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Abstract
In this paper, we investigate the existence results for a class of abstract fractional
neutral integro-differential evolution systems involving the Caputo derivative in
Banach spaces. The main techniques rely on the fractional calculus, properties of
characteristic solution operators, Mönch’s fixed point theorem via measures of
noncompactness. Particularly, we do not assume that characteristic solution
operators are compact. The application is given to illustrate the theory. The results of
this article are generalization and improvement of the recent results on this issue.
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1 Introduction
Fractional derivatives provide an excellent tool for the description of memory and heredi-
tary properties of various materials and processes. For more details on fractional calculus
theory and applications, one can see the monographs of Kilbas et al. [], Lakshmikantham
et al. [], Miller and Ross [], Podlubny [], Baleanu et al. [–] and the papers [–] as
well as the references therein.
Recently, the existence of solutions for fractional semilinear differential or integro-

differential equations is one of the theoretical fields investigated by many authors [,
–]. Very recently, Ji et al. [] studied the controllability of impulsive differential sys-
tems with nonlocal conditions by using Mönch’s fixed point theorem andWang et al. []
established the sufficient conditions for nonlocal controllability for fractional evolution
systems and the results were obtained by using fractional calculus andMönch’s fixed point
theorem.
However, to the best of our knowledge, no work has been reported on the existence

results for fractional neutral integro-differential systems with infinite delay in an abstract
phase space via measures of noncompactness combined with the help of characteristic
solution operators.
Our aim of this paper is to close the gap, andmotivated byworks [, , ], in this paper

we investigate the existence of solutions of fractional neutral integro-differential systems
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with infinite delay of the form

CDq[x(t) – g(t,xt)
]
= Ax(t) + f

(
t,xt ,

∫ t


h(t, s,xs)ds

)
, t ∈ J := [,b], (.)

x = φ ∈ Bh, t ∈ (–∞, ], (.)

where CDq is the Caputo fractional derivative of order  < q < , A is the infinitesimal
generator of a strongly continuous semigroup {T(t), t ≥ } in a Banach space X, which
means that there existsM ≥  such that supt∈J ‖T(t)‖ ≤ M, f : J ×Bh ×X, g : J ×Bh and
h : J × J × Bh are given functions, where Bh is a phase space defined in Section . The
histories xt : (–∞, ]→ X, defined by xt(s) = x(t + s), s ≤ , belong to some abstract phase
space Bh.
The paper is organized as follows. In Section , we recall some basic definitions, no-

tations and preliminary facts. Section  is devoted to the existence results for fractional
neutral integro-differential evolution systems with infinite delay. The application of our
theoretical results is given in Section . The last section is devoted to our conclusions.

2 Preliminaries
In this section, we mention notations, definitions, lemmas and preliminary facts needed
to establish our main results.
Throughout this paper, we denote by X a Banach space with the norm ‖ · ‖. Let Y be

another Banach space, let Lb(X,Y ) denote the space of bounded linear operators from X
to Y . We also use ‖f ‖Lp(J ,R+) norm of f whenever f ∈ Lp(J ,R+) for some p with  ≤ p ≤ ∞.
Let Lp(J ,X) denote the Banach space of functions f : J × Bh × X → X which are Bochner
integrable normed by ‖f ‖Lp(J ,X). Let C(J ,X), be the Banach space of continuous functions
from J into X with the usual supremum norm ‖x‖C := supt∈J ‖x(t)‖, for x ∈ C .
In this paper, we assume that A : D(A) ⊂ X → X is the infinitesimal generator of a

strongly continuous semigroup T(·), then there exists a constant M ≤ . Without loss of
generality, we assume that  ∈ ρ(A). Then it is possible to define the fractional power Aα

for  < α ≤ , as a closed linear operator on its domain D(Aα) with inverse A–α (see []).
The following are basic properties of Aα .

