points which fit inside one of the 8 sub-areas (aka

Rockel boxes) described in figure 4 of Christensen and

Christensen (2007) and already used in D07: British Isles

(BI), Iberian Peninsula (IP), France (FR), Mid-Europe

Table 1 The RCM 9 GCM matrix; label X indicates that the cor-

responding RCM 9 GCM pair was available in ENSEMBLES at the

time of the study

BCM CNRM HC-lo HC-med HC-hi MPI

C4I X

CNRM X

DMI X X X

ETHZ X

HC-lo X

HC-med X

HC-hi X

ICTP X

KNMI X

METN X X

MPI X

SMHI X X X

UCLM X
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(ME), Scandinavia (SC), Alps (AL), Mediterranean (MD)

and East-Europe (EA).

3 Analysis of variance: first method of matrix

completion

As a first approach towards inter-model variance, we can

calculate the variance between the GCMs driving a given

RCM, repeat for the other RCMs and then average the

variances obtained for all the RCMs. This is possible for 3

RCMs. We can name it inter-GCM variance. Table 2

shows the average over Europe, expressed as standard

deviation for an easier interpretation. Similarly, we can

calculate the variance between the RCMs driven by the

same GCM, and then average over the GCMs. This is

possible for all 6 GCMs. We can name it inter-RCM var-

iance. In each case the variance is calculated with a small

number of model responses (most often 2), and an unbiased

estimate must be used. Table 2 shows that the inter-GCM

variance is greater than the inter-RCM variance, and in half

of the cases slightly greater than the total variance. The

variances are calculated at each grid point of a common

grid (top two rows of Table 2), and for sub-area averages

(bottom two rows) for a better comparison with the

following.

This basic approach does not allow to tell us how the

total variance of our 18 model responses is partitioned

between the inter-GCM and the inter-RCM variances,

because the two contributions are not independent and

calculated with different sub-samples of the ENSEMBLES

database. To achieve this partition, we must use the method

known as analysis of variance. In PRUDENCE, we had 10

RCMs, 3 GCMs, 2 emissions scenarios (A2 and B2) and 3

ensemble members (for the few RCMs driven by multiple

GCMs members). The total variance has been decomposed

as a sum of 15 positive terms representing the contribution

of the 4 sources of variability (in this study variability,

spread and uncertainty have the same meaning), taking into

account the interactions between the 4 sources. See D07 for

the full formula.

In ENSEMBLES we have a single emissions scenario

A1B and a single ensemble member. We can use a simpler

approach. Let i be the index of RCM (i = 1,13) and j the

index of GCM (j = 1,6). Let us use the dot to represent

the average with respect to the index it replaces. If Xij is the

response of a model (e.g. DJF temperature scenario minus

reference in BI sub-area) the total variance V can be

decomposed as:

V = R + G + RG ð1Þ

with:

R ¼ 1

13

X13

i¼1

Xi� � X��ð Þ2 ð2Þ

G ¼ 1

6

X6

j¼1

X�j � X��
� �2 ð3Þ

RG ¼ 1

6

X6

j¼1

1

13

X13

i¼1

Xij � Xi� � X�j + X��
� �2 ð4Þ

where R is the term due to RCM alone, G to GCM alone,

and RG the interaction term of RCM with GCM. R is the

variance of the RCMs once the different GCMs have been

averaged. (R ? RG) is the variance of the RCMs for each

GCM separately, averaged afterwards over the different

GCMs. It is named the total variance due to RCM and

noted V(R). Similarly, the sum G ? RG is noted V(G).

The difference between the computation of R and V(R) is

therefore the change in the order of averaging and variance

operations. In other words, R is a variance of averages and

V(R) is an average of variances. Note that V(R) ? V(G) is

more than the total variance V because the interaction term

RG is positive.

Equation 1 is an algebraic identity which assumes that

all pairs (i, j) are available. In case of missing values (there

are 60 holes in Table 1), we need first to fill the missing

cases. In D07 the algorithm consisted of minimizing the

higher interaction term RSGM (S for emissions scenario,

M for ensemble member). In the present study things are

much simpler because there are only two indices. Thus the

D07 completion formula is derived to:

Xij = Xi� + X�j � X�� = X��þ Xi� � X��ð Þþ Xj� � X��
� �

ð5Þ

As we have at least one case for each RCM and for each

GCM, Xi� and X�j can always be estimated from Table 1.

