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CHARACTERIZING W 2,p SUBMANIFOLDS
BY p -INTEGRABILITY OF GLOBAL CURVATURES

S�lawomir Kolasiński, Pawe�l Strzelecki

and Heiko von der Mosel

Abstract. We give sufficient and necessary geometric conditions, guaranteeing
that an immersed compact closed manifold Σm ⊂ R

n of class C1 and of arbitrary
dimension and codimension (or, more generally, an Ahlfors-regular compact set Σ
satisfying a mild general condition relating the size of holes in Σ to the flatness
of Σ measured in terms of beta numbers) is in fact an embedded manifold of class
C1,τ ∩ W 2,p, where p > m and τ = 1 − m/p. The results are based on a careful
analysis of Morrey estimates for integral curvature–like energies, with integrands
expressed geometrically, in terms of functions that are designed to measure either
(a) the shape of simplices with vertices on Σ or (b) the size of spheres tangent
to Σ at one point and passing through another point of Σ. Appropriately defined
maximal functions of such integrands turn out to be of class Lp(Σ) for p > m if
and only if the local graph representations of Σ have second order derivatives in Lp

and Σ is embedded. There are two ingredients behind this result. One of them is an
equivalent definition of Sobolev spaces, widely used nowadays in analysis on metric
spaces. The second one is a careful analysis of local Reifenberg flatness (and of the
decay of functions measuring that flatness) for sets with finite curvature energies. In
addition, for the geometric curvature energy involving tangent spheres we provide a
nontrivial lower bound that is attained if and only if the admissible set Σ is a round
sphere.

1 Introduction

In this paper we address the following question: under what circumstances is a com-
pact, m-dimensional set Σ in R

n, satisfying some mild additional assumptions, an
m-dimensional embedded manifold of class W 2,p? For p > m = dim Σ we formulate
two necessary and sufficient criteria for a positive answer. Each of them says that Σ
is an embedded manifold of class W 2,p if and only if a certain geometrically defined
integrand is of class Lp with respect to the m-dimensional Hausdorff measure on Σ.
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One of these integrands measures the flatness of all (m + 1)-dimensional simplices
with one vertex at a fixed point of Σ and other vertices elsewhere on Σ; see Definition
1.2. The other one measures the size of all spheres that touch an m-plane passing
through a fixed point of Σ and contain another (arbitrary) point of Σ (Definition
1.3).

The extra assumptions we impose on the set Σ are: (1) Ahlfors regularity with
respect to the m-dimensional Hausdorff measure H m, and (2) roughly speaking, a
certain relation between the flatness of Σ and the size of “holes” it might have: the
flatter Σ is, the smaller these holes must be. To state the main result, Theorem 1.4,
formally, let us first specify these two conditions precisely and then define the geo-
metric integrands mentioned above. Throughout the paper we denote with B

n(x, s)
an open n-dimensional ball of radius s centered at the point x ∈ R

n, and we write
a ≈ b if a/C ≤ b ≤ Ca for some constant C ≥ 1, and a � b (or a � b), if only the
left (or right) of these inequalities holds.
1.1 Statement of results

Definition 1.1 (the class of m-fine sets). Let Σ ⊂ R
n be compact. We call Σ an

m-fine set and write Σ ∈ F (m) if there exist constants AΣ > 0 and MΣ ≥ 2 such
that

(i) (Ahlfors regularity)
for all x ∈ Σ and r ≤ diam Σ we have

H m(Σ ∩ B
n(x, r)) ≥ AΣrm ; (1.1)

(ii) (control of “holes” in small scales)
for each x ∈ Σ and r ≤ diam Σ we have

θΣ(x, r) ≤ MΣ βΣ(x, r).

Here, βΣ and θΣ denote, respectively, the beta numbers and the bilateral beta
numbers of Σ, defined by

βΣ(x, r) :=
1
r

inf

{
sup

z∈Σ∩B(x,r)
dist(z, x + H) : H ∈ G(n, m)

}
, (1.2)

θΣ(x, r) :=
1
r

inf
{

dH (Σ ∩ B(x, r), (x + H) ∩ B(x, r)) : H ∈ G(n, m)
}

, (1.3)

where G(n, m) stands for the Grassmannian of all m-dimensional linear subspaces
of R

n, and where

dH (E, F ) := sup{dist(y, F ) : y ∈ E} + sup{dist(z, E) : z ∈ F}
is the Hausdorff distance of sets in R

n. Intuitively, condition (ii) of Definition 1.1
ascertains that if Σ is flat at some scale r > 0, then the gaps and holes in Σ cannot be
large. Their sizes are at most comparable to the degree of flatness of Σ. If an m-fine
set Σ satisfies βΣ(x, r) → 0 uniformly w.r.t x ∈ Σ as r → 0, then Σ is Reifenberg
flat with vanishing constant, see e.g. David et al. [DKT01, Definition 1.3] for a defi-
nition. However, note that neither the Reifenberg flatness of Σ, nor rectifiability of
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Figure 1: Left a union of countably many spheres is in F (2) ∩ A (δ). Right a set in F (1) \
A (δ)

Σ itself is required in Definition 1.1. Both these properties follow from the finiteness
of geometric curvature energies we consider here.

It is relatively easy to see that F (m) contains immersed C1 submanifolds of R
n

(cf. [Kol11, Example 1.57] for a short proof), or embedded Lipschitz submanifolds
without boundary. It also contains other sets such as the following stack of spheres
Σ =

⋃∞
i=0 Σi∪{0}, where the 2-spheres Σi = S

2(ci, ri) ⊂ R
3 with radii ri = 2−i−2 > 0

are centered at the points ci = (pi + pi+1)/2 for pi = (2−i, 0, 0) ∈ R
3, i = 0, 1, 2, . . . .

Note that the spheres Σi and Σi+1 touch each other at pi+1, and the whole stack Σ
is an admissible set in the class F (2); see Figure 1.

A slightly different class A (δ) of admissible sets was used by the second and
third author in [SM11b]. Roughly speaking, the elements of A (δ) are Ahlfors reg-
ular unions of countably many continuous images of closed manifolds, and have to
satisfy two more conditions: a certain degree of flatness and a related linking con-
dition; all this holds up to a set of H m-measure zero. The class A (δ) contains, for
example, finite unions of C1 embedded manifolds that intersect each other along
sets of H m-measure zero (such as the stack of spheres in Figure 1), and bi-Lipschitz
images of such unions, but also certain sets with cusp singularities. For example, an
arc with two tangent segments,

A =
{
x ∈ R

2 : x1, x2 ≥ 0 and
(
x2

1 + x2
2 = 1 or max

i=1,2
|xi| = 1

)}
is in A (δ) for each δ > 0. However, A is not in F (1) as the βA(·, r) goes to zero as
r → 0 at the cusp points while θA(x, r) remains constant there. On the other hand,
the union of a segment and countably many circles that are contained in planes
perpendicular to that segment,

{
(t, 0, 0) : t ∈ [0, 1]

} ∪
∞⋃

j=1

γj ∪
∞⋃

j=2

γ̃j ,

where

γj =
{

2−j(1, cos ϕ, sin ϕ) : ϕ ∈ [0, 2π]
}
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and γ̃j is the image of γj under the reflection (x, y, z) 
→ (1 − x, y, z), is not in A (δ)
as the linking condition is violated at all the points of the segment but it does belong
to F (1), as the circles prevent the β(x, r) from going to zero at the endpoints of the
segment.

Both F (m) and A (δ) contain sets of fractal dimension, e.g. sufficiently flat von
Koch snowflakes. However, if one of our curvature energies of Σ is finite, it follows
rather easily that the Hausdorff dimension of Σ must be m.

Definition 1.2 (Global Menger curvature at a point). Let Σ ∈ F(m) and x ∈ Σ.
Set

KG[Σ](x) ≡ KG(x) := sup
x1,...,xm+1∈Σ

K(x, x1, . . . , xm+1),

where

K(x, x1, . . . , xm+1) :=
H m+1(conv(x, x1, . . . , xm+1))

diam
({x, x1, . . . , xm+1}

)m+2 , (1.4)

and conv(E) and diam(E) denote the convex hull and the diameter of a set E,
respectively.1 We say that KG(x) is the global Menger curvature of Σ at x.

When m = 1 and Σ is just a curve or a more general one-dimensional set then
K(x0, x1, x2) is the ratio of the area of the triangle T = conv(x0, x1, x2) to the third
power of the maximal edge length of T . Thus, K is controlled by R(T )−1, where
R(T ) is the circumradius of T ;

K(x0, x1, x2) ≤ 1
4R(T )

=
Area (T )

|x0 − x1| |x1 − x2| |x2 − x0| .

For triangles with angles bounded away from 0 and π, both quantities are in fact
comparable. Therefore, in this case our global curvature function KG does not exceed
a constant multiple of the global curvature as defined by Gonzalez and Maddocks
[GM99], and widely used afterwards; see e.g. [GMSM02,CKS02,SMM03,SM03,
SM04,SM07,GM11,GM11], and for global curvature on surfaces [SM05,SM06]. Also
for m = 2, integrated powers of a function quite similar to K(x0, x1, x2) in (1.4) were
used in [SM11a] to prove geometric variants of Morrey–Sobolev imbedding theorems
for compact two-dimensional sets in R

3 in an admissibility class slightly more general
than the class A (δ) defined in [SM11b].

To define the second integrand, we first introduce the tangent-point radius, which
for the purposes of this paper is a function

Rtp : Σ × Σ × G(n, m) → [0, +∞]

1 The function in (1.4) resembles the type of discrete curvatures considered by Lerman and White-
house [LW11], [LW09] but scales differently, see Remark 5.2 in [SM11a].
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given by

Rtp(x, y; H) :=
|y − x|2

2 dist(y, x + H)
. (1.5)

Geometrically, this is the radius of the smallest sphere tangent to the affine m-plane
x + H and passing through x and y. (If y happens to be contained in x + H, in
particular if y = x, then we set 1/Rtp(x, y; H) = 0.)

Definition 1.3 (Global tangent-point curvature). Assume that H : Σ → G(n, m) is
an arbitrary map. Set

Ktp[Σ](x) ≡ Ktp(x) ≡ Ktp(x, H(x)) := sup
y∈Σ

1
Rtp(x, y; H(x))

.

Of course, the definition of Ktp : Σ → [0, +∞] depends on the choice of H. How-
ever, we shall often omit the particular map H from the notation, assuming tacitly
that a choice of ‘tangent’ planes Σ 
 x 
→ H(x) ∈ G(n, m) has been fixed.

Theorem 1.4. Let 0 < m < n and Σ ∈ F(m). Assume p > m. The following
conditions are equivalent:

(1) Σ is an embedded W 2,p-submanifold of R
n without boundary;

(2) KG[Σ] ∈ Lp(Σ, H m);
(3) There is a map H : Σ → G(n, m) such that for this map

Ktp[Σ] ≡ Ktp(·, H(·)) ∈ Lp(Σ, H m).

A quick comment on the equivalence of (1) and (3) should be made right away: it
is a relatively simple exercise to see that for a C1 embedded manifold Σ the Lp norm
of Ktp(·, H(·)) can be finite for at most one continuous map H : Σ → G(n, m)—the
one sending every x ∈ Σ to TxΣ ∈ G(n, m).

Let us also mention a toy case of the equivalence of conditions (1) and (2) in
the above theorem. For rectifiable curves γ in R

n the equivalence of the arc-length
parametrization Γ of γ being injective and in W 2,p, and the global curvature of γ
being in Lp has been proved by the second and third author in [SM07]. To be more
precise, let SL := R/LZ, L > 0, be the circle with perimeter L, and denote by
Γ : SL → R

n the arclength parametrization of a closed rectifiable curve γ : S
1 → R

n

of length L. Then the global radius of curvature function ρG[γ] : SL → R, ; see, e.g.,
[GMSM02], is defined as

ρG[γ](s) := inf
σ,τ∈SL\{s}

σ �=τ

R(Γ(s), Γ(σ), Γ(τ)), s ∈ SL, (1.6)

where, again, R(·, ·, ·) denotes the circumradius of a triangle, and the global curvature
κG[γ](s) of γ is given by

κG[γ](s) :=
1

ρG[γ](s)
. (1.7)
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In [SM07] we prove for p > 1 that Γ ∈ W 2,p(SL, Rn) and Γ is injective (so that γ
is simple) if and only if κG[γ] ∈ Lp. Examples show that this fails for p = 1 = dim γ:
There are embedded curves of class W 2,1 whose global curvature κG is not in L1.
The first part of the proof (3) ⇒ (1) for m = 1, namely the optimal C1,τ -regularity
of curves with finite energy, is modelled on the argument that was used in [SM12]
for a different geometric curvature energy, namely for

˜
γ×γ 1/Rq

tp.
We conjecture that the implications (1) ⇒ (2), (3) of Theorem 1.4 fail for p =

m > 1.

Remark. If (2) or (3) holds, then according to Theorem 1.4 Σ is embedded and
locally, for some R > 0, Σ ∩ B

n(x, R) is congruent to a graph of a W 2,p function
f : R

m → R
n−m. Since p > m, we also know from a result of Calderón and Zygmund

(see e.g. [EG92, Theorem 1, p. 235]) that Df : R
m → L(Rm, Rn−m) is differentiable

a.e. in the classic sense.

Remark. One can complement Theorem 1.4 by the contribution of Blatt and the
first author [BK12] in the following way. Suppose that 2 ≤ k ≤ m + 2 and in Defini-
tion 1.2 one takes the supremum only with respect to (m+2)−k points of Σ, defining
the respective curvature KG,k as a function of k-tuples (x0, x1, . . . , xk−1) ∈ Σk. Sup-
pose that p > m(k − 1) and Σ is a C1 embedded manifold. Then, KG,k is of class
Lp(Σk, H mk) if and only if Σ is locally a graph of class W 1+s,p(Rm, Rn−m), where
s = 1 − m(k − 1)p−1 ∈ (0, 1). If k = m + 2 and p > m(m + 2), then the assumption
that Σ be a C1 manifold is not necessary; one can just assume Σ ∈ F (m). See
[BK12] for details. We believe that the characterization of [BK12] does hold for all
2 ≤ k ≤ m + 2 without the assumption that Σ is of class C1. (The regularity theory
of [Kol11] has been generalized to all curvatures KG,k).