(i) D(Aα) is a Banach space with the norm ‖x‖α = ‖Aαx‖ for x ∈D(Aα).
(ii) T(t) : X → Xα for t ≥ .
(iii) AαT(t)x = T(t)Aαx for each x ∈D(Aα) and t ≥ .
(iv) For every t > , AαT(t) is bounded on X and there existsMα >  such that

∥∥AαT(t)
∥∥ ≤ Mα

tα
.

(v) A–α is a bounded linear operator for  ≤ α ≤  in X .
Now we define the abstract phase space Bh, which has been used in []. Assume that

h : (–∞, ] → (, +∞) is a continuous function with l =
∫ 
–∞ h(t)dt < +∞. For any a > ,

we define

B =
{
ψ : [–a, ] → X such that ψ(t) is bounded and measurable

}
,

http://www.advancesindifferenceequations.com/content/2013/1/215
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and equip the space B with the norm

‖ψ‖[–a,] = sup
s∈[–a,]

∥∥ψ(s)
∥∥, ∀ψ ∈ B.

Let us define

Bh =
{
ψ : (–∞, ] → X such that for any c > ,ψ |[–c,] ∈ B

and
∫ 

–∞
h(s)‖ψ‖[s,] ds < +∞

}
.

If Bh is endowed with the norm

‖ψ‖Bh =
∫ 

–∞
h(s)‖ψ‖[s,] ds, ∀ψ ∈ Bh,

then it is clear that (Bh,‖ · ‖Bh ) is a Banach space.
Now we consider the space

B′
h =

{
x : (–∞,b] → X such that x|J ∈ C(J ,X),x = φ ∈ Bh

}
.

Set ‖ · ‖b be a seminorm in B′
h defined by

‖x‖b = ‖φ‖Bh + sup
{∥∥x(s)∥∥ : s ∈ [,b]

}
, x ∈ B′

h.

Lemma . (See []) Assume x ∈ B′
h, then for t ∈ J , xt ∈ Bh.Moreover,

l
∣∣x(t)∣∣ ≤ ‖xt‖Bh ≤ ‖φ‖Bh + l sup

s∈[,t]

∣∣x(s)∣∣,
where l =

∫ 
–∞ h(t)dt < +∞.

Let us recall the following known definitions. For more details see [, , ].

Definition . The fractional integral of order α with the lower limit zero for a function
f is defined as

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, t > ,α > ,

provided the right-hand side is pointwise defined on [,∞), where�(·) is the gamma func-
tion, which is defined by �(α) =

∫ ∞
 tα–e–t dt.

Definition . The Riemann-Liouville fractional derivative of order α > , n –  < α < n,
n ∈N , is defined as

(R–L)Dα
+f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s)ds,

where the function f (t) has absolutely continuous derivative up to order (n – ).

http://www.advancesindifferenceequations.com/content/2013/1/215
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Definition . The Caputo derivative of order α for a function f : [,∞) → R can be
written as

Dαf (t) =Dα

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > ,n –  < α < n.

Remark .
(i) If f (t) ∈ Cn[,∞), then

CDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α+–n

ds = In–αf (n)(t), t > ,n –  < α < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X , then integrals which appear in

Definitions . and . are taken in Bochner’s sense.

Definition . (See []) A continuous function x : (–∞,b] → X is said to be a mild so-
lution of system (.)-(.) if x = φ ∈ Bh on (–∞, ] and the following integral equation

x(t) = T (t)
[
φ() – g

(
,φ()

)]
+ g(t,xt) +

∫ t


(t – s)q–AS(t – s)g(s,xs)ds

+
∫ t


(t – s)q–S(t – s)f

(
s,xs,

∫ s


h(s, τ ,xτ )dτ

)
ds, t ∈ J , (.)

is satisfied, where T (·) and S(·) are called characteristic solution operators and given by

T =
∫ ∞


ξq(θ )T

(
tqθ

)
dθ , S = q

∫ ∞


θξq(θ )T

(
tqθ

)
dθ ,

and for θ ∈ (,∞)

ξq(θ ) =

q
θ
–– 

q wq
(
θ
– 
q
) ≥ ,

wq(θ ) =

π

∞∑
n=

(–)n–θ–nq– �(nq + )
n!

sin(nπq).