Equation 5 can be easily explained as follows: to calculate

the response of RCM-A driven by GCM-B, we calculate

first the mean response for all RCM 9 GCM. Then we add

the mean anomaly of the GCM-B-driven pairs with respect

to this mean. Finally we add the mean anomaly of the

Table 2 Standard deviation calculated with available RCM 9 GCM

pairs for temperature (�C) and precipitation (mm/day) from inter-

RCM, inter-GCM and all model variances

DJF JJA

RCM GCM Total RCM GCM Total

Grid points Temperature 0.28 0.60 0.59 0.41 0.64 0.74

Precipitation 0.18 0.34 0.27 0.19 0.22 0.23

Sub-areas Temperature 0.19 0.47 0.51 0.32 0.68 0.69

Precipitation 0.08 0.18 0.16 0.12 0.15 0.14

In the top two rows, variances are calculated for grid point values; in

the bottom two rows variances are calculated for sub-area averages
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RCM-A-driving pairs with respect to the same mean. This

is equivalent to assuming that the contribution of the GCM

and of the RCM are additive.

Figure 1 shows the percentage of G (top of the rect-

angle), RG (middle) and R (bottom) for PRUDENCE

(PRP) and ENSEMBLES (ENP) experiments in the left-

most two rectangles. One can see that the RG term is

small, but this is a direct consequence of Eq. 5 which

assumes that RG = 0 for the missing pairs. The PRU-

DENCE to ENSEMBLES comparison shows the larger

role of the GCM in PRUDENCE, in particular for tem-

perature. A first possible explanation of this difference is

that in PRUDENCE we focused on the end of the century

with the higher A2 emissions scenario and a large SST

forcing, whereas in ENSEMBLES the boundary forcing is

weaker (mid-century, A1B scenario). The large-scale

signal (global warming) is stronger and the spread of the

3 GCMs is larger in PRUDENCE. The ‘‘noise’’ intro-

duced at smaller scale by the RCMs is thus, in terms of

ratio, weaker than in ENSEMBLES. A second explana-

tion may be that in ENSEMBLES the domains are larger

and the horizontal resolution higher, which gives more

degrees of freedom to the RCMs to ‘‘forget’’ the control

exerted by the boundary forcing. The fact that the GCM

explains more variance than the RCM, except for summer

precipitation, was already stressed in D07 and confirms

the results of Table 2.

Table 3 (first 6 columns) shows the mean response over

Europe and the inter-model standard deviation, calculated

as the quadratic average over the 8 sub-areas. The mean

and standard deviation are calculated with the original

(O) and the completed (P) RCM 9 GCM matrix. ‘‘origi-

nal’’ means only existing RCM 9 GCM pairs, as in

Table 2, whereas ‘‘completed’’ means existing and recon-

structed pairs. In the case of PRUDENCE, we consider

here only the A2 emissions scenario and one member per

RCM 9 GCM (when several runs are available). One can

see that the matrix completion has a marginal impact on the

mean (slight reduction of the response in the case of

PRUDENCE, increase in temperature response for

ENSEMBLES). Its effect on the standard deviation is

systematically an increase. This is easier to explain in the

case of PRUDENCE, where the role of HadCM as a

driving GCM is overestimated in the original matrix. In the

case of ENSEMBLES, this increase shows that the recon-

struction method is not just an interpolation and may pro-

duce strong responses. Because it is additive, the

reconstruction can combine a GCM and an RCM which

both have a high sensitivity, but have not been combined in

the original matrix.

Fig. 1 Fraction of variance (%) explained by the RCM (bottom part
of each rectangle) the GCM (top part) and interaction term (middle
part): PRUDENCE (A2 scenario, 2071–2100 response) and ENSEM-

BLES (A1B scenario, 2021–2050 response) data over Europe for

temperature (T) and precipitation (P) in DJF and JJA; the missing data

have been completed with the PRUDENCE method for PRUDENCE

(PRP) and ENSEMBLES (ENP), and with the weather regime method

for ENSEMBLES (ENR)

Table 3 Mean and standard deviation over Europe of the model response calculated with the original (O) and completed with PRUDENCE

method (P) or weather regime method (R) RCM 9 GCM matrix for temperature (�C) and precipitation (mm/day) in DJF and JJA. PRUDENCE

corresponds to A2 scenario and 2071–2100 time-slice

PRUDENCE ENSEMBLES

Mean (O) SD (O) Mean (P) SD (P) Mean (O) SD (O) Mean (P) SD (P) Mean (R) SD (R)

TDJF 3.57 0.66 3.54 0.83 1.72 0.51 1.89 0.58 1.87 0.44

TJJA 4.49 0.96 4.47 1.21 1.63 0.69 1.87 0.75 1.82 0.57

PDJF 0.35 0.18 0.28 0.22 0.11 0.16 0.10 0.19 0.11 0.16

PJJA -0.42 0.23 -0.37 0.28 -0.05 0.14 -0.05 0.15 -0.05 0.10

ENSEMBLES corresponds to A1B scenario and 2021–2050 time-slice
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The comparison of the mean versus the standard devi-

ation at European scale in Table 2 also shows that the

signal to noise ratio is better (i.e., higher) in PRUDENCE

than in ENSEMBLES for temperature. In the case of pre-

cipitation, there are compensations between sub-areas with

an increase and sub-areas with a decrease. See Sects. 4 and

6 for geographical details of the response. The choice at the

beginning of PRUDENCE to target the end of the 21st

century is clearly justified here, at least for temperature, in

terms of signal-to-noise ratio. In terms of adaptation to

climate change, the choice of the ENSEMBLES period is,

however, better for policy and decision making.