Blatt’s preprint [Bla11] contains a similar characterization in terms of frac-
tional Sobolev spaces of those C1 manifolds Σ for which the tangent–point energy˜

Σ×Σ 1/(Rtp)q is finite.

Remark. Allard, in his classic paper [Al72], develops a regularity theory for m-
dimensional varifolds whose first variation (i.e., the distributional counterpart of
mean curvature) is in Lp for some p > m. His Theorem 8.1 ascertains that, under
mild extra assumptions on the density function of such a varifold V , an open and
dense subset of the support of ‖V ‖ is locally a graph of class C1,1−m/p. For p > m
Sobolev–Morrey imbedding yields W 2,p ⊂ C1,1−m/p and one might näıvely won-
der if a stronger theorem does hold, implying Allard’s (qualitative) conclusion just
by Sobolev–Morrey. Indeed, Duggan [Dug86] proved later an optimal result in this
direction. For integral varifolds, W 2,p-regularity can be obtained directly via elliptic
regularity theory, see Menne [Men11, Lemmata 3.6 and 3.21].

In Allard’s case the ‘lack of holes’ is built into his assumption on the first varia-
tion δV of V . Our setting is not so close to PDE theory: both ‘curvatures’ are defined
in purely geometric terms and in a nonlocal way. Here, the ‘lack of holes’ follows,
roughly speaking, from a delicate interplay between the inequality θ(x, r) � β(x, r)
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built into the definition of F (m) and the decay of β(x, r) which follows from the
finiteness of energy. A more detailed account on our strategy of proof here, is pre-
sented in the next subsection.

At this stage we do not know for our curvature energies what the situation is
like in the scale invariant case p = m. For two-dimensional integer multiplicity var-
ifolds, however (or in the simpler situation of W 2,2-graphs over planar domains)
Toro [Tor94] was able to prove the existence of bi-Lipschitz parametrizations. For
m-dimensional sets Toro [Tor95, Eq.(1)] established a sufficient condition for the
existence of bi-Lipschitz parametrizations in terms of θ. Her condition is satisfied,
e.g., by S. Semmes’ chord-arc surfaces with small constant, and by graphs of func-
tions that are sufficiently well approximated by affine functions; see [Tor95, Section 5]
for the details.

Remark. Following the reasoning in [SM07, Lemma 7] one can easily provide non-
trivial lower bounds for the global tangent-point curvature for hypersurfaces (n =
m + 1), and also for curves m = 1 < n; see Theorem 1.5 below. Indeed, setting
E := ‖Ktp[Σ]‖Lp(Σ), where Σ ⊂ R

n is a compact connected m-dimensional C1-
submanifold without boundary, we can find at least one point x ∈ Σ such that
Ktp[Σ](x) ≤ E/(H m(Σ)1/p), since otherwise we had a contradiction via

E =

⎛
⎝ˆ

Σ

(
Ktp[Σ](x)

)p
dH m(x)

⎞
⎠

1/p

>
E

H (Σ)1/p
H (Σ)1/p = E.

Therefore R := infy∈Σ Rtp(x, y, TxΣ) ≥ H m(Σ)1/p/E. If there existed an open ball
B

n(a, R) with

(x + TxΣ) ∩ ∂B
n(a, R) = {x}

such that Σ ∩ B
n(a, R) �= ∅, then we could find a strictly smaller sphere tangent to

Σ in x and containing yet another point y ∈ Σ contradicting the definition of R.
Hence we have shown that the union of such open balls

M :=
⋃

{B
n(a, R) : ∂B

n(a, R) ∩ (x + TxΣ) = {x}} (1.8)

contains no point of Σ. In other words, Σ is a compact embedded submanifold
without boundary, contained in R

n \ M , and one can ask for the area minimizing
submanifold in R

n \ M . In codimension one, i.e., for m = n − 1, Σ = ∂Ω for a
bounded open set Ω ⊂ R

n, and the union of balls defining M just consists of two
such balls, one in Ω and one in the unbounded exterior of Σ. So, due to the classic
isoperimetric inequality (see, e.g. [Fed69, Theorem 3.2.43]) one finds

H n−1(Σ) ≥ nω1/n
n H n((Ω))

n−1
n

≥ nω1/n
n H n(B(a, R))

n−1
n = H n−1(∂B

n(a, R)) = nωnRn−1.
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which by definition of R can be rewritten as

‖Ktp[Σ]‖Lp(Σ) = E ≥ (H n−1(Σ))
1
p
− 1

n−1 (nωn)
1

n−1 (1.9)

with equality if and only if Σ equals a round sphere. Hence, we obtain the following
simple result.

Theorem 1.5. Let p > 0. Among all compact embedded C1-hypersurfaces with
given surface area, the round sphere uniquely (up to isometries) minimizes the energy
‖Ktp[Σ]‖Lp(Σ,H n−1). If p > n − 1, the same holds true for all (n − 1)-fine sets Σ ∈
F (n − 1).

Similarly, for m = 1 one concludes that any of those great circles on any of the
balls B

n(a, R) generating M in (1.8) that are also geodesics on M uniquely minimize
E among all closed simple C1-curves Σ ≡ γ ⊂ R

n \ M , which provides the lower
bound

‖Ktp[γ]‖Lp(γ) = E ≥ 2πH 1(γ)
1
p
−1. (1.10)

This is exactly what we found for curves in [SM07, Lemma 7 (3.1)], and is also
consistent with (1.9) if n = 2 = m + 1.

1.2 Essential ideas and an outline of the proof. This paper grew out
of our interest in geometric curvature energies and earlier related research, cf.
[SM07,SSM10,SM11a,SM11b,Kol11]. While working on the integral Menger cur-
vature energy of rectifiable curves γ ⊂ R

n

Mp(γ) =
˚

γ×γ×γ

1
Rp(x, y, z)

dH 1(x) dH 1(y) dH 1(z), p > 3,

we realized how slicing can be used to obtain optimal Hölder continuity of arc-length
parametrizations.2 (The scale invariant exponent p = 3 is critical here: polygons have
infinite Mp-energy precisely for p ≥ 3; see Scholtes [Sch11] for a proof).

One crucial difference between curves γ and m-dimensional sets Σ in R
n for

m ≥ 2 lies in the distribution of mass in balls on various scales: If γ is a rectifiable
curve and r < 1

2 diam γ, then obviously H 1(γ ∩ B
n(x, r)) ≥ r for each x ∈ γ. For

m > 1 the measure H m(Σ ∩ B
n(x, r)) might be much smaller than rm due to com-

plicated geometry of Σ at intermediate length scales. In [SM11a] we have devised a
method, allowing us to obtain estimates of H m(Σ ∩ B

n(x, r)) for m = 2, n = 3 and
all radii r < R0, with R0 depending only on the energy level of Σ in terms of its
integral Menger curvature. This method has been later reworked and extended in the

2 The second and the third author of this paper acknowledge with gratitude the stimulating con-
versations that they had in the spring of 2008 with Joan Verdera at CRM in Pisa. His insight that
most of the work in [SSM10] should and could be phrased in the language of beta numbers has
helped us a lot in our subsequent research.
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subsequent papers [SM11b,Kol11], to yield the so-called uniform Ahlfors regularity,
i.e., estimates of the form

H m(Σ ∩ B
n(x, r)) ≥ 1

2
ωmrm, for all r < R0 = R0(energy),

for other curvature energies and arbitrary 0 < m < n (to cope with the case of higher
codimension, we used a linking invariant to guarantee that Σ has large projections
onto some m-dimensional planes). Combining such estimates for H m(Σ ∩ B

n(x, r))
with an extension of ideas from [SSM10] we obtained in [SM11a,SM11b,Kol11] a
series of results, establishing C1,α regularity for surfaces, or more generally, for a pri-
ori non-smooth m-dimensional sets for which certain geometric curvature energies
are finite. Finally, we also realized that the well-known pointwise characterization of
W 1,p-spaces of Haj�lasz [Haj96] is the missing link, allowing us to combine the ideas
from [Kol11,SM11b] in the present paper in order to provide with Theorem 1.4 a far-
reaching, general extension of [SM07, Theorems 1 & 2] from curves to m-dimensional
manifolds in R

n.
Let us now discuss the plan of proof of Theorem 1.4 and outline the structure of

the whole paper.
The easier part is to check that if Σ is an embedded compact W 2,p manifold

without boundary, then conditions (2) and (3) hold. We work in small balls B(x, R)
centered on Σ, with R > 0 chosen so that Σ∩B(x, R) is a (very flat) graph of a W 2,p

function f : B
m(x, 2R) → R

n−m. Using Morrey’s inequality twice, we first show that

βΣ(a, r) � g(a)r, a ∈ B(x, R) ∩ Σ, 0 < r < R,

for a function g ∈ Lp that is comparable to some maximal function of |D2f |. Next,
working with this estimate of beta numbers on all scales r = R/2k, k = 0, 1, 2, . . .,
we show that in each coordinate patch each of the global curvatures KG and Ktp

can be controlled by two terms,

KG(a), resp. Ktp(a) � g(a) + C(R)

where C(R) is a harmless term depending only on the size of the patches. (It is
clear from the definitions that for embedded manifolds one can estimate both KG

and Ktp taking into account only the local bending of Σ and working in coordinate
patches of fixed size; the effects of self-intersections are not an issue). This yields
Lp-integrability of KG and Ktp. We refer to Sect. 4 for the details.

The reverse implications require more work. The proofs that (3) or (2) implies
(1) have, roughly speaking, four separate stages. First, we use energy estimates to
show that if ‖KG‖Lp or ‖Ktp‖Lp are less than E1/p for some finite constant E, then

βΣ(x, r) �
(

E

AΣ

)κ/(p−m)

rκ.
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Here κ denotes a number in (0, 1 − m/p), depending only on m, p with different
explicit values for KG or Ktp, and AΣ is the constant from Definition 1.1 measur-
ing Ahlfors regularity of Σ. By the very definition of m-fine sets, such an estimate
implies that the bilateral beta numbers of Σ tend to zero with a speed controlled by
rκ. In particular, Σ is Reifenberg flat with vanishing constant, and an application of
[DKT01, Proposition 9.1] shows that Σ is an embedded manifold of class C1,κ. See
Section 3.1 for more details.
Next, we prove the uniform Ahlfors regularity of Σ, i.e. we show that

H m(Σ ∩ B(x, r)) ≥ 1
2
H m(Bm(x, r))

for all radii r ∈ (0, R0), where R0 depends only on the energy bound E and the
parameters n, m, p, but not at all on Σ itself. Here, we rely on methods from our
previous papers [Kol11,SM11a,SM11b]. Roughly speaking, we combine topological
arguments based on the linking invariant with energy estimates to show that for
each r < R0 = R0(E, n, m, p) the portion of Σ in B

n(x, r) has large projection onto
some plane H = H(r) ∈ G(n, m). See Section 3.2.

(There is a certain freedom in this phase of the proof; it would be possible to
prove uniform Ahlfors regularity first, and estimate the decay of βΣ(x, r) afterwards.
This approach has been used in [SM11a,SM11b].)

After the second step we know that in coordinate patches of diameter comparable
to R0 the manifold Σ coincides with a graph of a function f ∈ C1,κ(Bm, Rn−m). The
third stage is to bootstrap the Hölder exponent κ to the optimal τ = 1 − m/p > κ
for both global curvatures KG and Ktp. This is achieved by an iterative argument
which uses slicing: if the integral of the global curvature to the power p over a ball is
not too large, then this global curvature itself cannot be too large on a substantial
set of good points in that ball. Geometric arguments based on the definition of the
global curvature functions KG and Ktp show that |Df(x) − Df(y)| � |x − y|τ on
the set of good points. It turns out that there are plenty of good points at all scales,
and in the limit we obtain a similar Hölder estimate on the whole domain of f . See
Section 3.3.

The fourth and last step is to combine the C1,τ -estimates with a pointwise char-
acterization of first order Sobolev spaces obtained by Haj�lasz [Haj96]. The idea
is very simple. Namely, the bootstrap reasoning in the third stage of the proof
(Section 3.3) yields the following, e.g., for the global Menger curvature KG: On a
scale R1 ≈ R0, the intersection Σ∩B

n(a, R1) coincides with a flat graph of a function
f : P � R

m → R
n−m � P⊥, with

|Df(x) − Df(y)| �

⎛
⎜⎝ ˆ

Bm( x+y

2
,5|x−y|)

KG

(
(ξ, f(ξ))

)p
dξ

⎞
⎟⎠

1/p

|x − y|τ
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for τ = 1 − m/p. Such an inequality is true for every p > m so we can easily fix a
number p′ ∈ (m, p) and show that

|Df(x) − Df(y)| �
(
M(x) + M(y)

)|x − y|, (1.11)

where M(·)p′
is the Hardy–Littlewood maximal function of the global curvature.

Since p/p′ > 1, an application of the Hardy–Littlewood maximal theorem yields
Mp′ ∈ Lp/p′

, or, equivalently, M ∈ Lp. Thus, by the well known result of Haj�lasz
(see Section 2.3), (1.11) implies that Df ∈ W 1,p. In fact, the Lp norm of D2f is
controlled by a constant times the Lp-norm of the global Menger curvature KG. An
analogous argument works for the global tangent-point curvature function Ktp. This
concludes the whole proof; see Section 3.4.

For each of the global curvatures, there are some technical variations in that
scheme; here and there we need to adjust an argument to one of them. However, the
overall plan is the same in both cases.

The paper is organized as follows. In Section 2, we gather some preliminaries
from linear algebra and some elementary facts about simplices, introduce some spe-
cific notation, and list some auxiliary results with references to existing literature.
Section 3 forms the bulk of the paper. Here, following the sketch given above, we
prove that Lp bounds for (either of) the global curvatures imply that Σ is an embed-
ded manifold with local graph representations of class W 2,p. Finally, in Section 4 we
prove the reverse implications, concluding the whole proof of Theorem 1.4.

2 Preliminaries

2.1 The Grassmannian. In this paragraph we gather a few elementary facts
about the angular metric <)(·, ·) on the Grassmannian G(n, m) of m-dimensional
linear subspaces3 of R

n.
Here is a summary: for two m-dimensional linear subspaces

U = span {u1, . . . , um} and V = span {v1, . . . , vm}
in R

n such that the bases (u1, . . . , um), (v1, . . . , vm) are roughly orthonormal and
such that |ui−vi| ≤ ε, we have the estimate <)(U, V ) � ε. This will become especially
useful in Section 3.3.

