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Abstract We compute the differential and total rate of the
semileptonic decay of polarized top quarks t → �ν�+b jet+
jet at next-to-leading order (NLO) in the QCD coupling with
an off-shell intermediate W boson. We present several nor-
malized distributions, in particular those that reflect the t-spin
analyzing powers of the lepton, the b-jet and the W + boson
at LO and NLO QCD.

1 Introduction

The top quark, the heaviest known fundamental particle, is
set apart from the lighter quarks by the fact that it is so short-
lived that it does not hadronize. The top quark decays almost
exclusively into a b quark and a W boson; other decay modes
have so far not been observed.

Top-quark production and decay has been explored quite
in detail at the Tevatron and especially at the Large Hadron
Collider (LHC). So far almost all experimental results agree
well with corresponding Standard Model (SM) predictions.
(For recent overviews, see [1–4].) On the theoretical side,
significant recent progress1 includes the computation of
the hadronic t t̄ production cross section at next-to-next-to-
leading order (NNLO) in the QCD coupling αs [5,6] and
the calculation of the differential decay rate of t → b�ν� at
NNLO in perturbative QCD [7,8].

Over the years, top-quark decay has been analyzed in
detail within the SM. As to the total decay width �t , the order
αs QCD corrections [9,10], the order α electroweak correc-
tions [11,12], and the order α2

s QCD corrections [13,14] were
calculated quite some time ago. The fractions of top-quark
decay into W + with helicity λW = 0,±1 are also known
to NNLO QCD [15], including the order α electroweak cor-

a e-mail: breuther@physik.rwth-aachen.de
b e-mail: mellein@physik.rwth-aachen.de
1 Other recent results include [42,43].

rections [16]. Differential distributions of semileptonic and
non-leptonic decays of (un)polarized top quarks were deter-
mined to NLO in the gauge couplings [17–25], and b-quark
fragmentation was analyzed in [26–30].

In this paper we compute the differential and total rate of
polarized top quarks decaying into �ν� + b jet + jet at NLO
in the QCD coupling. The differential rate is of interest as a
building block for predictions of top-quark production and
decay at NLO QCD, for instance for t t̄ + jet production [31–
33], for single top-quark + jet production at the LHC, or for
t t̄+jet production at a future e+e− linear collider. In fact, this
decay mode was already computed to NLO QCD by [33]. The
results of this paper as regards t t̄ + jet production at hadron
colliders include also NLO jet radiation in top-quark decay.
Distributions for this decay mode were not given separately
in [33]. Therefore, we believe that it is useful to present, for
possible applications to other processes, a separate detailed
analysis of this top-quark decay mode.

The paper is organized as follows. In Sect. 2 we describe
our computational setup. In Sect. 3 we present our results
for the decay rate and for a number of distributions for
(un)polarized top-quark decays. Section 4 contains a short
summary. In the appendix we list the subtraction terms,
for the Catani–Seymour subtraction formalism [34,35] with
extensions to the case of a colored massive initial state
[33,36,37], which we use to handle the soft and collinear
divergences that appear in the real radiation and NLO virtual
correction matrix elements.

2 Setup of the computation

We consider the decay of polarized top quarks to leptons, a
b-jet, and an additional jet,

t → W ∗+ + b jet + jet → �+ν� + b jet + jet, (1)

at NLO QCD, for an off-shell intermediate W boson. The
quarks and leptons in the final state are taken to be massless.
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At NLO QCD, i.e., at order α2
s , the differential decay rate

of (1) is determined by the amplitudes of the following parton
processes:

t → �+ν� + b + g, (2)

and

t → �+ν� + b + gg, t → �+ν� + b + qq̄, q = u, d, s, c, b.

(3)

In the case of additional bb̄ production in the real radia-
tion process (3), we take into account only configurations
where a bb̄ pair is unresolved by the jet algorithm, i.e.,
we consider in (1) final states where the additional jet has
zero b-flavor. To order α2

s , the matrix element of (2) is the
sum of the Born term |MB |2 and the interference δMV

of the Born and the 1-loop amplitude. The calculation of
δMV , using dimensional regularization, is standard. We
expressed δMV , using Passarino–Veltman reduction [38],
in terms of scalar one-loop integrals with up to four exter-
nal legs. The scalar integrals that appear in δMV are known
analytically in d space-time dimensions (cf., for instance,
[39] and references therein). In particular, we extracted the
ultraviolet (UV) and infrared (IR) poles in ε = (4 − d)/2
that appear in several of these scalar integrals analyti-
cally. The processes (3) are described by tree-level matrix
elements.

As to renormalization, the top-quark mass is defined in
the on-shell scheme while the QCD coupling αs is defined
in the MS scheme.