4 Weather regimes: second method of matrix

completion

The D07 method for matrix completion is simple, but relies

upon the argument that the GCM and the RCM contribu-

tions to the climate change response are independent. If we

want to add more physics in the completion method, we

can consider that the role of the GCM is to provide large-

scale lateral advection of momentum, heat and moisture to

the RCM. A concept which synthesizes this effect is the

concept of weather regimes (Vautard 1990). Clustering the

daily 500 hPa height values over the North Atlantic-Eur-

ope domain leads to large-scale patterns that can be linked

to weather in Europe (Robertson and Ghil 1999; Yiou and

Nogaj 2004). The most commonly studied are the positive

and negative phases of the North Atlantic Oscillation

(NAO; Hurrel et al. 2001). In winter, clustering in 4

regimes is a traditional approach since Michelangeli et al.

(1995). We have applied the same k-means algorithm to

ERA40 500 hPa daily data, filtered by the first 15 Empirical

Orthogonal Functions (EOF) on the 90�W–30�E 20�N–

80�N domain for the 4 seasons. For each season (we restrict

discussion of results here to DJF and JJA for the sake of

brevity), four centroids are produced, which are maps of

500 hPa height anomalies across the domain. For each

RCM, we interpolate these centroids onto their native

model grid. Each day is associated to regime N (N = 1, 2, 3

or 4) if the daily 500 hPa height anomaly with respect to the

1961–1990 RCM climatology is closer to centroid N than to

any other centroids. This method is different from Sanchez-

Gomez et al. (2008) who applied the k-means algorithm to

ERA40 data on a domain intersecting all RCM domains,

and interpolated all RCMs on this domain. With our

method, the winter regimes are very close to the Michel-

angeli et al. (1995) centroids. They are more appropriate to

represent the LBC forcing, and less appropriate to represent

the large-scale dynamics of the individual RCMs, in par-

ticular those RCMs with westwards extension too far from

Greenland.

The natural choice for the distance measure would be

the euclidean distance. However, because of global

warming, there is a systematic lift of the 500 hPa height.

We have therefore calculated the euclidean distance to the

anomaly field minus its spatial average over the RCM

domain. This does not change the regime characteristics in

the present climate. But in the scenario climate, the change

in regime frequency is different with the simple euclidean

and with the corrected euclidean distance. If, however, we

use the spatial correlation (Plaut and Simmonet 2001) as a

criterion to decide when a day is attributed to a given

regime, the results are very similar to those obtained using

the corrected euclidean distance. The RCM weather is

driven by the horizontal geopotential height gradient at the

lateral boundary, through the geostrophic wind, rather than

by the height field itself. So we use the corrected euclidean

method for regime attribution. If we consider 30-year

averages, we can write, for a variable X:

Xh i ¼
X4

r¼1

X j rh if(r) ð6Þ

Where \�[ is the time average, \X|r[ the conditional

average of X for regime r (aka composite of regime r for

variable X) and f(r) the frequency of regime r. In the

scenario, both composites and frequencies may change. A

simple idea for matrix completion is to write:

Xij

� �
¼
X4

r¼1

Xi j rh ifjðr) ð7Þ

where the composites are calculated with RCM i and the

frequencies are calculated with GCM j. We make here

the hypothesis that the regime frequency is imposed by the

GCM, whereas the way temperature or precipitation

behaves in a given regime depends only on the RCM.

There are thus two hypotheses. The first hypothesis has

been partly verified in Sanchez-Gomez et al. (2008): when

driven by ERA40, all ENSEMBLES RCMs have a similar

regime chronology to the ERA40 one and a very similar

regime frequency. The second hypothesis will be checked

hereafter.

In order to further evaluate the validity of the first

hypothesis, we have calculated the quadratic error E1

between the existing RCM 9 GCM pairs (i, j) and the

reconstructed responses in which the weather regime

composite comes from the same pair (i, j), but the regime

frequency comes from another pair (k, j). As all GCMs

have driven more than one RCM this is easy to calculate.

The squared error E1 on the scenario minus reference

response is averaged for the 8 sub-areas, the 2 seasons and

the 18 completed RCM 9 GCM pairs. The reference error

E1r is obtained similarly, but the weather regime frequency

comes from a pair involving a different GCM. Table 4
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shows that E1 is small. This error is about one third the

reference error E1r, which indicates that using the weather

regime frequency from an RCM 9 GCM pair involving

the same GCM is more accurate than using the weather

regime frequency from another GCM.