For U ∈ G(n, m) we write πU to denote the orthogonal projection of R
n onto U

and we set QU = IdRn − πU = πU⊥ , where IdRn : R
n → R

n denotes the identity
mapping.

3 Formally, G(n, m) is defined as the homogeneous space

G(n, m) := O(n)/(O(m) × O(n − m)),

where O(n) is the orthogonal group; see e.g. Hatcher’s book [Hat02, Section 4.2, Examples 4.53,
4.54 and 4.55] for the reference. Thus G(n, m) could be treated as a topological space with the
standard quotient topology. Instead, we work with the angular metric <)(·, ·), see Definition 2.1.
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Definition 2.1. Let U, V ∈ G(n, m). We set

<)(U, V ) := ‖πU − πV ‖ = sup
w∈Sn−1

|πU (w) − πV (w)|.

The function <)(·, ·) defines a metric on the Grassmannian G(n, m). The topology
induced by this metric agrees with the standard quotient topology of G(n, m). We
list several properties of <) below. They will become useful for Hölder estimates of
the graph parameterizations of Σ in Section 3.3.

Remark. Notice that

<)(U, V ) = ‖πU − πV ‖ = ‖IdRn − QU − (IdRn − QV )‖ = ‖QV − QU‖.

Proposition 2.2 (Lemma 2.2 in [SM11b]). If the spaces U, V ∈ G(n, m) have ortho-
normal bases (e1, . . . , em) and (f1, . . . , fm), respectively, and if |ei − fi| ≤ ϑ for
i = 1, . . . , m, then <)(U, V ) ≤ 2mϑ.

Definition 2.3. Let V ∈ G(n, m) and let (v1, . . . , vm) be a basis of V . Fix some
radius ρ > 0 and two constants ε ∈ (0, 1) and δ ∈ (0, 1). We say that (v1, . . . , vm) is
a (ρ, ε, δ)-basis if

(1 − ε)ρ ≤ |vi| ≤ (1 + ε)ρ for i = 1, . . . , m

and |〈vi, vj〉| ≤ δρ2 for i �= j.

Specifically, a (ρ, 0, 0)-basis will be called ortho-ρ-normal.

Proposition 2.4. Let ρ > 0, ε ∈ (0, 1/2) and δ ∈ (0, 1) be some constants. Let
(v1, . . . , vm) be a (ρ, ε, δ)-basis of V ∈ G(n, m). Then there exist an ortho-ρ-normal-
basis (v̂1, . . . , v̂m) of V and a constant C2 = C2(m) such that

|vi − v̂i| ≤ (ε + C2δ)ρ for i = 1, . . . , m.

Proof. By scaling we may assume that ρ = 1. Define wi := vi/|vi| for i = 1, . . . , m,
f1 := w1, v̂1 := w1, and then recursively

fk := wk −
k−1∑
i=1

〈wk, v̂i〉v̂i, and v̂k := fk/|fk| for k = 1, . . . , m,

and observe that |wi − vi| = |1 − |vi|| ≤ ε and |〈wi, wj〉| ≤ δ/(1 − ε)2 < 4δ for
all i, j = 1, . . . , m, and in addition, V = span{w1, . . . , wm} = span{v̂1, . . . , v̂m} by
construction. Notice that ||fk| − 1| = ||fk| − |wk|| ≤ |fk − wk|, and therefore

|fk − v̂k| = ||fk| − 1| ≤ |fk − wk|
so that by

|vk − v̂k| ≤ |vk − wk| + |wk − fk| + |fk − v̂k| ≤ ε + 2|fk − wk|
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the main task turns out to be to estimate ak := |fk − wk| for k = 1, . . . , m, where
we get immediately a1 = 0 by definition. If one estimates

ak ≤
k−1∑
i=1

|〈wk, wi〉| +
k−1∑
i=1

|wi − v̂i|

≤ 4δ(k − 1) +
k−1∑
i=1

(ai + |fi − v̂i|)

≤ 4δ(k − 1) + 2
k−1∑
i=1

ai,

one can prove by induction that

ak ≤ 4δ

[
(k − 1) + 2

l∑
i=0

3i(k − i − 2)

]
+ 2 · 3l+1

k−l−2∑
i=1

ai for all l = 0, . . . , k − 3.

Specifically for l = k − 3 we obtain

ak ≤ 4δ
[
(k − 1) + 2

k−3∑
i=0

3i(k − i − 2)
]
,

and therefore, for all k = 1, . . . , m,

|vk − v̂k| ≤ ε + 8δ
[
(m − 1) + 2

m−3∑
i=0

3i(m − i − 2)
]

=: ε + C2(m)δ. ��

Proposition 2.5. Let U, V ∈ G(n, m) and let (e1, . . . , em) be some orthonormal
basis of V . Assume that for each i = 1, . . . , m we have the estimate dist(ei, U) =
|QU (ei)| ≤ ϑ for some ϑ ∈ (0, 1/

√
2). Then there exists a constant C3 = C3(m) such

that

<)(U, V ) ≤ C3ϑ.

Proof. Set ui := πU (ei). For each i = 1, . . . , m we have |QU (ei)| ≤ ϑ, so

|ui − ei| = |QU (ei)| ≤ ϑ hence

1 − ϑ2 <
√

1 − ϑ2 ≤ |ui| ≤ 1 < 1 + ϑ2 for i = 1, . . . , m. (2.12)

For any i �= j the vectors ei and ej are orthogonal, hence

0 = 〈ei, ej〉 = 〈πU (ei) + QU (ei), πU (ej) + QU (ej)〉
= 〈πU (ei), πU (ej)〉 + 〈QU (ei), QU (ej)〉.



950 S. KOLASIŃSKI ET AL. GAFA

Therefore

|〈ui, uj〉| = |〈QU (ei), QU (ej)〉| ≤ |QU (ei)||QU (ej)| ≤ ϑ2. (2.13)

Estimates (2.12) and (2.13) show that (u1, . . . , um) is a (ρ, ε, δ)-basis of U with
constants ρ = 1, ε = ϑ2 and δ = ϑ2. Let (f1, . . . , fm) be the orthonormal basis of U
arising from (u1, . . . , um) by means of Proposition 2.4, so that we obtain

|fi − ei| ≤ |fi − ui| + |ui − ei| ≤ (1 + C2)ϑ2 + ϑ.

Using Proposition 2.2 and the fact that ϑ2 < ϑ < 1 we finally get

<)(U, V ) ≤ 2m((1 + C2)ϑ2 + ϑ) ≤ 2m(1 + C2 + 1)ϑ.

Now we can set C3 = C3(m) := 2m(1 + C2(m) + 1) = 2m(2 + C2(m)). ��
Proposition 2.6. Let (v1, . . . , vm) be a (ρ, ε, δ)-basis of V ∈ G(n, m) with con-
stants ρ > 0, ε ∈ (0, 1/2) and δ ∈ (0, 1). Let (u1, . . . , um) be some basis of U ∈
G(n, m), such that |ui − vi| ≤ ϑρ for some ϑ ∈ (0, 1√

2
− 1

4) and for each i = 1, . . . , m.

Furthermore, let us assume that

C3(ε + C2δ) < 1/2. (2.14)

Then there exists a constant C4 = C4(m, ε, δ) such that

<)(U, V ) ≤ C4ϑ.

Proof. Set ei := vi/ρ and let (ê1, . . . , êm) be the orthonormal basis of V arising from
(e1, . . . , em) by virtue of Proposition 2.4. Set fi := ui/ρ.

|QU (êi)| ≤ |QU (êi − ei)| + |QU (ei)| ≤ |êi − ei| <)(U, V ) + |ei − fi|
≤ |êi − ei| <)(U, V ) + ϑ.

From Proposition 2.4 we have |êi − ei| ≤ ε + C2δ, so

|QU (êi)| ≤ (ε + C2δ) <)(U, V ) + ϑ ≤ 2(ε + C2δ) + ϑ
(2.14)
<

1
4

+ ϑ <
1√
2
,

since C3(m) ≥ 4 for all m ∈ N; see the definition of C3(m) at the end of the proof
of Proposition 2.5. Hence Proposition 2.5 is applicable to the orthonormal basis
(ê1, . . . , êm) of V , and we conclude

<)(U, V ) ≤ C3(ε + C2δ) <)(U, V ) + C3ϑ

hence (1 − C3(ε + C2δ)) <)(U, V ) ≤ C3ϑ.

Since we assumed (2.14) we can divide both sides by 1 − C3(ε + C2δ) reaching
the estimate

<)(U, V ) ≤ C3

1 − C3(ε + C2δ)
ϑ.
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Finally we set

C4 = C4(m, ε, δ) :=
C3(m)

1 − C3(m)(ε + C2(m)δ)
. ��

2.2 Angles and intersections of tubes. The results of this subsection are
taken from our earlier work [SM11b]. We are concerned with the intersection of two
tubes whose m-dimensional ‘axes’ form a small angle, i.e. with the set

S(H1, H2) := {y ∈ R
n : dist(y, Hi) ≤ 1 for i = 1, 2}, (2.15)

where H1 �= H2 ∈ G(n, m) are such that πH1 restricted to H2 is bijective. Since the
set {y ∈ R

n : dist(y, Hi) ≤ 1} is convex, closed and centrally symmetric4 for each
i = 1, 2, we immediately obtain the following:

Lemma 2.7. S(H1, H2) is a convex, closed and centrally symmetric set in R
n;

πH1(S(H1, H2)) is a convex, closed and centrally symmetric set in H1
∼= R

m.

For the global tangent-point curvature Ktp, the next lemma and its corollary
provide a key tool in bootstrap estimates in Section 3.3.

Lemma 2.8. There exist constants 1 > ε1 = ε1(m) > 0 and c2(m) < ∞ with the
following property. If H1, H2 ∈ G(n, m) satisfy 0 < <)(H1, H2) = α < ε1, then there
exists an (m − 1)-dimensional subspace W ⊂ H1 such that

πH1

(
S(H1, H2)

) ⊂ {y ∈ H1 : dist(y, W ) ≤ 5c2/α}.

For the proof, we refer to [SM11b, Lemma 2.6]. It is an instructive elementary
exercise in classical geometry to see why this lemma is true for m = 2 and n = 3.

The next lemma is now practically obvious.

Lemma 2.9. Suppose that H ∈ G(n, m) and a set S′ ⊂ H is contained in {y ∈
H : dist(y, W ) ≤ d} for some d > 0, where W is an (m − 1)-dimensional subspace
of H. Then

H m
(
S′ ∩ B

n(a, s)
) ≤ 2msm−1d

for each a ∈ H and each s > 0.

Proof. Writing each y ∈ S′ ∩ B
n(a, s) as y = πW (y) + (y − πW (y)), one sees that

S′ ∩ B
n(a, s) is contained in a rectangular box with (m− 1) edges parallel to W and

of length 2s and the remaining edge perpendicular to W and of length 2d. ��

4 The term central symmetry is used here for central symmetry with respect to 0 in R
n.
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2.3 The voluminous simplices. Several energy estimates for the global Meng-
er curvature are based on considerations of simplices that are roughly regular, which
means that they have all edges ≈ d and volume ≈ dm+1. Here are the necessary def-
initions, making this vague description precise.

Definition 2.10. Let T = conv(x0, . . . , xm+1) be an (m + 1)-dimensional simplex
in R

n. For each j = 0, . . . , m + 1 we define the faces fcj(T ), the heights hj(T ) and
the minimal height hmin(T ) by

fcj(T ) = conv(x0, . . . , xj−1, xj+1, . . . , xm+1),
hj(T ) = dist(xj , aff{x0, . . . , xj−1, xj+1, . . . , xm+1})

and hmin(T ) = min{hi(T ) : i = 0, 1, . . . , m + 1},

where aff{p0, . . . , pN} denotes the (at most N -dimensional) affine plane spanned by
N + 1 the points p0, . . . , pN ∈ R

n.

Note that for any (m + 1)-dimensional simplex T the volume is given by

H m+1(T ) =
1

m + 1
hi(T )H m(fci(T )) for any i ∈ {0, . . . , m + 1}. (2.16)

The faces fci(T ) are lower-dimensional simplices themselves, so that a simple
inductive argument yields the estimate

H m+1(T ) ≥ 1
(m + 1)!

hmin(T )m+1. (2.17)

Definition 2.11. Fix some η ∈ [0, 1] and d > 0. Let T = conv(x0, . . . , xm+1) be an
(m + 1)-dimensional simplex in R

n. We say that T is (η, d)-voluminous and write
T ∈ V (η, d) if the following conditions5 are satisfied

diam(T ) ≤ d and hmin(T ) ≥ ηd.

Proposition 2.12. Let T = conv(x0, . . . , xm+1) be an (η, d)-voluminous simplex
in R

n and set α = 1
8η2. Let x̄0 ∈ R

n be such that |x0 − x̄0| ≤ αd and set T̄ =
conv(x̄0, x1, . . . , xm+1). Then

diam(T̄ ) ≤ 9
8d and hmin(T̄ ) ≥ 1

2ηd =
(

4
9η

) (
9
8d

)
.

Thus, T̄ ∈ V
(

4
9η, 9

8d
)
.

Proof. First we estimate the height h0(T̄ ). Because |x0 − x̄0| ≤ αd and η ∈ [0, 1] we
have

h0(T̄ ) ≥ h0(T ) − αd ≥ (η − α)d >
1
2
ηd. (2.18)

5 A similar class of 1-separated simplices has been considered by Lerman and Whitehouse in
[LW09, Section 3.1].
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Fix two indices i1, i2 ∈ {1, 2, . . . , m + 1} such that i1 �= i2. We shall estimate the
height hi1(T̄ ). Without loss of generality we can assume that xi2 is placed at the
origin. Furthermore, permuting the vertices of T we can assume that i1 = 1 and
i2 = 2. We need to estimate h1(T̄ ). Set

P = span{x0 − x2, x3 − x2, . . . , xm+1 − x2} = span{x0, x3, . . . , xm+1}
P̄ = span{x̄0 − x2, x3 − x2, . . . , xm+1 − x2} = span{x̄0, x3, . . . , xm+1}.