The soft and collinear divergences that appear in the phase-
space integrals of the tree-level matrix elements of (3) and in
δMV are handled with the dipole subtraction method [34,35]
and extensions that apply to the decay of a massive quark
[33,36,37]. Details are given in the appendix.

We define jets by the Durham algorithm [40], i.e., we use
the jet metric

Yi j = 2
min

(
E2

i , E2
j

)

m2
t

(
1 − cos θi j

)
, (4)

where Ei , E j are the energies of partons i, j in the final state,
θi j is the angle between them, and mt denotes the mass of
the top quark. We work in the rest frame of the t quark. The
jet resolution parameter is denoted by Y . An unresolved pair
of final-state partons i, j is recombined by adding the four-
momenta, k(i j) = ki + k j . The decay (2) contributes to (1)
events with Ybg > Y . The real radiation processes (3) con-
tribute to (1) events with one unresolved pair of partons i, j ,
i.e., with Yi j < Y . The jet distance between the recombined
pseudoparticle (i j) and the remaining parton n must satisfy
Yn(i j) > Y .

3 Results

As already mentioned, we work in the top-quark rest frame.
If we denote the top-spin vector in this frame by st (where
s2

t = 1), differential distributions for the decay (1) of a 100 %
polarized ensemble of top quarks are of the form

d�

dO
= A + B · st , (5)

where O denotes some observable. In the fully differential
case, the functions A and B (which transform as scalar and
vector, respectively, under spatial rotations) depend on the
independent kinematical variables of (1), and the vector B
may be represented as a linear combination of terms propor-
tional to the directions of the charged lepton and of the two
jets in the final state.

Rotational invariance implies that a number of distribu-
tions hold both for polarized and unpolarized top quarks. This
includes the distributions that will be presented in Sect. 3.1.

In Sect. 3.2 we consider distributions that are relevant for
the decay of polarized top quarks, namely those that reflect
the top-spin analyzing power of the charged lepton, the b-jet,
and the W boson.

For the numerical results given below, we use mt =
173.5 GeV, mW = 80.39 GeV and �W = 2.08 GeV. The
QCD coupling for 5-flavor QCD is taken to be αs(m Z ) =
0.118. Its evolution to μ = mt and conversion to the 6-flavor
MS coupling results in αs(mt ) = 0.108. Moreover, we use
α(mt ) = 7.9 × 10−3 and sin2 θW = 0.231 which yields
the weak coupling g2

W = 0.429. The normalized distribu-
tions given below do not depend on g2

W because we work to
lowest order in g2

W .

3.1 Distributions for (un)polarized top-quark decay

First, we compute the decay rate of (1) as a function of the
jet resolution parameter Y . In Fig. 1 the ratio of �t→b l̄νl + jet

and the leading order rate �L O
t→b l̄νl

= 0.162 GeV is shown at
LO and NLO QCD, for a renormalization scale μ = mt . It is
clear that this ratio increases for decreasing Y . In the lower
pane of this figure, the ‘K factor’ �NLO

t→b l̄νl + jet
/�LO

t→b l̄νl + jet
is displayed. One sees that in a large range of Y , the QCD
corrections are positive and at most of order 8 %, while for
Y below ∼ 2.5 × 10−3 they become negative.

In the remainder of this section we compute normalized
decay distributions, both at LO and NLO QCD for two values
of the jet resolution parameter, Y = 0.01 and Y = 0.001. The
NLO decay distributions, which are normalized to the NLO
decay rate �NLO

t→b l̄νl + jet
, are expanded in powers of αs . Taking

out a factor of αs both from the LO and NLO (differential)
rate, we have
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Fig. 1 Upper pane decay rate �t→b l̄νl + jet (LO and NLO) normalized
to �t→b l̄νl

(LO) as a function of the jet resolution parameter Y for

μ = mt . Lower pane ratio of �NLO
t→b l̄νl + jet

/�LO
t→b l̄νl + jet

as a function of

Y . The solid line corresponds to μ = mt , the shaded band results from
scale variations between mt/2 and 2mt

d�NLO

�NLO = d�0 + αsd�1 + O(α2
s )

�0 + αs�1 + O(α2
s )

= d�0

�0

(
1 − αs

�1

�0

)
+ αs

d�1

�0
+ O(α2

s ). (6)

In the following we rescale all dimensionful variables with
mt . That is, in the following, the energies EW , El , Eb, and
E2 of the W boson, the charged lepton, b-jet, and the second
jet with zero b-flavor, respectively, and the W and �b-jet
invariant masses MW , Mlb denote dimensionless variables.