Symmetrically, we have tested the second hypothesis by

keeping the actual weather regime frequency and taking a

weather regime composite from another pair which

involves the same RCM. Here we can use only 8 pairs out

of 18 because only DMI, METN and SMHI RCMs have

been driven by more than one GCM. The quadratic error is

E2 and its reference is E2r. E2r is calculated as E2, with the

same weather regime frequencies but with a weather

regime composite coming from another RCM. Table 4

shows that E2 is large and close to E2r. This indicates that

the assumption that the composite does not depend on the

driving GCM is wrong. This implies that the precipitation

response, for example, of an RCM is determined by other

constraints (such as SST, continental-scale warming and

moistening) coming from the driving GCM, which are not

reflected in the 4 regimes.

We have thus attempted to involve the GCM in the

reconstruction of the weather regime composite. In order to

interpolate a missing (i, j) pair we replace Xi j rh i in Eq. 7

by:

Xij

�� r
� �

¼ Xi� + X�j
� �

=2
�� r

� �
ð8Þ

where X stands for the temperature or precipitation mean

for a given season and sub-area in the reference and in the

scenario data. For example the missing composite for C4I

driven by MPI is the half sum of the composite of C4I

driven by HC-hi and the average of the composites

involving MPI. Note that this approach is different from

Eq. 5 in which the contributions of the RCM and GCM are

added, whereas in Eq. 8 the two contributions are inter-

polated. Therefore, the missing responses, as reconstructed

with the second method, are generally smaller than with the

first one.

It is interesting at this stage to evaluate the validity of

the reconstructions. A simple algorithm consists of com-

paring the original model response with a response

reconstructed without the corresponding RCM 9 GCM

pair. Unfortunately, the reconstruction error can only be

calculated with 8 pairs (DMI, METN and SMHI RCMs).

The mean square error is E3 for the PRUDENCE method

(Eq. 5) and E4 for the weather regime method

(Eqs. 7 ? 8). As in the beginning of Sect. 4, a reference

error (E3r) is obtained by comparing an actual response

with the response from another RCM 9 GCM pair. This

reference error is also valid for E4 (E4r = E3r). E3r is very

close to E2r because we use the same pairs of models to

compute the differences. The only difference is that in E2r

we use the same weather regime frequency in the two

responses to be subtracted. Table 4 shows that the second

reconstruction method is somewhat better, and that both

methods are more successful in reconstructing temperature

than precipitation responses. However, since this verifica-

tion is based on three RCMs only, we cannot draw a def-

inite conclusion about which method actually performs

better. As the weather regime method is more physically

based, we use only this method in the rest of the paper.

The rightmost rectangles in Fig. 1 show the percentages

of variance due to RCM and GCM in ENSEMBLES data

completed with the weather regime method (ENR). One

can first remark that the RG term (dark gray) is still small,

which further justifies the PRUDENCE assumption to set

this term to zero when completing the matrix. The second

remark is that the weather regime method enhances the role

of the GCM in the inter-model spread. Indeed, the GCM is

involved both in the frequency of the weather regime and

in the composite. This result is further confirmed because it

is in agreement with the respective variances of Table 2,

where no data completion is done, and the reconstruction

error E4 (Table 4) is less than the error E3 with the

PRUDENCE method. If we had used composites depend-

ing only on the RCMs (as in Eq. 7), the percentage due to

the RCM would have been much larger. This is due to the

fact that the climate change response is generally more a

change in the composites than a change in the weather

regime frequencies (Driouech et al. 2010). However, we

know from Table 4 that this approach is not supported by

the ENSEMBLES data. Note that in the case of summer

precipitation, the GCM part remains less than the RCM

part.

The last two columns of Table 3 give the mean and

standard deviation calculated for each sub-area then aver-

aged over Europe with the matrix completed by the

weather regime method (R). The mean response is similar

to the result with the PRUDENCE method (P) but the inter-

model standard deviation is below the value with the

existing pairs (O) (except in the case of winter

Table 4 Root mean square differences between an original and a

reconstructed response when possible

Temperature (�C) Precipitation (mm/day)

E1 0.04 (E1r = 0.11) 0.02 (E1r = 0.06)

E2 0.82 (E2r = 0.87) 0.20 (E2r = 0.20)

E3 0.42 (E3r = 0.86) 0.16 (E3r = 0.21)

E4 0.37 (E4r = 0.86) 0.13 (E4r = 0.21)

The average is done for all sub-areas, seasons and models. E1 mea-

sures the error due to the weather regime frequency, E2 measures the

error due to the weather regime composite, E3 measures the error in

the full reconstruction with the PRUDENCE method and E4 measures

the error in the full reconstruction with weather regime method. See

text for a detailed definition of E1, E2, E3, E4 and the corresponding

references E1r, E2r, E3r and E4r
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precipitation, when they are identical), contrary to the

PRUDENCE completion method which enhances the

variability.