Now we can write

h1(T̄ ) = dist(x1, P̄ ) = |QP̄ (x1)|
= |QP (x1) − (QP (x1) − QP̄ (x1))|
≥ |QP (x1)| − |QP (x1) − QP̄ (x1)|
≥ ηd − ‖QP − QP̄ ‖|x1|
≥ (η − <)(P, P̄ ))d, (2.19)

so all we need to do is to estimate <)(P, P̄ ) from above unless <)(P, P̄ ) = 0, in which
case we are done anyway.

For that purpose let y0 := πP∩P̄ (x0) be the closest point to x0 in the (m − 1)-
dimensional subspace P ∩ P̄ . (Recall that x2 = 0.) Set

v1 :=
x0 − y0

|x0 − y0| ∈ (P ∩ P̄ )⊥,

and choose an orthonormal basis (v2, . . . , vm) of P ∩ P̄ . Since y0 ∈ P ∩ P̄ ⊂
aff{x1, x2, . . . , xm+1} one has

|x0 − y0| ≥ dist(x0, aff{x1, x2, . . . , xm+1}) ≥ hmin(T ) ≥ ηd,

so that

QP̄ (v1) =
QP̄ (x0 − y0)

|x0 − y0| =
QP̄ (x0)
|x0 − y0| =

dist(x0, P̄ )
|x0 − y0| ≤ |x0 − x̄0|

ηd
≤ α

η
. (2.20)

Choose any vector v̄1 ∈ P̄ such that (v̄1, v2, . . . , vm) forms an orthonormal basis
of P̄ . Note that πP̄ (v1) is orthogonal to vj for each j = 2, . . . , m. Indeed, if j ∈
{2, . . . , m}, then we have

〈πP̄ (v1), vj〉 =
〈 m∑

i=2
〈v1, vi〉︸ ︷︷ ︸

=0

vi, vj

〉
+

〈〈v1, v̄1〉 v̄1, vj

〉
︸ ︷︷ ︸

=0

= 0.

Hence, for

w =
πP̄ (v1)
|πP̄ (v1)| ,



954 S. KOLASIŃSKI ET AL. GAFA

we have P̄ = span{w, v2, . . . , vm} and (w, v2, . . . , vm) is also an orthonormal basis of
P̄ . Moreover

|w − v1| ≤ |w − πP̄ (v1)| + |πP̄ (v1) − v1| = (1 − |πP̄ (v1)|) + |QP̄ (v1)|.
Using (2.20) we obtain (1 − |πP̄ (v1)|) ≤ α/η, hence

|w − v1| ≤ 2
α

η
. (2.21)

Let h ∈ S
n−1 be any unit vector in R

n. We calculate

|πP (h) − πP̄ (h)| =
∣∣∣∑m

j=2〈h, vj〉vj + 〈h, v1〉v1 − ∑m
j=2〈h, vj〉vj − 〈h, w〉w

∣∣∣
≤ |〈h, (v1 − w)〉v1| + |〈h, w〉(v1 − w)| ≤ 2|v1 − w| ≤ 4α

η .

This gives us the bound <)(P, P̄ ) ≤ 4α
η . Plugging this into (2.19) and recalling

that α = 1
8η2 we get

hi1(T̄ ) = h1(T̄ ) ≥ (
η − 4α

η

)
d =

1
2
ηd.

Since the index i1 was chosen arbitrarily from the set {1, . . . , m + 1}, together
with (2.18) we obtain

hmin(T̄ ) ≥ 1
2
ηd,

which ends the proof. ��
2.4 Other auxiliary results. The following theorem due to Haj�lasz gives a
characterization of the Sobolev space W 1,p and is now widely used in analysis on
metric spaces. We shall rely on this result in Section 3.4.

Theorem 2.13 (Haj�lasz [Haj96, Theorem 1]). Let Ω be a ball in R
m and 1 <

p < ∞. Then a function f ∈ Lp(Ω) belongs to W 1,p(Ω) if and only if there exists a
function g ∈ Lp(Ω) such that

|f(x) − f(y)| ≤ |x − y|(g(x) + g(y)
)
. (2.22)

In fact, Haj�lasz shows that if f ∈ W 1,p, then (2.22) holds for g equal to a constant
multiple of the Hardy–Littlewood maximal function M(|Df |) of |Df | defined as

Mh(x) := sup
r>0

ˆ
−

Bm(x,r)

h(y) dy.

Conversely,

‖f‖W 1,p ≈ ‖f‖Lp + inf
g

‖g‖Lp ,

where the infimum is taken over all g for which (2.22) holds. This follows from the
proof of Theorem 1 in [Haj96, p. 405].

Recall that β and θ numbers were defined by (1.2) and (1.3).
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Definition 2.14 (cf. [DKT01], Definition 1.3). We say that a compact set Σ ⊂ R
n

is Reifenberg-flat (of dimension m) with vanishing constant if

lim
r→0

sup
x∈Σ

θΣ(x, r) = 0.

The following proposition was proved by David, Kenig and Toro. We will rely on
it in Section 3.1.

Proposition 2.15 (cf. [DKT01], Proposition 9.1). Let κ ∈ (0, 1) be given. Suppose
Σ is an m-dimensional compact Reifenberg-flat set with vanishing constant in R

n

and that there is a constant CΣ such that

βΣ(x, r) ≤ CΣrκ for each x ∈ Σ and r ≤ 1.

Then Σ is an m-dimensional C1,κ-submanifold of R
n without boundary.6

3 Towards the W 2,p estimates for graphs

In this section we prove the harder part of the main result, i.e. the implications
(2) ⇒ (1) and (3) ⇒ (1). We follow the scheme sketched in the introduction. Each
of the four steps is presented in a separate subsection.

3.1 The decay of β numbers and initial C1,κ estimates. In this subsection
we prove the following two results.

Proposition 3.1. Let Σ ⊂ R
n be an m-fine set, i.e. Σ ∈ F (m), such that

‖KG‖Lp(Σ,H m) ≤ E1/p

for some E < ∞ and some p > m. Then, the inequality

βΣ(x, r) ≤ C

(
E

AΣ

)κ1/(p−m)

rκ1 , κ1 :=
p − m

p(m + 1) + 2m
,

holds for all r ∈ (0, diam Σ] and all x ∈ Σ. The constant C depends on m, p only.

Proposition 3.2. Let Σ ∈ F (m) be an m-fine set such that

‖Ktp‖Lp(Σ,H m) ≤ E1/p

for some map H : Σ → G(n, m), a constant E < ∞ and some p > m. Then, the
inequality

βΣ(x, r) ≤ C

(
E

AΣ

)κ2/(p−m)

rκ2 , κ2 :=
p − m

p + m
,

holds for all r ∈ (0, diam Σ] and all x ∈ Σ. The constant C is an absolute constant.

6 Although boundaries of manifolds are not explicitly excluded in the statement of [DKT01,
Proposition 9.1] it becomes evident from the proof that no boundaries are present; see in particular
[DKT01, p. 433].
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The argument is pretty similar in either case but it will be convenient to give
two separate proofs.

For the proof of Proposition 3.1 we mimic—up to some technical changes—the
proof of [Kol11, Corollary 2.4]. First we prove a lemma which is an analogue of
[Kol11, Proposition 2.3].

Lemma 3.3. Let Σ ⊂ R
n be an m-fine set, and let x0, x1, . . . , xm+1 be arbitrary

points of Σ. Assume that T = conv(x0, . . . , xm+1) is (η, d)-voluminous for some
η ∈ (0, 1) and some d ∈ (0, ∞). Furthermore, assume that ‖KG‖Lp(Σ,H m) ≤ E1/p for
some E < ∞ and some p > m. Then there exists a constant C = C(m, p) depending
only on m and p, such that

E ≥ CAΣdm−pηp(m+1)+2m.

Equivalently,

η ≤ C ′
(

E

AΣ

)κ1/(p−m)

dκ1 ,

where C ′ = C ′(m, p) and

κ1 =
p − m

p(m + 1) + 2m
.

Proof. Set α = 1
8η2. By Proposition 2.12, each (m + 1)-simplex

T̄ = conv(x̄0, x1, . . . , xm+1)

satisfying |x0 − x̄0| ≤ αd is (4
9η, 9

8d)-voluminous. Thus, for any such T̄ we have
according to (2.17)

K(T̄ ) ≥
(

4
9η

)m+1

(m + 1)!98d
= C

ηm+1

d
, (3.23)

where C = C(m) = (4
9)m+1 8

9(m+1)! . Using (3.23) we obtain

E ≥ ‖KG‖p
Lp(Σ,H m)

≥
ˆ

Σ∩B(x0,αd)

KG(x)p dH m(x)

≥
(
C

ηm+1

d

)p
H m(Σ ∩ B(x0, αd))

≥ Cp
(

1
8

)m
AΣdm−pηp(m+1)+2m.

This completes the proof of the lemma. ��
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We are now ready to give the Proof of Proposition 3.1.
Fix some point x ∈ Σ and a radius r ∈ (0, diam(Σ)]. Let T = conv(x0, . . . , xm+1)

be an (m+1)-simplex such that xi ∈ Σ∩B(x, r) for i = 0, 1, . . . , m+1 and such that
T has maximal H m+1-measure among all simplices with vertices in Σ ∩ B(x, r), i.e.

H m+1(T ) = max{H m+1(conv(x′
0, . . . , x

′
m+1)) : x′

i ∈ Σ ∩ B(x, r)}.

The existence of T follows from the fact that the set Σ ∩ B(x, r) is compact and
from the fact that the function T 
→ H m+1(T ) is continuous with respect to x0,
. . . , xm+1; see, e.g., formula (2.16).

Renumbering the vertices of T we can assume that hmin(T ) = hm+1(T ). Thus,
according to (2.16) the largest m-face of T is conv(x0, . . . , xm). Let H = span{x1 −
x0, . . . , xm −x0}, so that x0 +H contains the largest m-face of T . Note that the dis-
tance of any point y ∈ Σ∩B(x, r) from the affine plane x0 +H has to be less then or
equal to hmin(T ) = dist(xm+1, x0 + H), since if we could find a point y ∈ Σ ∩ B(x, r)
with dist(y, x0 + H) > hmin(T ), then the simplex conv(x0, . . . , xm, y) would have
larger H m+1-measure than T , but this is impossible due to the choice of T .

Since x ∈ Σ ∩ B(x, r), we know that dist(x, x0 + H) ≤ hmin(T ). Thus, we obtain
for all y ∈ Σ ∩ B(x, r)

dist(y, x + H) ≤ dist(y, x0 + H) + dist(x, x0 + H) ≤ 2hmin(T ). (3.24)

Hence

βΣ(x, r) ≤ 2hmin(T )
r

. (3.25)

Now we only need to estimate hmin(T ) = hm+1(T ) from above. Of course, T is
(η, 2r)-voluminous with η = hmin(T )/(2r). Lemma 3.3 implies that

βΣ(x, r) ≤ 2hmin(T )
r

= 4η ≤ C

(
E

AΣ

)κ1/(p−m)

rκ1 ,

which ends the proof of the proposition. ��
Now we come to the Proof of Proposition 3.2.
Fix x ∈ Σ and r ∈ (0, diam Σ]. We know by definition of the β-numbers that

β ≡ βΣ(x, r) ≤ 1. We also know that for any z ∈ Σ ∩ B(x, βr/2) that

sup
Σ∩B(x,r)

dist(·, x + Hz) ≥ βΣ(x, r)r,

where Hz ∈ G(n, m) denotes the image of z under the mapping H : Σ → G(n, m).
Furthermore, for any ε > 0 we can find a point yε ∈ Σ ∩ B(x, r) such that

dist(yε, x + Hz) ≥ sup
Σ∩B(x,r)

dist(·, x + Hz) − ε ≥ βΣ(x, r)r − ε.
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On the other hand, we have by |yε − z| ≤ |yε − x| + |x − z| ≤ 3
2r

dist(yε, z + Hz) ≤ 1
2
Ktp(z)|yε − z|2 ≤ Ktp(z)

9
8
r2,

so that we obtain
9
8
r2Ktp(z) ≥ dist(yε, z + Hz)

≥ dist(yε, x + Hz) − |x − z|
≥ βΣ(x, r)r − ε − βΣ(x, r)r/2,

which upon letting ε → 0 leads to

Ktp(z) ≥ 4
9
βΣ(x, r)/r.

Estimating the energy as

E ≥
ˆ

Σ∩B(x,βr/2)

Ktp(z)p dH m(z)

≥
(

4
9

)p

(βΣ(x, r))pr−pH m(Σ ∩ B(x, βr/2))≥
(

4
9

)p (1
2

)m

AΣrm−p(βΣ(x, r))p+m

gives the desired estimate for C = 4 >
(

9
4

)p/(p+m) 2m/(p+m). ��
Corollary 3.4. (C1,κ estimates, first version) Let Σ ⊂ R

n be an m-fine set and
set K(1)(·) := KG[Σ](·) and K(2)(·) := Ktp[Σ](·). If

ˆ

Σ

K(i)(z)p dH m(z) ≤ E < ∞

holds for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,κi ,
where

κ1 =
p − m

p(m + 1) + 2m
, κ2 =

p − m

p + m
.

Moreover, we can find a radius R = R(n, m, p, AΣ, MΣ, E, diam Σ) and a constant
K = K(n, m, p, AΣ, MΣ, E, diam Σ) such that for each x ∈ Σ there is a function

fx : TxΣ =: P ∼= R
m → P⊥ ∼= R

n−m

of class C1,κi , such that fx(0) = 0 and Dfx(0) = 0, and

Σ ∩ B
n(x, R) = x +

(
Graph fx ∩ B

n(0, R)
)
,

where Graph fx ⊂ P × P⊥ = R
n denotes the graph of fx, and

‖Dfx‖C0,κi(Bm(0,R),R(n−m)×n) ≤ K.
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Proof. The first non-quantitative part follows from our estimates on the β-num-
bers in Propositions 3.1 and 3.2 in combination with [DKT01, Proposition 9.1], cf.
Proposition 2.15 of the previous section. However, direct arguments (as in [Kol11,
Corollary 3.18] for the global Menger curvature KG, and in [SM11b, Section 5] for
the global tangent-point curvature Ktp), lead to the full statement of that corollary
including the uniform estimates on the Hölder-norm of Dfx and on the minimal size
of the surface patches of Σ that can be represented as the graph of fx. Let us give
the main ideas here for the convenience of the reader.