Here, ξq is a probability density function defined on (,∞), that is

ξq(θ )≥ , θ ∈ (,∞) and
∫ ∞


ξq(θ )dθ = .

The following results of T (·) and S(·) are used throughout this paper.

Remark . (See []) It is not difficult to verify that for ν ∈ [, ],

∫ ∞


θνξq(θ )dθ =

∫ ∞


θ–qνwq(θ )dθ =

�( + ν)
�( + qν)

.

Lemma . (See [, ]) The operators T and S have the following properties:

http://www.advancesindifferenceequations.com/content/2013/1/215
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(i) For any fixed t ≥ , T and S are linear and bounded operators, that is, for any
x ∈ X ,

∥∥T (t)x
∥∥ ≤ M‖x‖ and

∥∥S(t)x∥∥ ≤ qM
�( + q)

‖x‖.

(ii) {T (t), t ≥ } and {S(t), t ≥ } are strongly continuous.
(iii) For t ∈ J and any bounded subsets D ⊂ X , t → {T (t)x : x ∈D} and

t → {S(t)x : x ∈D} are equicontinuous if ‖T(tq(θ ))x – T(tq (θ ))x‖ →  with respect
to x ∈D as t → t for each fixed θ ∈ [,∞].

(iv) For any x ∈ X , α,β ∈ (, ), we have

ATq(t)x = A–βTq(t)Aβx, t ∈ J ,∥∥AαTq(t)
∥∥ ≤ qMα�( – α)

�( + q( – α))
t–αq,  < t ≤ b.

Moreover, let us recall some definitions and properties of the measures of noncompact-
ness.

Definition . (See []) Let E+ be a positive cone of an ordered Banach space (E,≤).
A function defined on the set of all bounded subsets of the Banach spaceX with values in
E+ is called a measure of noncompactness (MNC) on X iff (co�) = (�) for all bounded
subsets � ⊆ X, where co� stands for the closed convex hull of �.
The MNC  is said to be
() Monotone iff for all bounded subsets �, � of X we have:

(� ⊆ �) ⇒ (
(�)≤ (�)

)
;

() Nonsingular iff ({a} ∪ �) = (�) for every a ∈ X , � ⊂ X ;
() Regular iff (�) =  if and only if � is relatively compact in X .
One of the many examples of MNC is the noncompactness measure of Hausdorff β

defined on each bounded subset � of X by

β(�) = inf{ε > ;� can be covered by a finite number of balls of radii

smaller than ε}.

It is well known thatMNC β enjoys the above properties and other properties see [, ].
For all bounded subsets �, �, � of X,
() β(� +�) ≤ β(�) + β(�), where � +� = {x + y : x ∈ �, y ∈ �};
() β(� ∪ �) ≤ max{β(�),β(�)};
() β(λ�) ≤ |λ|β(�) for any λ ∈ R;
() If the map Q :D(Q)⊆ X → Z is Lipschitz continuous with constant k, then

βZ(Q�)≤ kβ(�) for any bounded subset � ⊆D(Q), where Z is a Banach space.

Lemma . (See []) If W ⊂ C([a,b],X) is bounded and equicontinuous, then β(W (t))
is continuous for t ∈ [a,b] and

β(W ) = sup
{
β
(
W (t)

)
, t ∈ [a,b]

}
, where W (t) =

{
x(t) : x ∈W

} ⊆ X.

http://www.advancesindifferenceequations.com/content/2013/1/215
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Theorem . (See [, ]) If {un}∞n= is a sequence of Bochner integrable functions from
J into X with the estimation ‖un(t)‖ ≤ μ(t) for almost all t ∈ J and every n ≥ , where
μ ∈ L(J ,R), then the function ψ(t) = β({un(t) : n ≥ }) belongs to L(J ,R) and satisfies
β({∫ t

 ψ(s)ds : n≥ })≤ 
∫ t
 ψ(s)ds.

The following fixed-point theorem, a nonlinear alternative of Mönch’s type, plays a key
role in our proof of system (.)-(.).