We cannot display here climate change response

matrices for all sub-areas, seasons and variables. Consid-

ering the average over Europe provides a synthesis, and

temperature offers the advantage that there is no spatial

compensation between positive and negative responses in

different sub-areas (see Sect. 6). In JJA, the spread is larger

than in DJF (Tables 2, 3). Therefore, we selected this case

in Table 5 which shows the full matrix. Italicized cells

indicate the reconstructed values. One can see that despite

the above mentioned reduction of the standard deviation

(0.69–0.57�C from Table 3), the reconstructed value can

produce a response of 3.3�C (HC-hi 9 HC-med) whereas

the maximum response in the original pairs is 2.8�C (HC-

med 9 HC-med). One should have in mind that the above

standard deviations are not calculated from Table 5 cells,

but separately for each sub-area.

Table 5 RCM 9 GCM response for JJA temperature (�C) over

Europe

BCM CNRM HC-lo HC-med HC-hi MPI

C4I 1.46 1.87 2.03 3.04 2.14 1.67

CNRM 1.23 1.77 1.83 2.74 1.98 1.45

DMI 0.63 1.42 1.43 2.24 1.60 0.86

ETHZ 1.49 1.93 2.09 2.27 2.26 1.71

HC-lo 1.48 1.92 2.19 3.10 2.25 1.68

HC-med 1.77 2.20 2.35 2.80 2.53 1.98

HC-hi 1.65 2.06 2.22 3.30 2.49 1.85

ICTP 0.94 1.34 1.50 2.33 1.69 1.13

KNMI 1.07 1.48 1.64 2.52 1.82 1.37

METN 0.79 1.51 1.67 2.07 1.85 1.30

MPI 1.04 1.44 1.60 2.47 1.78 1.28

SMHI 0.79 1.40 1.62 2.41 1.75 1.25

UCLM 1.62 2.04 2.18 2.46 2.36 1.83

Italicized cells correspond to reconstructed values with the weather

regime method

Fig. 2 As rightmost rectangles

of Fig. 1 (ENSEMBLES data

reconstructed with weather

regime method) for the 8 sub-

areas separately: British Isles

(BI), Iberian Peninsula (IP),

France (FR), Mid-Europe (ME),

Scandinavia (SC), Alps (AL),

Mediterranean (MD), East-

Europe (EA)
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Figure 2 gives the respective variances of RCM and

GCM for the 8 sub-areas. Displaying the variance instead

of its percentage, in order to identify the regions with

maximum variability, would be misleading because the

domains are not of the same size: East Europe (EA) is four

times larger than the Alps (AL). The spatial distribution of

spread is examined in Sect. 6. In winter the GCM explains

about 60% of the temperature variance, rather uniformly

over Europe. For winter precipitation, the percentage is

more variable (50–80%) and it is hard to find a simple

geographical explanation for these regional variations.

Summer temperature exhibits a 60–80% variation with a

larger part for the GCM in the South-West (IP, FR) than the

North-East (SC, ME, EA). As in PRUDENCE, the RCM

plays the major role for summer precipitation, with an

exception, consistent with the temperature, in the South-

West (IP, FR). It is interesting to note that even for the

British Isles, which are under the constraint of the lateral

boundary conditions and SST coming from the GCM, the

RCM explains more than 60% of the variance of summer

precipitation. The model-to-model variability for this

parameter is likely produced by the convection schemes in

the RCMs. If the RCM soil schemes had played a large role

in the spread, a signature should have been found in the

summer temperature. The fact that RCMs produce more

spread in precipitation than in temperature in summer is an

average feature which could mask individual behaviors.

Some RCMs may have a higher summer temperature-to-

precipitation dependence than others. Table 6 shows for

each RCM the interseasonal (for the 1961–1990 summers)

temperature-precipitation correlation. These statistical

estimates are calculated from seasonal means over each

sub-area, and averaged over the GCMs for DMI, METN

and SMHI, and over Europe. Table 6 indicates that the

negative correlation (warm and dry) for Europe (last

column) varies between -0.40 (SMHI) and -0.80 (HC-lo).

There is a general agreement between RCMs which share

the same parameterization, the HC model being the most

sensitive. There is also a region-to-region variability:

on average over the 13 RCMs, the correlation varies from

-0.31 over the Scandinavian area to -0.76 over the

Mediterranean area. When the 2021–2050 period is

considered (not shown), this regional contrast is decreased

(-0.36 to -0.62), but the individual RCM correlations

over Europe remain almost unchanged.