Assume without loss of generality that x = 0 and write κ := κi for any i ∈ {1, 2}
depending on the particular choice of integrand K(i). We know from Propositions
3.1 or 3.2, respectively, that there is a constant C1 = C1(AΣ, E, m, p) such that

β(r) := βΣ(0, r) ≤ C1r
κ for all r ∈ (0, diam Σ]. (3.26)

Since Σ ∈ F (m) we have

θ(r) := θΣ(0, r) ≤ MΣC1r
κ for all r ∈ (0, diam Σ]. (3.27)

The Grassmannian G(n, m) is compact, so we find for each r ∈ (0, diam Σ] an
m-plane Hx(r) ∈ G(n, m) such that

sup
z∈Σ∩B(x,r)

dist(z, Hx(r)) = β(r)r.

Taking an ortho-(r/3)-normal basis (v1(r), . . . , vm(r)) of Hx(r) for any such r ∈
(0, diam Σ] we find by (3.27) for each i = 1, . . . , m, some point zi(r) ∈ Σ such that

|zi(r) − vi(r)| ≤ MΣC1r
κ+1; (3.28)

see Definition 1.1. Now there is a radius R0 = R0(AΣ, E, m, p, MΣ) > 0 so small
that we have the inclusion B(vi(r), MΣC1r

κ+1) ⊂ B(0, r/2) for each r ∈ (0, R0) and
each i = 1, . . . , m, which then implies by (3.26) that

dist(zi(r), Hx(r/2)) ≤ C1r
κ+1 for all r ∈ (0, R0). (3.29)

The orthogonal projections ui(r) := πHx(r/2)(vi(r)) for i = 1, . . . , m, satisfy due to
(3.28) and (3.29)

|ui(r) − vi(r)| ≤ |vi(r) − zi(r)| + dist(zi(r), Hx(r/2)) ≤ (MΣ + 1)C1r
κ+1.

Hence there is a smaller radius 0 < R1 = R1(AΣ, E, m, p, MΣ) ≤ R0 such that for
all r ∈ (0, R1) one has

C1r
κ < (MΣ + 1)C1r

κ <
1√
2

− 1
4
, (3.30)

so that Proposition 2.6 is applicable to the (r/3, 0, 0)-basis (v1(r), . . . , vm(r)) of V :=
Hx(r) and the basis (u1(r), . . . , um(r)) of U := Hx(r/2) with ϑ := C1r

κ. (Notice that
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condition (2.14) in Proposition 2.6 is automatically satisfied since ε = δ = 0 in the
present situation.) Consequently,

<)(Hx(r), Hx(r/2)) ≤ C4C1r
κ for all r ∈ (0, R1). (3.31)

Iterating this estimate, one can show that the sequence of m-planes (Hx(r/2N )) is a
Cauchy sequence in G(n, m), hence converges as N → ∞ to a limit m-plane, which
must coincide with the already present tangent plane T0Σ at x = 0, and the angle
estimate (3.31) carries over to

<)(TxΣ, Hx(r)) ≤ Crκ for all r ∈ (0, R1). (3.32)

Let y ∈ Σ be such that |y − x| = r/2 and set wi(r) = πHy(r)(vi(r)). We have
zi(r) ∈ B(y, r), so

dist(zi(r), Hy(r)) ≤ βΣ(y, r)r ≤ C1r
κ+1,

hence |vi(r) − wi(r)| ≤ |vi(r) − zi(r)| + dist(zi(r), Hy(r)) ≤ (MΣ + 1)C1r
κ+1.

Applying once again Proposition 2.6—which is possible due to (3.30)—we obtain
the inequality

<)(Hx(r), Hy(r)) ≤ C4(MΣ + 1)C1r
κ = C̄|x − y|κ.

This together with (3.32) (which by symmetry also holds in y replacing x) leads
to the desired local estimate for the oscillation of tangent planes

<)(TxΣ, TyΣ) ≤ C|x − y|κ for all |x − y| ≤ R1/2, (3.33)

where C = C(E, AΣ, m, p, MΣ) and R1 = R1(E, AΣ, m, p, MΣ) do not depend on the
choice of x, y ∈ Σ.

Next we shall find a radius R2 = R2(E, AΣ, m, p, MΣ) such that for each x ∈ Σ
the affine projection

πx : Σ ∩ B(x, R2) → x + TxΣ

is injective. This will prove that Σ∩B(x, R2) coincides with a graph of some function
fx, which is C1,κ-smooth by (3.33).

Assume that there are two distinct points y, z ∈ Σ ∩ B(x, R1) such that πx(y) =
πx(z). In other words (y − z) ⊥ TxΣ. Since y and z are close to each other the
vector (y − z) should form a small angle with TzΣ, but then <)(TzΣ, TxΣ) would be
large and due to (3.33) this can only happen if one of y or z is far from x. To make
this reasoning precise assume that |x − y| ≤ |x − z| and set Hx = Hx(|y − x|).
Employing (3.26) and (3.32) we get

|QTxΣ(y − x)| ≤ |QHx
(y − x)| + |QTxΣ(y − x) − QHx

(y − x)|
≤ β(x, |y−x|)|y−x| + <)(TxΣ, Hx)|y−x|≤C|y − x|1+κ ≤C|z − x|1+κ,
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where C depends only on E, AΣ, m and p. The same applies to (z − x) so we also
have

|QTxΣ(z − x)| ≤ C|z − x|1+κ.

Next we estimate

|z − y| = |QTxΣ(z − y)| ≤ |QTxΣ(z − x)| + |QTxΣ(y − x)| ≤ 2C|z − x|1+κ. (3.34)

Setting Hz = Hz(|y − z|) and repeating the same calculations we obtain

dist(y − z, TzΣ) = |QTzΣ(y − z)| ≤ C|y − z|1+κ.

This gives

<)(TxΣ, TzΣ) = ‖QTxΣ − QTzΣ‖ ≥ |QTxΣ(z − y) − QTzΣ(z − y)||z − y|−1

≥ (|z − y| − |QTzΣ(z − y)|) |z − y|−1 ≥ 1 − C|y − z|κ.

On the other hand, by (3.33) <)(TxΣ, TzΣ) ≤ C|x − z|κ. Hence, applying (3.34)
we obtain

C|x−z|κ ≥ 1−C̃|y−z|κ ≥ 1 − C̄|x − z|κ+κ2 ⇐⇒ |x − z| ≥
(
C + C̄|x − z|κ2

)−1/κ
.

This shows that if (y − z) ⊥ TxΣ then the point z has to be far from x. We set

R2 = min
(

1, (C + C̄)−1/κ
)

,

and this way we make sure that πx : Σ ∩ B(x, R2) → x + TxΣ is injective for each
x ∈ Σ, hence Σ∩B(x, R2) is a graph of some function fx : TxΣ∩B(0, R2) → (TxΣ)⊥.

The oscillation estimate (3.33) leads with standard arguments (as, e.g., presented
in [SM11b, Section 5]) to the desired uniform C1,κ-estimates for fx on balls in TxΣ
of radius R2 which depends on E, AΣ, p, m, MΣ, but not on the particular choice of
the point x on Σ. ��
Remark 3.5. The statement of Corollary 3.4 can a posteriori be sharpened: One
can show that one can make the constants R and K independent of MΣ. This was
carried out in detail in the first author’s doctoral thesis; see [Kol11, Theorem 2.13],
so we will restrict to a brief sketch of the argument here. Assume as before that
x = 0 and notice that β(r) = β(0, r) → 0 uniformly (independent of the point x and
also independent of MΣ according to (3.26)). Since at this stage we know that Σ is a
C1,κ-submanifold of R

n without boundary, it is clearly also admissible in the sense
of [SM11b, Definition 2.9]. In particular Σ is locally flat around each point y ∈ Σ—it
is actually close to the tangent m-plane TyΣ near y—and Σ is nontrivially linked
with sufficiently small (n − m − 1)-spheres contained in the orthogonal complement
of TyΣ. Let Hx(r) for r ∈ (0, diam Σ] be as in the proof of Corollary 3.4 the optimal
m-plane through x = 0 such that

dist(y, x + Hx(r)) ≤ β(r)r for all y ∈ Σ ∩ B(0, r). (3.35)
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One can use now the uniform estimate (3.26) (not depending on MΣ) to prove
that there is a radius R3 = R3(E, AΣ, m, p) such that the angle <)(T0Σ, Hx(r)) is for
each r ∈ (0, R3) so small that, for any given p ∈ Hx(r) ∩ B(0, R3), one can deform
the linking sphere in the orthogonal complement of T0Σ with a homotopy to a small
sphere in p + Hx(r)⊥ without ever hitting Σ. Because of the homotopy invariance of
linking one finds also this new sphere nontrivially linked with Σ. This implies in par-
ticular by standard degree arguments the existence of a point z ∈ Σ contained in the
(n−m)-dimensional disk in p+Hx(r)⊥ spanned by this new sphere; see, e.g. [SM11b,
Lemma 3.5]. On the other hand, by (3.35) Σ ∩ B(0, r) is at most β(r)r away from
Hx(r) which implies now that this point z ∈ Σ must satisfy |z − p| ≤ β(r)r. This
gives the uniform estimate θ(r) ≤ Cβ(r) for all r < R3 and some absolute constant
C.

Now we know that the estimates in Corollary 3.4 do not depend on MΣ. This
constant may be replaced by an absolute one if we are only working in small scales.
In the next section we show that this can be further sharpened: R and K depend in
fact only on m, p and E, but not on the constant AΣ.

3.2 Uniform Ahlfors regularity and its consequences. In this section, we
show that the Lp-norms of the global curvatures KG and Ktp control the length scale
in which bending (or ‘hairs’, narrow tentacles, long thin tubes etc.) can occur on Σ.
In particular, there is a number R depending only on n, m, p and E, where E is any
constant dominating ‖KG‖p

Lp or ‖Ktp‖p
Lp , such that for all x ∈ Σ and all r ≤ R the

intersection Σ∩B
n(x, r) is congruent to Graph fx ∩B

n(x, r), where fx : R
m → R

n−m

is a C1,κi function (with small C1 norm, if one wishes). Note that R does not at all
depend on the shape or on other properties of Σ, just on its energy value, i.e. on the
Lp-norm of KG or of Ktp.

By the results of the previous subsection, we already know that Σ is an embedded
C1 compact manifold without boundary. This is assumed throughout this subsection.

The crucial tool needed to achieve such control over the shape of Σ is the follow-
ing.

Theorem 3.6 (Uniform Ahlfors regularity). For each p > m there exists a con-
stant C(n, m, p) with the following property. If ‖KG‖Lp or ‖KG‖Lp is less than E1/p

for some E < ∞, then for every x ∈ Σ

H m(Σ ∩ B
n(x, r)) ≥ 1

2
ωmrm for all 0 < r ≤ R0, (3.36)

where R0 = C(n, m, p)E−1/(p−m) and ωm = H m(Bm(0, 1)).

The proof of Theorem 3.6 is similar to the proof of Theorem 3.3 in [SM11a] where
Menger curvature of surfaces in R3 has been investigated. This idea has been later
reworked and extended in various settings to the case of sets having codimension
larger than 1.
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Namely, one demonstrates that each Σ with finite energy cannot penetrate cer-
tain conical regions of R

n whose size depends solely on the energy. The construction
of those regions has algorithmic nature. Proceeding iteratively, one constructs for
each x ∈ Σ an increasingly complicated set S which is centrally symmetric with
respect to x and its intersection with each sphere ∂B

n(x, r) is equal to the union
of two or four spherical caps. The size of these caps is proportional to r but their
position may change as r grows from 0 to the desired large value, referred to as the
stopping distance ds(x). The interior of S contains no points of Σ but it contains
numerous (n−m−1)-dimensional spheres which are nontrivially linked with Σ. Due
to this, for each r below the stopping distance, Σ ∩ B

n(x, r) has large projections
onto some planes in G(n, m). However, there are points of Σ on ∂S, chosen so that
the global curvature KG(x), or Ktp(x), respectively, must be � 1/ds(x).

To avoid entering into too many technical details of such a construction, we shall
quote almost verbatim two purely geometric lemmata from our previous work that
are independent of any choice of energy, and indicate how they are used in the proof
of Theorem 3.6.

3.2.1 The case of global Menger curvature. Recall Definition 2.11 of the class
V (η, d) of (η, d)-voluminous simplices. The following proposition comes from the
doctoral thesis of the first author, see [Kol11, Proposition 2.5].

Proposition 3.7. Let δ ∈ (0, 1) and Σ be an embedded C1 compact manifold with-
out boundary. There exists a real number η = η(δ, m) ∈ (0, 1) such that for every
point x0 ∈ Σ there is a stopping distance d = ds(x0) > 0, and an (m + 1)-tuple of
points (x1, x2, . . . , xm+1) ∈ Σm+1 such that

T = conv{x0, . . . , xm+1} ∈ V (η, d).

Moreover, for all ρ ∈ (0, d) there exists an m-dimensional subspace H = H(ρ) ∈
G(n, m) with the property

(x0 + H) ∩ B
n(x0,

√
1 − δ2ρ) ⊂ πx0+H(Σ ∩ B

n(x0, ρ)). (3.37)

Fixing δ = δ(m) ∈ (0,
√

1 − 4−1/m) small enough, we obtain η = η(m) depending
on m only. This yields the following.

Corollary 3.8. For any x0 ∈ Σ and any ρ ≤ ds(x0) we have

H m(Σ ∩ B(x0, ρ)) ≥ (1 − δ2)m/2ωmρm ≥ 1
2
ωmρm. (3.38)

Moreover, we can provide a lower bound for all stopping distances. For this,
we need an elementary consequence of the definition of voluminous simplices:

Observation 3.9. If T = conv(x0, . . . , xm+1) ∈ V (η, d) then by (2.17)

K(x0, . . . , xm+1) ≥ (ηd)m+1

(m + 1)!(d)m+2
=

ηm+1

(m + 1)!d
. (3.39)
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For η = η(m) and d = ds(x0) this yields

KG(x0) ≥ K(x0, . . . , xm+1) ≥ a(m)
ds(x0)

for some constant a(m) depending only on m. By Proposition 2.12, we know that
for simplices T̄ that arise from T by shifting x0 by at most 1

8η2d a similar estimate
holds, possibly with a slightly smaller a(m)—still, depending only on m. Thus,

KG(z) ≥ a(m)
ds(x0)

, for all z ∈ Σ ∩ B
n(x0, η

2d/8). (3.40)

Using the assumption of Theorem 3.6 we now estimate

E ≥
ˆ

Σ∩Bn(x0,η2d/8)

KG(z)p dH m(z)

≥ H m(Σ ∩ B
n(x0, η

2d/8))
(

a(m)
ds(x0)

)p

by (3.40)

≥ 1
2 · 8m

ωmη2mds(x0)m−pa(m)p by Corollary 3.8.