Lemma . (See [, Theorem .]) Let D be a closed convex subset of a Banach space X
and  ∈D. Assume that F :D→ X is a continuous map which satisfies Mönch’s condition,
that is, (M ⊆ D is countable, M ⊆ co({} ∪ F(M)) ⇒ M is compact). Then F has a fixed
point in D.

3 Existence results
In this section, we present and prove the existence results for problem (.)-(.). In order
to prove the main theorem of this section, we list the following hypotheses.
(H) (i) A generates a strongly continuous semigroup {T(t) : t ≥ } in X ;

(ii) For all bounded subsets D⊂ X and x ∈D, ‖T(tqθ )x –T(tq θ )x‖ →  as t → t
for each fixed θ ∈ (,∞).

(H) The function f : J ×Bh ×X → X satisfies the following:
(i) f (·,φ,x) is measurable for all (φ,x) ∈ Bh ×X and f (t, ·, ·) is continuous for a.e.

t ∈ J and for x ∈ Bh, f (·, ·,x) : [,T]→ X is strongly measurable.
(ii) There exists a constant q ∈ (,q) and m ∈ L


q (J ,R+) and a nondecreasing

continuous function, there is a positive integrable function � : R+ → R+ such
that ‖f (t,φ,x)‖ ≤ m(t)�(‖φ‖Bh + ‖x‖), for all (t,φ,x) ∈ J ×Bh ×X , where �

satisfies lim infn→∞ �(n)
n = .

(iii) There exists a constant q ∈ (,q) and h ∈ L

q (J ,R+) such that, for any

bounded subset D ⊂ X , F ⊂ Bh,

β
(
f (t,F,D)

) ≤ η(t)
[

sup
–∞<θ≤

β
(
F(θ )

)
+ β(D)

]
for a.e. t ∈ J ,

where F(θ ) = {v(θ ) : v ∈D} and β is the Hausdorff MNC.
(H) The function h : J × J ×Bh → X satisfies:

(i) h(·,φ,x) is measurable for (φ,x) ∈ Bh ×X and h(t, ·, ·) is continuous for a.e.
t ∈ J .

(ii) There exists a constant H >  such that ‖h(t, s,φ)‖ ≤ H( + ‖φ‖Bh ), for all
t, s ∈ J , φ ∈ Bh.

(iii) There exists ζ ∈ L(J,R+) such that for any bounded subset D ⊂ X ,

β
(
h(t, s,D)

) ≤ ζ (t, s)
[

sup
–∞<θ≤

β
(
D(θ )

)]
for a.e. t ∈ J

with ζ ∗ = sups∈J
∫ s
 ζ (t, τ )dτ <∞.

(H) The function g : J ×Bh is continuous and there exists a constant H > ,  < α < 
such that g is Xα valued and∥∥Aβg(t,x) –Aβg(t, y)

∥∥ ≤ H‖x – y‖Bh , x, y ∈ Bh, t ∈ J := [,b],∥∥Aβg(t,x)
∥∥ ≤ H

(
 + ‖x‖Bh

)
.

http://www.advancesindifferenceequations.com/content/2013/1/215
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For our convenience, let us take κi := [( –qiq–qi
)b

q–qi
–qi ]–qi , i = , , . M := κ‖m‖

L

q (J ,R+)

, and
M = κ‖η‖

L

q (J ,R+)

.

Theorem . Assume that the hypotheses (H)-(H) are satisfied, then system (.)-(.)
has at least one mild solution provided that,

Z∗ =
MMq
�( + q)

(
 + ζ ∗) <  for some



< q < . (.)

Proof In order to prove the existence of mild solutions for system (.)-(.), transform it
into a fixed point problem.
We consider the operator  : B′

h → B′
h defined by

x(t) =

⎧⎪⎪⎨⎪⎪⎩
φ(t), t ∈ (–∞, ],

T (t)[φ() – g(,φ())] + g(t,xt) +
∫ t
 (t – s)q–AS(t – s)g(s,xs)ds

+
∫ t
 (t – s)q–S(t – s)f (s,xs,

∫ s
 h(s, τ ,xτ )dτ )ds, t ∈ J .