5 Interannual variability

Up to now, we have supposed that the 30-year means of the

experiments were representative of the climatology of each

model. If we had used, as in D07, several runs for each

RCM 9 GCM pair, Eq. 1 would have been:

V = R + G + M + RG + RM + GM + RGM ð9Þ

where M indicates the choice of ensemble member (index k

and number n in the following). There are two additional

interaction terms RM and GM which are defined similarly

to Eqs. 2–4, and a new term:

RGM =
1

n

Xn

k¼1

1

6

X6

j¼1

1

13

X13

i¼1

Xijk � Xij� � Xi�k � X�jk + Xi�� + X�j� + X�k � XL

� �2

ð10Þ

Here we have a single member per RCM 9 GCM pair,

but we can use the interannual variability of each single

simulation as in Ferro (2004) and generate artificial

ensemble members with the following simple hypothesis.

The 30 year average at a single grid point, or for a sub-

Table 6 Interannual correlation between summer temperature and precipitation over the 8 sub-areas and Europe average (EU) for the 13 RCMs

BI IP FR ME SC AL MD EA EU

C4I -0.16 -0.16 -0.50 -0.33 -0.41 -0.53 -0.72 -0.48 -0.43

CNRM -0.47 -0.70 -0.60 -0.79 -0.26 -0.61 -0.57 -0.45 -0.54

DMI -0.31 -0.63 -0.47 -0.71 -0.05 -0.83 -0.67 -0.69 -0.55

ETHZ -0.20 -0.76 -0.65 -0.58 -0.51 -0.68 -0.82 -0.82 -0.67

HC-lo -0.75 -0.60 -0.79 -0.82 -0.82 -0.88 -0.86 -0.85 -0.80

HC-med -0.25 -0.57 -0.82 -0.73 0.02 -0.81 -0.87 -0.87 -0.62

HC-hi -0.46 -0.52 -0.86 -0.79 -0.39 -0.88 -0.80 -0.82 -0.69

ICTP -0.51 -0.21 -0.41 -0.60 -0.22 -0.45 -0.76 -0.42 -0.45

KNMI -0.59 -0.61 -0.52 -0.58 -0.18 -0.82 -0.88 -0.68 -0.61

METN -0.28 -0.50 -0.74 -0.57 -0.31 -0.78 -0.85 -0.73 -0.61

MPI -0.56 -0.30 -0.46 -0.65 -0.20 -0.67 -0.86 -0.57 -0.54

SMHI -0.26 -0.47 -0.31 -0.40 -0.23 -0.58 -0.51 -0.39 -0.40

UCLM 0.04 -0.66 -0.61 -0.40 -0.52 -0.48 -0.69 -0.44 -0.49
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domain average, can be considered as the average of 30

independent variables for which the mean and variance can

be easily calculated. The limit central theorem tells us that

this average follows approximately a Gaussian distribution

with the same mean, and a variance divided by 30. We thus

generated n = 10 members by a simple Monte-Carlo

procedure. If n is too small as in D07 (n = 3), the

interannual variability in Eq. 9 is underestimated, because

in the algebraic identity there is a division by n instead of

(n - 1) which would correspond to the unbiased estimate

of the variance. On the other hand, if we use unbiased

estimates of the variance in Eq. 9 as we did for Table 2, the

equality assumption is not satisfied. Given the number of

GCMs and RCMs used here, a number n = 10 is a good

compromise. Using larger values for n does not change the

results dramatically.

The ENSEMBLES project offers to us a possibility to

verify this Monte-Carlo method. Indeed, in the project

database, we can find three simulations of the KNMI model

at 50 km resolution driven by three different simulations of

the MPI GCM. We have calculated the sampling variance

in each sub-area by two methods: the direct one based on

the 3 available ensemble members, and the indirect one

using interannual variability and Monte-Carlo simulation

of 10 members. For winter temperature, the average over

Europe of the standard deviations is 0.46 K with the

3-member sample and 0.36 K with estimates based on the

interannual variability. This indicates that our method

underestimates the variability. This can be explained by the

insufficient sampling of inter-decadal variability with only

30 consecutive years. However, this feature is not observed

for other variables or seasons. For summer temperature, we

get respectively 0.22 and 0.23 K, for winter precipitation

0.15 and 0.16 mm/day, for summer precipitation 0.11 and

0.10 mm/day. We will therefore use this method in the

following to add artificial ensemble members, keeping in

mind that the internal variability may be underestimated by

about 30% for winter temperature. However, as we will see

in the following, and in agreement with D07 results, this

internal variability is one order of magnitude below the

other two sources of variability, which makes our

approximation acceptable.