Note that η ∈ (0, 1), so Corollary 3.8 is indeed applicable. Equivalently,

ds(x0)p−m ≥ c/E

for some c depending only on m and p. Upon taking the infimum w.r.t. x0 ∈ Σ (note
that we use p > m here!), we obtain

d(Σ) := inf
x0∈Σ

ds(x0) ≥
( c

E

)1/(p−m)
=: R0.

An application of Corollary 3.8 implies now Theorem 3.6 in the case of KG.

3.2.2 The case of global tangent–point curvature. As we have already mentioned
in the introduction, the Lp norm of the global tangent-point curvature Ktp[Σ] can
be finite for at most one choice of a continuous map H : Σ 
 x 
→ H(x) ∈ G(n, m).
Thus, from now on we suppose

H : Σ 
 x 
−→ TxΣ ∈ G(n, m),

since at this point we know already that Σ is a C1 submanifold of R
n (without

boundary). The general scheme of proof is similar to the case of global Menger
curvature. Some of the technical details are different and we present them below.
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High energy couples of points and large projections. The notion of a high energy
couple expresses in a quantitative way the following rough idea: if there are two
points x, y ∈ Σ such that the distance from y to a substantial portion of the affine
planes z + TzΣ (where z is very close to x) is comparable to |x − y|, then a cer-
tain fixed portion of the ‘energy’, i.e. of the norm ‖Ktp‖Lp , comes only from a fixed
neighbourhood of x, of size comparable to |x − y|.

Recall that QTzΣ stands for the orthogonal projection onto (TzΣ)⊥.

Definition 3.10 (High energy couples). We say that (x, y) ∈ Σ × Σ is a (λ, α, d)–
high energy couple if and only if the following two conditions are satisfied:

(i) d/2 ≤ |x − y| ≤ 2d;
(ii) The set

S(x, y; α, d) :=
{
z ∈ B

n(x, α2d) ∩ Σ: |QTzΣ(y − z)| ≥ αd
}

satisfies

H m(S(x, y; α, d)) ≥ λH m(Bm(0, α2d)) = λωmα2mdm.

We shall be using this definition for fixed 0 < α, λ � 1 depending only on n and
m. Intuitively, high energy couples force the Lp-norm of Ktp to be large.

Lemma 3.11. If (x, y) ∈ Σ × Σ is a (λ, α, d)–high energy couple with α < 1
2 and an

arbitrary λ ∈ (0, 1], then

Ktp(z) >
α

9d
(3.41)

for all z ∈ S(x, y; α, d).

Proof. For z ∈ S(x, y; α, d) and w ∈ B
n(y, α2d) we have

dist(w, z + TzΣ) = |QTzΣ(w − z)| = |QTzΣ(y − z) + QTzΣ(w − y)|
≥ αd − |w − y| by Definition 3.10 (ii)

>
αd

2
as α < 1

2 .

Moreover, |w − z| ≤ |x − y| + |x − z| + |w − y| < 2d + 2α2d < 3d. Thus, by the
above computation,

Ktp(z) = sup
w∈Σ

2 dist(w, z + TzΣ)
|w − z|2

≥ sup
w∈Σ∩Bn(y,α2r)

2 dist(w, z + TzΣ)
|w − z|2 >

αd

(3d)2
=

α

9d
.

This completes the proof of the lemma. ��
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The key to Theorem 3.6 in the case of Ktp global curvature is to observe that
high energy couples and large projections coexist on the same scale.

Proposition 3.12 (Stopping distances and large projections). There exist con-
stants η = η(m), δ = δ(m), λ = λ(n, m) ∈ (0, 1

9) which depend only on n, m, and
have the following property.

Assume that Σ is an arbitrary embedded C1 compact manifold without bound-
ary. For every x ∈ Σ there exist a number d ≡ ds(x) > 0 and a point y ∈ Σ such
that

(i) (x, y) is a (λ, η, d)–high energy couple;
(ii) for each r ∈ (0, d] there exists a plane H(r) ∈ G(n, m) such that

πH(r)(Σ ∩ B
n(x, r)) ⊃ H(r) ∩ B

n
(
πH(r)(x), r

√
1 − δ2

)
,

and therefore

H m(Σ ∩ B
n(x, r)) ≥ (1 − δ2)m/2ωmrm ≥ 1

2
ωmrm

for all 0 < r ≤ ds(x).

For the proof of this lemma (for a much wider class of m-dimensional sets than
just C1 embedded compact manifolds) we refer the reader to [SM11b, Section 4].

Lemma 3.13. If Σ ⊂ R
n is an embedded C1 compact manifold without boundary,

p > m and

E ≥
ˆ

Σ
Ktp(x)p dH m(x),

then the stopping distances ds(x) of Proposition 3.12 satisfy

d(Σ) = inf
x∈Σ

ds(x) ≥
( c

E

)1/(p−m)
=: R0 (3.42)

where c depends only on n, m and p.

Proof. Let λ and η be the constants of Proposition 3.12. Use this proposition to
select a (λ, η, d)–high energy couple (x, y) ∈ Σ × Σ. Let

S := S(x, y; η, ds(x))

be as in Definition 3.10 (ii). Applying Lemma 3.11 we estimate

E ≥
ˆ

S
Ktp(z)p dH m(z)

> H m(S)
(

η

9ds(x)

)p

by Lemma 3.11

≥ λωmη2m+pds(x)m−p9−p by Definition 3.10 (ii).
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This implies

ds(x)p−m > c/E

for a constant c depending only on n, m, p. As in the case of KG, upon taking the
infimum of the left hand side w.r.t. x ∈ Σ, we conclude the proof of the lemma. ��

Theorem 3.6 in the case of Ktp follows now immediately. By the lower bound
(3.42) for stopping distances and Proposition 3.12 (ii), the inequality

H m(Σ ∩ B(x, r)) ≥ (1 − δ2)m/2ωmrm ≥ 1
2
ωmrm

holds for each x ∈ Σ and each r ≤ R0, since R0 ≤ d(Σ) ≤ ds(x).

3.2.3 An application: uniform size of C1,κ-graph patches. Now, returning to the
proofs of Propositions 3.1 and 3.2, we see that for all radii

r ≤ C(n, m, p)E−1/(p−m) = R0

the estimate H m(B(x, r)) ≥ AΣωmrm can be replaced by (3.36), i.e. used with
AΣ = 1/2. Thus, for such radii the decay estimates in Propositions 3.1 and 3.2, and
the resulting C1,κ-estimates do not depend on AΣ or diam Σ at all. An inspection
of the argument leading to Corollary 3.4 gives the following sharpened version, with
all estimates depending in a uniform way only on the energy.

Corollary 3.14 (C1,κ estimates, second version). Assume that Σ ⊂ R
n is an m-

fine set and let K(1)(·) := KG[Σ](·) and K(2)(·) := Ktp[Σ](·). If
ˆ

Σ

K(i)(z)p dH m(z) ≤ E < ∞

holds for i = 1 or i = 2, then Σ is an embedded closed manifold of class C1,κi , where

κ1 =
p − m

p(m + 1) + 2m
, κ2 =

p − m

p + m
.

Moreover we can find a radius R1 = a(n, m, p)E−1/(p−m) ≤ R0 and a constant
K1 = K(n, m, p) such that for each x ∈ Σ there is a function

fx : TxΣ =: P ∼= R
m → P⊥ ∼= R

n−m

of class C1,κi , such that fx(0) = 0 and Dfx(0) = 0, and

Σ ∩ B
n(x, R1) = x +

(
Graph fx ∩ B

n(0, R1)
)
,

where Graph fx ⊂ P × P⊥ = R
n denotes the graph of fx, and

‖Dfx‖C0,κi(Bn(0,R1),R(n−m)×n) ≤ K1E
κi/(p−m).
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As for Corollary 3.4 also here we do not enter into the details of construction of
the graph parametrizations fx. These are described in [SM11b, Section 5.4] and in
[Kol11, Section 3].

Remark 3.15. Note that shrinking a(n, m, p) if necessary, we can always assume
that

|Dfx(z1)−Dfx(z2)|≤K1E
κi/(p−m) ·Rκi

1

=K1a(n, m, p)κiEκi/(p−m)E−κi/(p−m) =K1(m, p)·a(n, m, p)κi <ε0

for an arbitrary small ε0 = ε0(m) > 0 that has been a priori fixed.

3.3 Bootstrap: optimal Hölder regularity for graphs. In this subsection
we assume that Σ is a flat m-dimensional graph of class C1,κi , satisfying

ˆ

Σ

K(i)(z)p dH m(z) < ∞

for i = 1 or i = 2, recall our notation from before: K(1) := KG and K(2) := Ktp. The
goal is to show how to bootstrap the Hölder exponent κi to τ = 1 − m/p.

Relying on Corollary 3.14 and Remark 3.15, without loss of generality we can
assume that

Σ ∩ B
n(0, 20R) = Graph f ∩ B

n(0, 20R)

for a fixed number R > 0, where

f : P ∼= R
m → P⊥ ∼= R

n−m

is of class C1,κi and satisfies Df(0) = 0, f(0) = 0,

|Df | < ε0(m) on P (3.43)

for some number ε0 to be specified later on. The ultimate goal is to show that
osc Bm(b,s) Df ≤ Csτ with a constant C depending only on the local energy of Σ;
cf. (3.50). The smallness condition (3.43) allows us to use all estimates of Section 2
for all tangent planes TzΣ with z ∈ Σ ∩ B

n(0, 20R).
Let F : P → R

n be the natural parametrization of Σ ∩ B
n(0, 20R), given by

F (ξ) = (ξ, f(ξ)) for ξ ∈ P ; outside B
n(0, 20R) the image of F does not have to

coincide with Σ. The choice of ε0 guarantees

<)(TF (ξ1)Σ, TF (ξ2)Σ) < ε1(m) for all x1, x2 ∈ B
n(0, 5R) ∩ P , (3.44)

where ε1(m) is the constant from Lemma 2.8.
As in our papers [SM11b, Section 6], [SM11a,Kol11], developing the idea which

has been used in [SSM10] for curves, we introduce the maximal functions controlling
the oscillation of Df at various places and scales,

Φ∗(�, A) = sup
B�⊂A

(
osc
B�

Df

)
(3.45)
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where the supremum is taken over all possible closed m-dimensional balls B
 of
radius � that are contained in a subset A ⊂ B

n(0, 5R) ∩ P , with � ≤ 5R. Since
f ∈ C1,κ with κ = κ1 or κ = κ2 we have a priori

Φ∗(�, A) ≤ C�κi , i = 1 or i = 2, (3.46)

for some constant C which does not depend on �, A.
To show that f ∈ C1,τ for τ = 1 − m/p, we check that locally, on each scale ρ,

the oscillation of Df is controlled by a main term which involves the local integral of
K(i)(z)p and has the desired form Cρτ , up to a small error, which itself is controlled
by the oscillation of Df on a much smaller scale ρ/N . The number N can be chosen
so large that upon iteration this error term vanishes.

Lemma 3.16. Let f , F , Σ, R > 0 and P be as above. If z1, z2 ∈ B
n(0, 2R) ∩ P with

|z1 − z2| = t > 0, then for each sufficiently large N > 4 we have

|Df(z1) − Df(z2)| ≤ A(m)Φ∗(2t/N, B) + C(N, m, p) E
1/p
B tτ , (3.47)

where B := B
m( z1+z2

2 , t) is an m-dimensional disk in P , τ := 1 − m/p, and

EB =
ˆ

F (B)

K(i)(z)p dH m(z) (3.48)

is the local curvature energy of Σ (with i = 1 or i = 2, respectively) over B. In the
case of global tangent-point curvature Ktp one can use (3.47) with A(m) = 2.

Remark. Once this lemma is proved, one can fix an m-dimensional disk

B
m(b, s) ⊂ B

n(0, R) ∩ P

and use (3.47) to obtain for t ≤ s

Φ∗(t, Bm(b, s)) ≤ A(m)Φ∗(4t/N, Bm(b, s + 2t)
)

+C(N, m, p) M i
p(b, s + 2t) tτ , τ = 1 − m

p
, (3.49)

where

M i
p(b, r) :=

⎛
⎜⎝ ˆ

F (Bm(b,r))

K(i)(z)p dH m(z)

⎞
⎟⎠

1/p

for i = 1, 2.

We fix i and then a large N = N(i, m, p) > 4 such that A(m)(4/N)κi < 1/2.
This yields A(m)j · (2/N)jκi → 0 as j → ∞. Therefore, one can iterate (3.49) and
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eventually show that

osc
Bm(b,s)

Df ≤ C ′(m, p)M i
p(b, 5s) · sτ

= C ′(m, p)

⎛
⎜⎝ ˆ

F (Bm(b,5s))

K(i)(z)p dH m(z)

⎞
⎟⎠

1/p

· sτ , τ = 1 − m

p
.

(3.50)

Thus, in particular, we have the following.

Corollary 3.17 (Geometric Morrey–Sobolev embedding into C1,τ ). Let p > m
and Σ ⊂ R

n be an m-fine set

ˆ

Σ

K(i)(z)p dH m(z) ≤ E < ∞

for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,τ , where
τ = 1 − m/p. Moreover we can find a radius R2 = a2(n, m, p)E−1/(p−m) ≤ R1,
where a2(n, m, p) is a constant depending only on n, m and p, and a constant
K2 = K2(n, m, p) such that for each x ∈ Σ there is a function

f : TxΣ =: P ∼= R
m → P⊥ ∼= R

n−m

of class C1,τ , such that f(0) = 0 and Df(0) = 0, and

Σ ∩ B
n(x, R2) = x +

(
Graph f ∩ B

n(0, R2)
)
,

where Graph f ⊂ P × P⊥ = R
n denotes the graph of f , and we have

|Df(z1) − Df(z2)| ≤ K2

( ˆ

U(z1,z2)

K(i)
(
(z, f(z)

)p
dz

)1/p

|z1 − z2|τ (3.51)

for all z1, z2 ∈ B
n(0, R2) ∩ P , where

U(z1, z2) = B
m((z1 + z2)/2, 5|z1 − z2|).