(.)

For φ ∈ Bh, we define φ̂ by

φ̂(t) =

⎧⎨⎩φ(t), t ∈ (–∞, ],

T (t)φ(), t ∈ J ,

then φ̂ ∈ B′
h. Let x(t) = y(t) + φ̂(t), –∞ < t ≤ b. It is easy to see that x satisfies (.) if and

only if y satisfies y =  and

y(t) = –T (t)g(,φ) + g(t, yt + φ̂t) +
∫ t


(t – s)q–AS(t – s)g(s, ys + φ̂s)ds

+
∫ t


(t – s)q–S(t – s)f

(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ

)
ds.

Let B′′
h = {y ∈ B′

h : y =  ∈ Bh}. For any y ∈ B′′
h ,

‖y‖b = ‖y‖Bh + sup
{∥∥y(s)∥∥ :  ≤ s ≤ b

}
= sup

{∥∥y(s)∥∥ :  ≤ s≤ b
}
,

thus (B′′
h ,‖ · ‖b) is a Banach space. Set Br = {y ∈ B′′

h : ‖y‖b ≤ r} for some r > , then Br ⊆ B′′
h

is uniformly bounded, and for y ∈ Br , from Lemma ., we have

‖yt + φ̂t‖Bh ≤ ‖yt‖Bh + ‖φ̂t‖Bh

≤ l
(
r +M

∣∣φ()∣∣) + ‖φ‖Bh = r′. (.)

Define the operator ̃ : B′′
h → B′′

h by

̃y(t) =

⎧⎪⎪⎨⎪⎪⎩
, t ∈ (–∞, ],

–T (t)g(,φ) + g(t, yt + φ̂t) +
∫ t
 (t – s)q–AS(t – s)g(s, ys + φ̂s)ds

+
∫ t
 (t – s)q–S(t – s)f (s, ys + φ̂s,

∫ s
 h(s, τ , yτ + φ̂τ )dτ )ds, t ∈ J .

(.)

http://www.advancesindifferenceequations.com/content/2013/1/215
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Obviously, the operator  has a fixed point is equivalent to ̃ has one. So, our aim is to
show that ̃ has a fixed point. The proof will be given in several steps.
Step : We show that there exists some r >  such that ̃(Br) ⊆ Br . If it is not true, then

for each positive number r, there exists a function yr(·) ∈ Br and some t ∈ J such that
‖(̃yr)(t)‖ > r.
On the other hand, from hypotheses the (H)(i), (ii), (H), Lemma .(i) and Hölder’s

inequality, we obtain

r <
∥∥(

̃yr
)
(t)

∥∥
≤ ∥∥–T (t)g(,φ)

∥∥ +
∥∥g(t, yt + φ̂t)

∥∥ +
∥∥∥∥∫ t


(t – s)q–AS(t – s)g(s, ys + φ̂s)ds

∥∥∥∥
+

∥∥∥∥∫ t


(t – s)q–S(t – s)f

(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ

)
ds

∥∥∥∥
:= I + I + I + I.

Let us estimate, Ii, i = , , , . By assumption (H), we have

I ≤ M
∥∥A–β

∥∥∥∥Aβg(,φ)
∥∥

≤ MH
∥∥A–β

∥∥(
 + ‖φ‖Bh

)
, (.)

I ≤ ∥∥A–β
∥∥∥∥Aβg(t, yt + φ̂t)

∥∥
≤ H

∥∥A–β
∥∥(
 + ‖yt + φ̂t‖Bh

)
≤ H

∥∥A–β
∥∥(
 + r′

)
. (.)

By using Lemma . and Hölder’s inequality, one can deduce that

I ≤
∫ t



∥∥(t – s)q–A–βS(t – s)Aβg(s, ys + φ̂s)
∥∥ds

≤ M–βα�( + β)
�( + αβ)

∫ t


(t – s)αβ–∥∥Aβg(s, ys + φ̂s)

∥∥ds
≤ K(α,β)

∫ t


(t – s)αβ–H

(
 + ‖x‖Bh

)
ds

≤ K(α,β)H
Tαβ

αβ

(
 + r′

)
. (.)