To estimate the interannual variance, we have again the

problem of missing RCM 9 GCM pairs. The variance is

not the combination of variance per weather regime mul-

tiplied by the regime frequency as in Eq. 6. It is possible,

however, to derive a formula with a sum of terms involving

pairs of regimes. But the decomposition is a combination

of large positive and negative terms (covariances between

the regimes), and the attempts to reconstruct the variances

as we did for the means led to negative variances in several

cases because our samples are too short. So we used, for

the interannual variances a simple interpolation as in Eq. 8.

Table 7 shows for Europe (aggregation of the 8 sub-

areas) the mean, standard deviation and percentage of the

variance explained by the 7 components of Eq. 9. The

mean values are similar to those obtained with the data

without interannual variability (Table 3). The standard

deviations are larger, due to the inclusion of interannual

variability. One can also remark that the combined RGM

term is greater than the terms involving two sources of

variability (i.e., RG, RM, GM). Thus the assumption that

this term is negligible, used in D07 to fill the missing

matrix data, is not supported by our analysis.

The uncertainty due to natural climate variability can be

evaluated by V(M) = M?RM ? GM ? RGM which

corresponds to the mean interannual spread of a given

model. For DJF temperature V(M) is 36% of the total

variance. In summer, it is only 21%. For DJF precipitation,

the percentage is 58%, but this is to be compared with 72%

for V(R) and 77% for V(G). In summer V(M) is 52% of the

total precipitation variance. These percentages illustrate the

well known feature that running several GCMs and RCMs

produces a significantly larger spread in the response than

running an ensemble of the same size with a single model

(without perturbing the parameters as in HC-lo, HC-med

and HC-hi), even for a moderate climate change like in the

first half of the 21st century.

6 Spatial distribution

One of the advances of ENSEMBLES, with respect to

PRUDENCE, is the production of probabilities for the

projected changes. In Déqué and Somot (2010) the fol-

lowing probabilistic model is proposed:

1. the response to climate change is one of the 18 results

of the RCM 9 GCM matrix

2. the RCMs have a probability proportional to the

weight they obtain in a series of tests based on climate

simulations driven by ERA40 (Christensen et al. 2010)

3. the GCMs have a probability proportional to their skill

in simulating weather regime frequencies over North

Atlantic-Europe

Table 7 Multi-model mean and standard deviation (�C or mm/day)

over Europe, percentage of variance explained by the RCM (R), GCM

(G) and interannual variability (M), including the multifactor terms

RG, RM, GM and RGM; temperature and precipitation for DJF and

JJA

Mean SD R G M RG RM GM RGM

TDJF 1.91 0.56 21.1 34.0 0.5 8.8 7.2 2.1 26.4

TJJA 1.85 0.64 26.9 46.4 0.2 6.2 4.0 1.1 15.2

PDJF 0.12 0.21 10.9 23.9 0.8 7.3 11.3 3.3 42.5

PJJA -0.04 0.16 20.8 18.3 0.6 9.2 10.5 2.8 37.8
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4. each RCM 9 GCM result has a probability density

function (pdf) based on the limit central theorem

(Gaussian law, variance of the 30-year means divided

by 30)

Hypothesis 1, which is very restrictive, can be attenu-

ated by the use of a Gaussian kernel filter designed to make

a smooth transition between the maxima of the individual

model pdfs.

Here we do not consider the probability of climate

response (e.g. temperature change in DJF near Paris

between 1961–1990 and 2021–2050) of a model drawn at

random amongst the cells of the RCM 9 GCM matrix as is

done in Déqué and Somot (2010), but rather the probability

of the average of the full matrix, as is done in D07. The

mean and variance we have calculated before (e.g. Table 7)

can provide a confidence interval for a new RCM 9 GCM

drawn at random from a population with the statistical

properties of the ENSEMBLES models. If we take the

average of n independent models, the variance is divided

by n. Here the 13 9 6 responses in the matrix are not

independent, because the reconstructed terms are a com-

bination of the actual responses and additional information

(the weather regime frequencies). Taking n = 18, the

number of actual runs, gives a reasonable approximation

for the variance of the average. Even though the pdf of a

single model is not Gaussian in particular for temperature

response which is skewed (see Déqué and Somot 2010), the

pdf of the average can be considered as Gaussian (limit

central theorem) and a confidence interval is easy to obtain.

At each grid point of a common 0.5� 9 0.5� grid we

have calculated a mean M and a variance V including

reconstructed values. The 99% confidence interval is

M� 2:6

ffiffiffiffiffi
V

18

r
;Mþ 2:6

ffiffiffiffiffi
V

18

r" #
ð11Þ

Figures 3 and 4 show the lower and upper boundaries of

this confidence interval for temperature. The winter pattern

(Fig. 3) is very similar to the D07 pattern with a West-East

gradient easy to explain by the snowline retreat in the

coldest part of Europe. In the eastern part, there is also a

South-North gradient which is more intense than in D07.