The rest of this section is devoted to the proof of Lemma 3.16 for each of the
global curvatures K(i). We follow the lines of [Kol11,SM11b] with some technical
changes and necessary adjustments.
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3.3.1 Slicing: the setup. Bad and good points. We fix z1, z2 and the disk B =
B

m( z1+z2
2 , t) as in the statement of Lemma 3.16; we have H m(B) = ωmtm. Pick

N > 4 and let EB be the curvature energy of Σ over B, defined for i = 1 or i = 2
by (3.48). Assume that Df �≡ const on B, for otherwise there is nothing to prove.

Take

K0 :=
(
EB · Nmω−1

m

)1/p
> 0 (3.52)

and consider the set of bad points where the global curvature becomes large,

Y0 := {ξ ∈ B : K(i)(F (ξ)) > K0t
−1+τ = K0t

−m/p}. (3.53)

We now estimate the curvature energy to obtain a bound for H m(Y0). For this
we restrict ourselves to a portion of Σ that is described as the graph of the function f .

EB =
ˆ

F (B)

K(i)(z)p dH m(z)

≥
ˆ

F (Y0)

K(i)(z)p dH m(z)

=
ˆ

Y0

K(i)(F (ξ))p

√
det

([ IdRm

Df(ξ)

]T [ IdRm

Df(ξ)

])
dξ

≥
ˆ

Y0

K(i)(F (ξ))p dξ

(3.53)
> H m(Y0)Kp

0 t−m = EBH m(Y0)Nm
(
H m(B)

)−1
.

The last equality follows from the choice of K0 in (3.52). Thus, we obtain

H m(Y0) <
1

Nm
H m(B) = ωm

tm

Nm
, (3.54)

and since the radius of B equals t, we obtain

B
m(zj , t/N) \ Y0 �= ∅ for j = 1, 2. (3.55)

Now, select two good points uj ∈ B
m(zj , t/N) \ Y0 (j = 1, 2). By the triangle

inequality,

|Df(z1) − Df(z2)| ≤ |Df(z1) − Df(u1)| + |Df(u2) − Df(z2)|
+|Df(u1) − Df(u2)|

≤ 2Φ∗(t/N, B) + |Df(u1) − Df(u2)|. (3.56)

Thus, we must only show that for good u1, u2 the last term in (3.56) satisfies

|Df(u1) − Df(u2)| ≤ A(m)Φ∗(2t/N, B) + C(N, m, p)E1/p
B tτ . (3.57)

This has to be done for each of the global curvatures K(i). (It will turn out that
for Ktp one can use just the second term on the right hand side of (3.57).)
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3.3.2 Angles between good planes: the ‘tangent-point’ case. We first deal with the
case of Ktp which is less complicated. To verify (3.57), we assume that Df(u1) �=
Df(u2) and work with the portion of the surface parameterized by the points in the
good set

G := B \ Y0. (3.58)

By (3.54), G satisfies

H m(G) > (1 − N−m)H m(B) =: C1(p, m) tm. (3.59)

To conclude the whole proof, we shall derive—for each of the two global curva-
tures—an upper estimate for the measure of G,

H m(G) ≤ C2(p, m) K0
tm+τ

α
, (3.60)

where α := <)(H1, H2) �= 0 and Hi := TF (ui)Σ denotes the tangent plane to Σ at
F (ui) ∈ Σ for i = 1, 2. Combining (3.60) and (3.59), we will then obtain

α < (C1)−1C2K0t
τ =: C3E

1/p
B tτ .

(By an elementary reasoning analogous to the proof of Theorem 5.7 in [SM11b], this
also yields an estimate for the oscillation of Df .)

Following [SM11b, Section 6] closely, we are going to prove the upper estimate
(3.60) for H m(G).

By Corollary 3.14 and Remark 3.15

Σ ∩ B
n(F (u1), 20R) = F (u1) +

(
Graph f1 ∩ B

n(0, 20R)
)
,

i.e, that portion of Σ near F (u1) ∈ Σ is a graph of a C1,κ2 function f1 : H1 :=
TF (u1)Σ → H⊥

1 with |∇f1| < ε0(m) � 1. As G ⊂ B = B
m( z1+z2

2 , t) with zi ∈
B

n(0, 2R) ∩ P, t = |z1 − z2| ≤ 4R, and ui ∈ B
m(zi, t/N) (see (3.55)), we have the

inclusion

G ⊂ B
m(0, 6R) ⊂ B

m(u1, 6R + 2R + t/N) ⊂ B
m(u1, 10R),

and, as F is 2-Lipschitz, F (G) ⊂ B
n(F (u1), 20R), i.e., F (G) ⊂ x +

(
Graph f1 ∩

B
n(0, 20R)

)
. Thus, since ε0(m) is small,

H m(F (G)) =
ˆ

πH1 (F (G))

√
det

([ IdRm

Df1(ξ)

]T [ IdRm

Df1(ξ)

])
dξ

<

ˆ

πH1 (F (G))

√
2 dξ =

√
2H m(πH1(F (G))).
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Therefore,

H m(G) ≤ H m(F (G)) <
√

2H m(πH1(F (G))),

so that (3.60) would follow from

H m
(
πH1(F (G))

) ≤ C4(m) K0
tm+τ

α
. (3.61)

To achieve this, we shall use the definition of Ktp combined with the properties
of intersections of tubes stated in Lemma 2.8. To shorten the notation, we write

1
Rtp(x, y; TxΣ)

≡ 1
Rtp(x, y)

, x, y ∈ Σ.

For an arbitrary ζ ∈ G and i = 1, 2 we have by (3.53)

1
Rtp(F (ui), F (ζ))

=
2
∣∣QHi

(F (ζ) − F (ui))
∣∣

|F (ζ) − F (ui)|2
≤ Ktp(F (ui)) ≤ K0t

−1+τ .

Let Pi = F (ui)+Hi be the affine tangent plane to Σ at F (ui). Since F is Lipschitz
with constant (1 + ε0) < 2 and |ζ − ui| ≤ 2t,

dist(F (ζ), Pi) = dist(F (ζ) − F (ui), Hi)
=

∣∣QHi
(F (ζ) − F (ui))

∣∣ < 8K0t
1+τ =: h0 (3.62)

for ζ ∈ G, i = 1, 2. Select the points pi ∈ Pi, i = 1, 2, so that |p1 −p2| = dist(P1, P2).
The vector p2 − p1 is then orthogonal to H1 and to H2, and since G is nonempty by
(3.59), we have |p1 − p2| < 2h0 by (3.62).

Set p = (p1 + p2)/2, pick a parameter ζ ∈ G and consider y = F (ζ) − p. We have

y = (F (ζ) − F (u1)) + (F (u1) − p1) + (p1 − p),

so that πH1(y) = πH1(F (ζ) − F (u1)) + (F (u1) − p1), and

|y − πH1(y)| = |(p1 − p) + F (ζ) − F (u1) − πH1(F (ζ) − F (u1))|
= |(p1 − p) + QH1(F (ζ) − F (u1))|.

Therefore, since |p − p1| ≤ h0 and by (3.62), |y − πH1(y)| < h0 + h0 = 2h0. In the
same way, we obtain |y − πH2(y)| < 2h0. Thus,

y

2h0
=

F (ζ) − p

2h0
∈ S(H1, H2),

where S(H1, H2) = {x ∈ R
n : dist(x, Hj) ≤ 1 for j = 1, 2} is the intersection of two

tubes around the planes Hj considered in Section 2.2. Applying Lemma 2.8 which



974 S. KOLASIŃSKI ET AL. GAFA

is possible due to the estimate (3.44) for <)(H1, H2), we conclude that there exists
an (m − 1)-dimensional subspace W ⊂ H1 such that

πH1(F (G) − p) ⊂ {x ∈ H1 : dist(x, W ) ≤ 2h0 · 5c2/α}. (3.63)

On the other hand, since F is 2-Lipschitz, we certainly have

F (G) ⊂ B
n
(
F (Z1 + Z2/2), 2t

)
and therefore

πH1(F (G) − p) ⊂ B
n(a, 2t), a := πH1

(
F (Z1 + Z2/2) − p

)
. (3.64)

Combining (3.63)–(3.64), we use Lemma 2.9 for the plane H := H1 ∈ G(n, m), the
set S′ := πH1(F (G) − p), and d := 2h05c2/α, to obtain

H m
(
πH1(F (G))

) ≤ 4m−1tm−1 · 20h0c2/α =: C4(m)K0
tm+τ

α
(3.65)

by definition of h0 in (3.62), which is the desired (3.61), implying (3.60) and thus
completing the bootstrap estimates in the case of the global tangent-point curvature
Ktp.

3.3.3 Angles between good planes: the ‘Menger’ case. To obtain (3.57) for the
global Menger curvature KG, one proceeds along the lines of [Kol11], with a few
necessary changes.

The main difference between Ktp and KG is that the control of Ktp directly trans-
lates to the control of the angles between the tangent planes. In the case of KG an
extra term is necessary. Namely, we choose x1, . . . , xm ∈ P so that

|xi − u1| =
t

N
, i = 1, 2, . . . , m

and the vectors xi − u1 form and ortho-ρ-normal basis of P with ρ = t/N ; see Defi-
nition 2.3. Analogously, we choose y1, . . . , ym ∈ P close to u2. Next, setting as before
Hj = TF (uj)Σ, we write

|Df(u1) − Df(u2)| � <)(H1, H2)
≤ <)(H1, X) + <)(X, Y ) + <)(Y, H2), (3.66)

with the constant in (3.66) depending on m only, where

X = span (F (x1) − F (u1), F (x2) − F (u1), . . . , F (xm) − F (u1))
Y = span (F (y1) − F (u2), F (y2) − F (u2), . . . , F (ym) − F (u2))

are the secant m-dimensional planes, approximating the tangent ones. A technical
but routine calculation, relying on the fundamental theorem of calculus (see e.g.
[Kol11, Proof of Thm. 4.3] or (for m = 2) Step 4 of the proof of Theorem 6.1 in
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[SM11a]), shows that if the constant ε0 = ε0(m) > 0 controlling the oscillation of
Df is chosen small enough then

<)(H1, X) + <)(Y, H2) ≤ C(m)Φ∗(2t/N, B),

and consequently

|Df(u1) − Df(u2)| ≤ A(m)Φ∗(2t/N, B) + C(m) <)(X, Y ), (3.67)

where C(m) comes from (3.66). Thus, it remains to estimate the angle between the
secant planes X, Y approximating the tangent ones H1, H2. The estimate of <)(X, Y )
is very similar to the computations carried out in Section 3.3.2 for the global-tangent
point curvature. Here is the crux of the argument.

We let G = B \ Y0 be the good set defined in (3.58). Shrinking ε0 = ε0(m) if
necessary, we may assume that

<)(X, Y ) ≤ ε1(m) (3.68)

where ε1(m) is sufficiently small. Then,

H m(G) ≤ H m(F (G)) ≤ 2Hm(πX(F (G))),

and the strategy is to show a counterpart of (3.61), namely

H m
(
πX(F (G))

) ≤ C5 K0
tm+τ

α
, α = <)(X, Y ). (3.69)

Comparing this estimate with the lower bound (3.59) for the measure of G, one
obtains

<)(X, Y ) � K0t
τ = const · E

1/p
B tτ

which is enough to conclude the proof of Lemma 3.16 also in the case of the global
Menger curvature KG.

Now, to verify (3.69), we select a point ζ ∈ B = B
m( z1+z2

2 , t) with

|ζ − uj | ≈ |F (ζ) − F (uj)| ≈ t

2
, j = 1, 2

(one can arrange to have constants here close to 1 by the initial uniform smallness
of ε0(m) in (3.43)). Then, the (m + 1)-simplex T with vertices at F (u1), F (x1), . . . ,
F (xm), F (ζ) is of diameter ≈ t. The face

fcm+1(T ) = conv
{
F (u1), F (x1), . . . , F (xm)

}
is spanned by m nearly orthogonal edges F (xi)−F (u1), of length roughly t/N each,
and therefore H m(fcm+1(T )) ≈ tm. Thus, setting now P1 = F (u1)+X, and keeping
in mind that u1 �∈ Y0 (see (3.53)), we obtain by means of (2.16)

K0t
−1+τ ≥ KG(F (u1))

≥ K(F (u1), F (x1), . . . , F (xm), F (ζ)) ≈ tm dist(F (ζ), P1)
tm+2

.
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Thus,

dist(F (ζ), P1) ≤ C(m)K0t
1+τ , (3.70)

and the same estimate holds for dist(F (ζ), P2) where P2 = F (u2) + Y . Thus, we
have a counterpart of (3.62) in the previous subsection. From that point we reason
precisely like in Section 3.3.2, between (3.62) and (3.65), where at one point we need
to use (3.68). This completes the proof of Lemma 3.16 in the case of global Menger
curvature KG.

3.4 W 2,p estimates for the graph patches. We now show that Corol-
lary 3.17 combined with the result of Haj�lasz, cf. Theorem 2.13, easily yields the
following.

Theorem 3.18 (Sobolev estimates). Let Σ ⊂ R
n be an m-fine set with

ˆ

Σ

K(i)(z)p dH m(z) ≤ E < ∞

for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,τ ∩ W 2,p,
where τ = 1 − m/p.

Moreover we can find a radius R3 = a3(n, n, p)E−1/(p−m) ≤ R2,where a3(n, m, p)
is a constant depending only on n, m, and p, and a constant K3 = K3(n, m, p) such
that for each x ∈ Σ there is a function

f : TxΣ =: P ∼= R
m → P⊥ ∼= R

n−m

of class C1,τ ∩ W 2,p, such that f(0) = 0 and Df(0) = 0, and

Σ ∩ B
n(x, R3) = x +

(
Graph f ∩ B

n(0, R3)
)
,

where Graph f ⊂ P × P⊥ = R
n denotes the graph of f

Proof. It remains to show that the graph parametrizations are in fact in W 2,p. To
this end, we fix an exponent s ∈ (m, p) and apply Corollary 3.17 with p replaced by
s, to obtain from (3.51) the following estimate

|Df(z1) − Df(z2)|

�

⎛
⎜⎝ ˆ

Bm((z1+z2)/2,5|z1−z2|)
K(i)

(
(z, f(z))

)s
dz

⎞
⎟⎠

1/s

|z1 − z2|1−m/s

�

⎛
⎜⎝  

Bm((z1+z2)/2,5|z1−z2|)
K(i)

(
(z, f(z))

)s
dz

⎞
⎟⎠

1/s

|z1 − z2|

�
(
G(z1) + G(z2)

)|z1 − z2|
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where

G(z) =
(
MK(i)

(
F (z)

)s
)1/s

for F (z) = (z, f(z)),

and Mh denotes the standard Hardy-Littlewood maximal function of h. Since p > s,
we have p/s > 1, so that (K(i)◦F )s is in Lp/s and by the Hardy–Littlewood maximal
theorem G

s = M
(
(K(i) ◦ F )s

) ∈ Lp/s. Thus, G ∈ Lp. An application of Haj�lasz’
Theorem 2.13 concludes the proof of Theorem 3.18. ��

4 From W 2,p estimates to finiteness of both energies

In this section, we prove the implications (1) ⇒ (2), (3) of the main result, Theorem
1.4. Let us begin with a definition.