Using assumptions (H) and (H), we have

I ≤
∥∥∥∥∫ t


(t – s)q–S(t – s)f

(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )

)
dτ

∥∥∥∥ds
≤ M

�(α)

∫ t


(t – s)q–m(s)�

(‖φ‖Bh + ‖x‖)ds
≤ MTα

�(α + )
m(s)�

(
r′ + bH

(
 + r′

))
ds

≤ MTα

�(α + )
�

(
r′ + bH

(
 + r′

))
sup
t∈J

m(s). (.)

http://www.advancesindifferenceequations.com/content/2013/1/215
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Combining estimates (.)-(.) yields

I + I + I + I < H
∥∥A–β

∥∥[
M

(
 + ‖φ‖Bh

)
+

(
 + r′

)]
+K(α,β)H

Tαβ

αβ

(
 + r′

)
+

MTα

�(α + )
�

(
r′ + bH

(
 + r′

))
sup
t∈J

m(s). (.)

Dividing both sides of (.) by r, and taking r → ∞, we have ≥ , which is a contradiction.
Hence for some positive number r, ̃(Br) ⊆ Br .
Step : ̃ is continuous on Br .
Let {yn}n∈N ⊂ Br with y(n) → y in Br as n → ∞.
Denote

Fn(s) = f
(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ

)
and

F(s) = f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ

)
.

Then, by using hypotheses (H)(i), (ii), (H)(i), (ii) and Lebesgue’s dominated convergence
theorem, we obtain∫ t


(t – s)q–

∥∥Fn(s) – F(s)
∥∥ds→  as n → ∞, t ∈ J . (.)

Now,

∥∥̃yn – ̃y
∥∥
C ≤ Mq

�( + q)

∫ t


(t – s)q–

∥∥Fn(s) – F(s)
∥∥ds. (.)

Observing (.) and (.), we have

∥∥̃yn – ̃y
∥∥
C →  as n→ ∞,

which implies that ̃ is continuous on Br .
Step : ̃(Br) is equicontinuous on J . Indeed, let z ∈ ̃(Br) and  ≤ t < t ≤ b. Then

there is y ∈ Br such that

∥∥z(t) – z(t)
∥∥

≤ ∥∥T (t)(t) – T (t)(t)
∥∥ +

[∥∥φ()
∥∥ +

∥∥g(,φ()∥∥]
+

∥∥∥∥∫ t


(t – s)q–S(t – s)F(s)ds –

∫ t


(t – s)q–S(t – s)F(s)ds

∥∥∥∥
≤ ∥∥T (t)(t) – T (t)(t)

∥∥ +
[
φ +

∥∥g(,φ()∥∥]
+

∥∥∥∥∫ t

t
(t – s)q–S(t – s)F(s)ds

∥∥∥∥
+

∥∥∥∥∫ t

t–ε

(t – s)q–
[
S(t – s) – S(t – s)

]
F(s)ds

∥∥∥∥
+

∥∥∥∥∫ t

t–ε

[
(t – s)q– – (t – s)q–

]
S(t – s)F(s)ds

∥∥∥∥
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+
∥∥∥∥∫ t–ε


(t – s)q–

[
S(t – s) – S(t – s)

]
F(s)ds

∥∥∥∥
+

∥∥∥∥∫ t–ε



[
(t – s)q– – (t – s)q–

]
S(t – s)F(s)ds

∥∥∥∥.
Using Lemma ., we can verify that the right-hand side of the above inequality tends to
zero as t → t. Therefore, ̃(Br) is equicontinuous on J .
Step : Mönch’s condition holds.
Suppose thatW ⊆ Br is countable andW ⊆ conv({}∪ ̃(W )). We show that β(W ) = ,

where β is the Hausdorff MNC. Without loss of generality, we may suppose that W =
{yn}∞n=. Now we need to show that ̃(W )(t) is relatively compact in X for each t ∈ J .
By Theorem ., we have