The invariant mass distribution and the energy distribu-
tion of the off-shell W boson are displayed in Figs. 2 and 3
for Y = 0.01 and Y = 0.001, respectively. The QCD cor-
rections to the invariant mass of the W boson are very small.
The distribution of the W energy2 EW = El + Eν may be
compared with the case of the lowest-order on-shell decay
t → bW where the (dimensionless) W energy is fixed,

ĒW =
√

m2
W + k2

W /mt = 0.61. In the case of additional
jet radiation and allowing the W boson to be off-shell, one
expects therefore that the maximum of the distribution of EW

is below ĒW , but it approaches this value if the jet cut Y is
decreased. The distributions on the right sides of Figs. 2 and 3
show this behavior. The QCD corrections are small at and in
the near vicinity of the maximum of the distribution, whereas

2 Here, we tacitly assume that the neutrino energy and momentum can
be reconstructed in an experiment, which is usually possible only with
ambiguities.

they can become rather large if the W boson is significantly
off-shell.

The left sides of Figs. 4 and 5 show the distribution of the
energy El of the charged lepton. For decreasing jet cut the
distribution moves toward the lepton-energy distribution of
the inclusive semileptonic decay which, at tree level and for
a massless b quark, has its maximum at El = 0.25.

The right sides of Figs. 4 and 5 display the distribution of
the invariant mass Mlb of the lepton and the b jet3. In the case
of the LO decay t → b�ν� and an on-shell intermediate W
boson, Mlb has a sharp upper bound, which, in terms of our

dimensionless variables, is given by Mmax
lb =

√
1 − m2

W /m2
t .

In the case of (2), (3), where gluons or qq̄ are radiated, the
invariant mass Mlb cannot exceed the LO kinematic bound-
ary, as long as the W boson is kept on-shell. The distance
between the maximum of the Mlb distribution and Mmax

lb is
expected to decrease with decreasing jet cut Y. An off-shell
W boson leads to a tail of the Mlb distribution beyond Mmax

lb .
All of these features arise in the results shown on the right
sides of Figs. 4 and 5. In the vicinity of Mmax

lb = 0.89 the
QCD corrections are about −10 %.

The distribution of the b-jet energy Eb and of the energy
E2 of the second jet is displayed in Figs. 6 and 7. In the case
of the LO decay t → bW , the energy of the massless b quark
is fixed to be Ēb = (1 − m2

W /m2
t )/2 = 0.39. Radiation off

the t and b leads to an upper bound on Eb that is below Ēb

for Y > 0. An off-shell W boson can, however, lead to some
events with Eb above this value. The average energy E2 of
the second jet is smaller than that of the b jet. These features
are exhibited by the results shown in Figs. 6 and 7. Near the
kinematic edges the QCD corrections can become ∼10 %.

Figures 8 and 9 show the distribution of cos θbl , where θbl

is the angle between the directions of flight of the charged lep-
ton and the b-jet in the t rest frame, and of cos θ2l , where θ2l is
the angle between �+ and the second jet. The distributions of
cos θbl are qualitatively similar to the corresponding distribu-
tions in the case of inclusive semileptonic top-decay; for most
of the events the charged lepton and the b jet are almost back-
to-back. As expected, the distribution of cos θ2l is falling less
steeply toward smaller angles θ2l . The QCD corrections are
markedly below 5 % in most of the kinematic range.

The distribution of cos θ∗
Wl , where θ∗

Wl is the angle
between the W + direction in the t rest frame and the lep-
ton direction in the W + rest frame, is presented in the plots
on the left side of Figs. 10 and 11. This distribution has been
used ever since at the Tevatron and the LHC for measuring
the W -boson helicity fractions in inclusive semileptonic top-
decay. With x = cos θ∗

Wl the one-dimensional distribution
has the well-known form

3 The distribution of Mlb in inclusive hadronic t t̄ production and decay
was first analyzed at NLO QCD in [41] and was proposed as a tool to
measure the top-quark mass. Cf. also [42].
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Fig. 2 Upper panes normalized distribution of the invariant mass MW of the W boson (left) and of the W energy EW (right) for Y = 0.01 and
μ = mt . Lower panes ratio of the NLO and corresponding LO distribution. The shaded band results from scale variations between mt/2 and 2mt
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Fig. 3 Same as Fig. 2, but for a jet resolution parameter Y = 0.001

�−1 d�

dx
= 3

4
FL

(
1 − x2

)

+3

8
F− (1 − x)2 + 3

8
F+ (1 + x)2 ,

with FL +F−+F+ = 1. For events with an additional jet, one
expects that for small jet cut Y the corresponding distribution
tends toward the inclusive one. Performing a fit to the cos θ∗

Wl

distributions of Figs. 10 and 11 (where we take into account
that our NLO distributions are not exactly normalized to
one, due to the expansion (6)), we obtain FNLO