The summer pattern (Fig. 4) is a North–South gradient as

in D07. However, there is also a West-East component

which was absent in D07. As a consequence, the maximum

warming which was in Spain and South of France in D07 is

located here in the Balkan Peninsula.

It is not possible to display similar maps for precipita-

tion, because in both winter and summer seasons, the upper

and lower boundaries of the 99% interval have an opposite

sign over a large part of the domain. This means that the

local response is not significant at that 99% level, contrary

to D07. So a quantitative approach for precipitation is not

reasonable. Instead, Fig. 5 shows the grid points for which

the absolute value of the mean change is above two stan-

dard deviations, which corresponds to 95% level signifi-

cance. There are 77% of such points in winter and 66% in

summer, which indicates that we are analyzing a robust

climate change: only 5% of the points are expected to be

beyond this threshold just by chance. In addition, the

winter pattern is in good agreement with Fig. 3 of D07.

The summer pattern bipolar structure is different from

Fig. 4 of D07 which exhibited a unipolar pattern of pre-

cipitation decrease centered at 45�N.

Fig. 3 Minimum (a) and maximum (b) expected response at the 99%

level for an average of 18 independent experiments having the

ENSEMBLES RCM 9 GCM matrix statistical properties: DJF

temperature; contour interval 0.5�C, light shading above 1�C, dense

shading above 2�C
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7 Conclusion

The most important conclusion of D07 was that for the A2

emissions scenario and 2071–2100 time slice in general the

largest source of uncertainty came from the GCM. For

certain sub-areas or seasons, the RCM played the major

role, however. This conclusion has led to the design of the

ENSEMBLES regional climate modeling study: instead of

using only one GCM with all the RCMs, we have used

many GCMs, distributing the RCMs amongst the driving

GCMs. The result we obtain here is that for the A1B

emissions scenario and 2021–2050 time slice, we confirm

the larger role played by the RCMs in summer

precipitation. Two different methods for filling the empty

cells of the RCM 9 GCM matrix yield the same conclu-

sion for this field. The first method assumes that the

warming due to the GCM and RCM are additive. It pro-

duces a larger inter-model variability and shows that for the

other 3 fields analysed (DJF and JJA temperature, DJF

precipitation) the GCM and RCM have a similar contri-

bution to the spread. The second method takes into account

the large-scale simulation of atmospheric circulation above

Europe (weather regimes) and interpolates the RCM and

GCM contributions (half sum of the two). It reduces the

Fig. 4 As Fig. 3 for JJA temperature Fig. 5 Location of the points with a significant positive (light gray)

or negative (dark gray) winter (a) or summer (b) precipitation

response
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inter-model variability and shows that, as in PRUDENCE,

the GCM contributes more to the spread. When PRU-

DENCE and ENSEMBLES are compared with the same

filling method, the contribution of the RCM is systemati-

cally enhanced. The design of a large multimodel experi-

ment is therefore very important for analysis of the

modeling uncertainties. The natural variability, which

should be more important than in PRUDENCE because the

signal-to-noise ratio is weaker, is still in third place.

The large spread amongst the models should not prevent

us from presenting results to the impacts community as far

as seasonal mean temperature is concerned. This spread

provides justification for presenting them in probabilistic

terms. We get spatial patterns similar to those of PRU-

DENCE, with an amplitude of the response coarsely divi-

ded by 2 in winter and by 3 in summer with respect to that

experiment (which was for a higher emissions scenario and

further into the future). In the latter season, the maximum

warming is located in south-eastern Europe (compared

with south-western Europe in PRUDENCE). This pattern

modification between mid- and end-century in summer

might be explained by the fact that the positive feedback by

soil drying out with warming is not fully in place during the

first half of the century. Indeed, the precipitation response

is only weakly significant. Only its sign is statistically

robust, with a precipitation increase in the North and a

decrease in the South.

A secondary finding of this study is that two RCMs

driven by the same GCM experience similar changes in

weather regime frequency, as a result of global warming.

However this frequency change is not sufficient to explain

the temperature and precipitation changes. The changes in

the conditional averages of these fields for a given weather

regime depend on the RCM as well as on the driving GCM.

This makes the reconstruction of the missing cells in the

RCM 9 GCM matrix less straightforward than expected.

All the results given here depend on the ability to fill the

missing values in the matrix. As we have only three RCMs

driven by more than one GCM, estimating the error by

removing one RCM 9 GCM pair and trying to reconstruct

it, as was done in D07, only gives a coarse estimate of the

skill. Nonetheless, such an estimation favors the second

method. The results of this multi-model experiment,

including the empirically reconstructed simulations, pro-

vide guidance for future model ensemble studies and the

provision of better information on regional climate change

responses in probabilistic terms.
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