β
({

̃yn (s)
}∞
n=

)
≤ β

({∫ t


(t – s)q–S(t – s)Fn(s)ds

}∞

n=

)
≤ Mq

�( + q)

∫ t


(t – s)q–β

({
Fn(s)ds

}∞
n=

)
ds

≤ Mq
�( + q)

∫ t


(t – s)q–η(s)

[
sup

–∞<θ≤
β
({
yn(s + θ ) + φ̂(s + θ )

}∞
n=

)
+ β

({∫ s


h
(
s, τ , ynτ + φ̂τ

)
dτ

}∞

n=

)]
ds

≤
[

Mq
�( + q)

(
 + ζ ∗)M

]
sup
≤τ≤s

β
(
W (τ )

)
ds.

That is,

β
(
̃W (t)

) ≤ MMq
�( + q)

(
 + ζ ∗) sup

≤τ≤s
β
(
W (τ )

)
which implies, by Lemma ., β(̃(W ))≤ Z∗β(W ), where Z∗ is defined in condition (.).
Thus, fromMönch’s condition, we get

β(W )≤ β
(
conv

({} ∪ ̃(W )
))

= β
(
̃(W )

) ≤ Z∗β(W ),

which implies that β(W ) = .
Hence, using Lemma ., ̃ has a fixed point y in Br . Then x = y + φ̂ is a mild solution

of system (.)-(.). This completes the proof. �

4 An application
For / < α < , consider the following fractional order neutral functional integro-
differential of the form

CDq
t

[
z(t,η) +

∫ π


b(θ ,η)z(t, θ )dθ

]
=

∂

∂η z(t,η)
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+μ

(
t,

∫ t

–∞
μ(s – t)z(s,η)ds,

∫ t



∫ 

–∞
μ(s,η, τ – s)z(τ ,η)dτ ds

)
, (.)

z(t, ) = z(t,π ) = , t ≥ , (.)

z(,η) = ψ(η), ≤ η ≤ π , (.)

where μ : J × [, ]× [, ]×R→ R is continuous functions. To write system (.)-(.) to
the form (.)-(.), let X = L[,π ] and A : D(A) ⊂ X → X be defined as follows: Af = f ′

with domain

D(A) =
{
f ∈ X : f , f ′ are absolutely continuous, f ′′ ∈ X, f () = f (π ) = 

}
.

It is well known that A is an infinitesimal generator of a semigroup {T(t), t ≥ } in X
and is given by T(t)w(s) = w(t + s), for w ∈ X, T(t) is not a compact semigroup on X with
β(T(t)D) ≤ β(D), where β is the Hausdorff MNC and there exists an M ≥  such that
supt∈J ‖T(t)‖ ≤ M. Moreover, t → w(tαθ + s)x is equicontinuous [] for t ≥  and θ ∈
(,∞). Define f , g : [,π ]×X → X by

g(z)(η) =
∫ π


b(θ ,η)z(θ )dθ ,

f
(
t,π ,

∫ t


g(s,π )ds

)
(η)

= μ

(
t,

∫ t

–∞
μ(s – t)z(s,η)ds,

∫ t



∫ 

–∞
μ(s,η, τ – s)z(τ ,η)dτ ds

)
.

We take μ(t,
∫ t
–∞ μ(s – t)z(s,η)ds,

∫ t

∫ 
–∞ μ(s,η, τ – s)z(τ ,η)dτ ds) = C sin(x(s)), C is a

constant. F is Lipschitz continuous for the second variable. Then f satisfies hypotheses
(H) and (H). This completes the example.

Conclusions
In the current paper, we are focused on establishing the existence result for a class of ab-
stract fractional neutral functional integro-differential evolution systems involving theCa-
puto fractional derivative in Banach spaces. By using fractional calculus, the properties of
characteristic solution operators, Mönch’s fixed point theorem via MNC, we have found
the existence results. Here, we do not assume that characteristic solution operators are
compact. An example is provided to show the effectiveness of the proposed results.
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