Definition 4.1. Let Σ ⊂ R
n. We say that Σ is an m-dimensional, W 2,p-manifold

(without boundary) if at each point x ∈ Σ there exist an m-plane TxΣ ∈ G(n, m), a
radius Rx > 0, and a function f ∈ W 2,p(TxΣ ∩ B

n(0, 2Rx), Rn−m) such that

Σ ∩ B
n(x, Rx) = x +

(
Graph f ∩ B

n(0, Rx)
)
.

We will use this definition only for p > m. In this range, by the Sobolev imbed-
ding theorem, each W 2,p-manifold is a manifold of class C1.

Theorem 4.2. Let p > m and let Σ be a compact, m-dimensional, W 2,p-mani-
fold. Then the global curvature functions KG[Σ] and Ktp[Σ] are of class Lp(Σ, H m).

Remark 4.3. As already explained in the introduction, here we assume that Ktp is
defined for the natural choice of m-planes Hx = TxΣ. As we mentioned before, if Σ
is a C1 manifold and Hx �= TxΣ on a set of positive H m-measure, then the global
curvature Ktp defined for Hx instead of TxΣ has infinite Lp-norm.

4.1 Beta numbers for W 2,p graphs. We start the proof with a general lemma
that shall be applied later to obtain specific estimates for KG and Ktp in Lp(Σ).

Lemma 4.4. Let f ∈ W 2,p(Bm(0, 2R), Rn−m), where p > m and let Σ = Graph f .
Then there exists a function g ∈ Lp(Σ ∩ B

n((0, f(0), 2R), H m) such that for each
a ∈ Σ ∩ B

n((0, f(0)), R) and any r < R

βΣ(a, r) ≤ g(a)r.

Proof. Fix s ∈ (m, p). Then, f ∈ W 2,s(Bm(0, 2R)). Since s > m we have the embed-
ding

W 2,s(Bm(0, 2R)) ⊂ C1,α(Bm(0, 2R)),

where α = 1 − m
s . Choose some point x ∈ B

m(0, R) and set as before

F (z) := (z, f(z)) and Ψx(z) := F (z) − DF (x)(z − x) for z ∈ B
m(0, 2R).
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Of course Ψx is in W 2,p(Bm(0, 2R), Rn) and therefore also in W 2,s(Bm(0, 2R), Rn).
We now fix another point y in B

m(x, R) and estimate the oscillation of Ψx. Set

U := B
m
(x + y

2
, |x − y|

)
.

By two consecutive applications of the Sobolev imbedding theorem in the super-
critical case (cf. [GT01, Theorem 7.17]), keeping in mind that U is a ball of radius
|x − y|, we obtain

|Ψx(y) − Ψx(x)| ≤ C(n, m, s)|y − x|1− m

s

⎛
⎝ ˆ

U

|DΨx(z)|s dz

⎞
⎠

1/s

= C ′|y − x|
⎛
⎝  

U

|DΨx(z)|s dz

⎞
⎠

1/s

= C ′|y − x|
⎛
⎝  

U

|DF (z) − DF (x)|s dz

⎞
⎠

1/s

≤ C̃|y − x|
⎛
⎝  

U

|z − x|s−m

ˆ

U
|D2F (w)|s dw dz

⎞
⎠

1/s

= C̄|y − x|2
⎛
⎜⎝  

Bm( x+y

2
,|x−y|)

|D2f(w)|s dw

⎞
⎟⎠

1/s

≤ Ĉ|y − x|2M(|D2f |s)1/s(x).

Here M denotes the Hardy-Littlewood maximal function and the constant
Ĉ = Ĉ(n, m, s) depends on n, m, and s. Since m < s < p we have p

s > 1 and
|D2f |s ∈ Lp/s(Bm(0, 2R)). Hence we also have M(|D2f |s) ∈ Lp/s(Bm(0, 2R)). There-
fore M(|D2f |s)1/s ∈ Lp(Bm(0, 2R)).

To estimate the β number, note that

|Ψx(y) − Ψx(x)| = |F (y) − F (x) − DF (x)(y − x)| = |f(y) − f(x) − Df(x)(y − x)|.

Choose two points a ∈ Σ ∩ B
n(F (0), R) and b ∈ Σ ∩ B

n(F (0), 2R). Since Σ =
Graph f there exist x, y ∈ B

m(0, 2R) such that F (x) = a and F (y) = b.
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Of course we have |y − x| ≤ |b − a|. Now we obtain

dist(b, a + TaΣ) = dist(F (y), F (x) + TF (x)Σ)
≤ |F (y) − F (x) − DF (x)(y − x)|
= |Ψx(y) − Ψx(x)|
≤ Ĉ|y − x|2M(|D2f |s)1/s(x)
≤ Ĉ|b − a|2M(|D2f |s)1/s(πRm(a)).

Since πRm is bounded we find together with the previous considerations that
the function g(a) := ĈM(|D2f |s)1/s(πRm(a)) is of class Lp(Σ ∩ B

n(F (0), 2R), H m).
Choose a radius r ∈ (0, R]. We have

sup
b∈Σ∩Bn(a,r)

dist(b, a + TaΣ) ≤ sup
b∈Σ∩Bn(a,r)

|b − a|2g(a) ≤ r2g(a).

Hence

βΣ(a, r) =
1
r

inf
H∈G(n,m)

(
sup

b∈Σ∩Bn(a,r)
dist(b, a + H)

)

≤ 1
r

sup
b∈Σ∩Bn(a,r)

dist(b, a + TaΣ) ≤ g(a)r. ��

We now need to estimate the global curvatures in terms of β numbers. Combin-
ing these estimates with the previous lemma, we will later be able to conclude the
proof of Theorem 4.2.

4.2 Global Menger curvature for W 2,p graphs. Let us begin with an esti-
mate for the global Menger curvature KG.

Lemma 4.5. Let Σ ⊂ R
n be a closed m-dimensional set. Choose m + 2 points

x0,. . . ,xm+1 of Σ; set T = conv(x0, . . . , xm+1) and d = diam(T ). There exists a
constant C = C(m, n) such that

H m+1(T ) ≤ CβΣ(x0, d)dm+1

and

K(x0, . . . , xm+1) ≤ C
βΣ(x0, d)

d
.

Proof. If the affine space aff{x0, . . . , xm+1} is not (m + 1)-dimensional then
H m+1(T ) = 0 and there is nothing to prove. Hence, we can assume that T is
an (m + 1)-dimensional simplex. The measure H m+1(T ) can be expressed by the
formula (cf. (2.16))

H m+1(T ) =
1

m + 1
dist(xm+1, aff{x0, . . . , xm})H m(conv(x0, . . . , xm)).
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In the same way, one can express the measure H m(conv(x0, . . . , xm)) etc.; by
induction,

H m+1(T ) ≤ 1
(m + 1)!

dm+1.

Hence, if βΣ(x0, d) = 1, then there is nothing to prove, so we can assume that
βΣ(x0, d) < 1.

Fix an m-plane H ∈ G(n, m) such that

dist(y, x0 + H) ≤ dβΣ(x0, d) for all y ∈ Σ ∩ B
n(x0, d). (4.1)

Set h := dβΣ(x0, d) < d. Without loss of generality we can assume that x0 lies
at the origin. Let us choose an orthonormal basis (v1, . . . , vn) of R

n as coordinate
system, such that span{v1, . . . , vm} = H. Because of (4.1) in our coordinate system
we have

T ⊂ [−d, d]m × [−h, h]n−m.

Of course, T lies in some (m + 1)-dimensional section of the above product. Let

V := aff{x0, . . . , xm+1} = span{x1, . . . , xm+1},

Q(a, b) := [−a, a]m × [−b, b]n−m,

Q := Q(d, h)
and P := V ∩ Q.

Note that each of the sets V , Q and P contains T . Choose another orthonormal
basis w1, . . . , wn of R

n such that V = span{w1, . . . , wm+1}. Set

S := {x ∈ V ⊥ : |〈x, wi〉| ≤ h for i = 1, . . . , m}.

Thus, S is just the cube [−h, h]n−m−1 placed in the orthogonal complement of
V . Note that diam S = 2h

√
n − m − 1. In this setting we have

P × S =⊂ Q(d + 2h
√

n − m − 1, h + 2h
√

n − m − 1). (4.2)

Recall that h = dβΣ(x0, d) < d. We estimate

H n(T × S) ≤ H n(P × S)
≤ H n

(
Q(d + 2h

√
n − m − 1, h + 2h

√
n − m − 1)

)
=

(
2d + 4h

√
n − m − 1

)m(
2h + 4h

√
n − m − 1

)n−m

< (2d + 4d
√

n − m − 1)m(2h + 4h
√

n − m − 1)n−m

= (2 + 4
√

n − m − 1)ndnβΣ(x0, d)n−m.

On the other hand we have

H n(T × S) = H m+1(T )H n−m−1(S)
= H m+1(T )2n−m−1hn−m−1

= 2n−m−1H m+1(T )dn−m−1βΣ(x0, d)n−m−1.
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Hence

2n−m−1H m+1(T )dn−m−1βΣ(x0, d)n−m−1 ≤ (2 + 4
√

n − m − 1)ndnβΣ(x0, d)n−m,

or equivalently

H m+1(T ) ≤ (2 + 4
√

n − m − 1)n2−(n−m−1)dm+1βΣ(x0, d).

We may set C = C(n, m) = (2 + 4
√

n − m − 1)n2−(n−m−1). This completes the
proof of the lemma. ��

Since Σ is a compact W 2,p-manifold (p > m) we may cover it by finitely many
balls, in which Σ is described as a graph, such that Lemma 4.4 is satisfied in each of
these graph patches with a respective function g defined only on that patch. More
precisely, we find a1, . . . , aN ∈ Σ with

Σ ⊂
N⋃

k=1

B
n(ak, R/2),

such that for each k = 1, . . . , N, one has

Σ ∩ B
n(ak, 2R) = ak + (Graph fk ∩ B

n(ak, 2R)) ,

where fk ∈ W 2,p(Bm(0, 2R), Rn−m), and there is a function gk ∈ Lp(Σ ∩
B

n(ak, 2R), H m) with the property that for each a ∈ Σ ∩ B
n(ak, R) and any r < R

one has the estimate

βΣ(a, r) ≤ gk(a)r. (4.3)

Using a partition of unity subordinate to this finite covering, i.e., (ηk)N
k=1 ⊂

C∞
0 (Bn(ak, R/2)) with 0 ≤ ηk ≤ 1,

∑N
k=1 η = 1, we can extend the functions ηkgk to

all of Σ by the value zero outside of B
n(ak, R/2) for each k = 1, . . . , N, and define

finally g ∈ Lp(Σ, H m) as

g =
N∑

k=1

ηkgk.

Now, for any x0 ∈ Σ there exists k ∈ {1, . . . , N} such that x0 ∈ Σ ∩ B
n(ak, R/2),

so that B
n(x0, R/2) ⊂ B

n(ak, R), and we conclude with (4.3) for any r < R

βΣ(x0, r) =
N∑

k=1

ηkβΣ(x0, r) ≤
N∑

k=1

ηkgk(x0)r = g(x0)r.

Consequently, by Lemma 4.5,

KG(x0) = sup
x1,...,xm+1∈Σ

K(x0, x1, . . . , xm+1)

≤ C sup
x1,...,xm+1∈Σ

βΣ(x0, diam(x0, . . . , xm+1))
diam(x0, . . . , xm+1)

≤ C sup
x1,...,xm+1∈Σ

g(x0) = Cg(x0).
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This leads to the following result.

Corollary 4.6. Let Σ be a compact, m-dimensional, W 2,p-manifold for some p >
m. Then KG[Σ] ∈ Lp(Σ, H m).

4.3 Global tangent–point curvature for W 2,p graphs. The following sim-
ple lemma can be easily obtained from the definition of Ktp.

Lemma 4.7. Assume that Σ is a C1 embedded, compact m-dimensional manifold
without boundary. Then, for some R = R(Σ) > 0 we have

Ktp(x) � 1
R

+ sup
r<R

βΣ(x, r)
r

.

Proof. Choose R > 0 so that for each point x ∈ Σ the intersection Σ ∩ B
n(x, 3R) is

a graph of a C1 function f : TxΣ → (TxΣ)⊥ with oscillation of Df being small. Fix
x ∈ Σ. Set F (z) := (z, f(z)) for z ∈ P = TxΣ. As before, we write

1
Rtp(x, y; TxΣ)

≡ 1
Rtp(x, y)

, x, y ∈ Σ.

It is clear that for |x − y| ≥ R we have Rtp(x, y) ≥ R/2 by definition. Thus

Ktp(x) ≤ 2
R

+ sup
|x−y|<R

1
Rtp(x, y)

.

It remains to estimate the last term. Now, if x = F (ξ) and y = F (η) ∈ Σ ∩ B
n(x, R)

with

|y − x| = |F (η) − F (ξ)| ≈ |η − ξ| ≈ ρj ≡ R

2j
, j = 0, 1, , 2, . . . ,

then
1

Rtp(x, y)
=

2 dist(y, x + Tx1Σ)
|y − x|2 � βΣ(x, ρj)

ρj

with an absolute constant. The lemma follows. ��
Combining the above lemma with Lemma 4.4, we conclude immediately that

Ktp ∈ Lp for W 2,p-manifolds with p > m. The proof of the implications (1) ⇒ (2),
(3) of Theorem 1.4 is now complete.
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