L = 0.668
and FNLO− = 0.321 for Y = 0.01, and FNLO

L = 0.689 and
FNLO− = 0.308 for Y = 0.001. The size of the QCD correc-
tions is �1 %. For Y = 0.001 the helicity fractions agree very
well with the corresponding inclusive ones at NLO QCD (cf.,
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the NLO and corresponding LO distribution. The shaded band results
from scale variations between mt/2 and 2mt

lE
0.15 0.2 0.25 0.3 0.35 0.4

l
d 

EΓ
d

-1 Γ

1

LO

NLO

lE

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.85

0.9

0.95

1

1.05
1.1

l,bM
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

l,b
d 

MΓ
d

-1 Γ

-510

-410

-310

-210

-110

1

LO

NLO

l,bM
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.85

0.9

0.95

1

1.05
1.1

Fig. 5 Same as Fig. 4, but for Y = 0.001

for instance, [15]) and are in agreement with recent results
from ATLAS and CMS [44].

The plots on the right sides of Figs. 10 and 11 show the
distribution of cos θW b, where θW b is the angle between the W
and the b-jet directions in the t rest frame. As in the inclusive
case this distribution peaks when the W boson and the b jet
are back-to-back.

3.2 Top-spin analyzing power

Finally we consider, for the decay (1) of a 100 % polarized
top-quark ensemble, the angular correlation of the top-spin
vector st and the direction of flight of a final-state particle or
jet f in the top rest frame, where f = �+, b jet, W +. The
corresponding normalized distribution has the a priori form
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Fig. 7 Same as Fig. 6, but for Y = 0.001

1

�

d�

d cos θ f
= 1

2

(
1 + κ f cos θ f

)
, (7)

where θ f = � (st , k̂ f ). The coefficient κ f is the top-spin
analyzing power of f and measures the degree of correla-
tion. CP invariance implies4 that the corresponding angular

4 The effect of the non-zero Kobayashi–Maskawa phase, which would
show up only if higher-order weak corrections are taken into account,
is completely negligible in these decays.

distributions for top antiquarks are given by

1

�̄

d�̄

d cos θ f̄
= 1

2

(
1 − κ f cos θ f̄

)
. (8)

The values of κ f can be extracted from the slope of the dis-
tributions (7) or from
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Fig. 9 Same as Fig. 8, but for Y = 0.001

〈cos θ f 〉 = 1

�

π∫

0

d cos θ f

(
cos θ f

d�

d cos θ f

)
= κ f

3
. (9)

The results forκ f at LO and NLO QCD are listed in Table 1
for two values of the jet resolution parameter Y .

One may compare these t-spin analyzing powers with
the corresponding ones of the dominant semileptonic decay
modes t → b�+ν�. In the latter case one has κNLO

� = 0.999
[18] and κNLO

b = −0.39 [19]. Moreover, in this inclusive
case, κNLO

b = −κNLO
W . The charged lepton is the best top-

123



2815 Page 8 of 12 Eur. Phys. J. C (2014) 74:2815

)
Wl

*θcos(
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)
W

l
*θ

d 
co

s(
Γ

d
-1 Γ

-110

1 LO

NLO

)
Wl

*θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.85
0.9

0.95
1

1.05
1.1

)
Wb

θcos(
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)
W

b
θ

d 
co

s(Γ
d

-1 Γ

-110

1

10
LO

NLO

)
Wb

θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.85
0.9

0.95
1

1.05

Fig. 10 Upper panes normalized distribution of cos θ∗
Wl , where θ∗

Wl is
the angle between the W + direction in the t rest frame and the lepton
direction in the W + rest frame (left). The right plot shows the normal-
ized distribution of cos θW b, where θW b is the angle between the W and

the b-jet directions in the t rest frame. The jet resolution parameter is
Y = 0.01 and μ = mt . Lower panes ratio of the NLO and corresponding
LO distribution. The shaded band results from scale variations between
mt/2 and 2mt
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Fig. 11 Same as Fig. 10, but for Y = 0.001

spin analyzer in the semileptonic decays both without and
with an additional jet. This is due to the V-A structure of
the charged weak current and angular momentum conser-
vation. If an additional jet is produced in top-quark decay,

κb = −κW no longer holds, of course, cf. Table 1. In semilep-
tonic t decays both without and with an additional jet the
t-spin analyzing power of the W boson is weaker than that
of its daughter lepton �+. This is due to the known fact that
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Table 1 Top-spin analyzing powers extracted from the normalized dis-
tributions (7) for μ = mt . The uncertainties due to scale variations
between mt/2 and 2mt are below 1 %

Y = 0.01 Y = 0.001

κLO
� 0.981 0.993

κNLO
� 0.983 0.996

κLO
W 0.359 0.387

κNLO
W 0.351 0.381

κLO
b −0.326 −0.368

κNLO
b −0.319 −0.364

for t → �+ν�b (+jet), the amplitudes that correspond to
the different polarization states of the intermediate W boson
interfere constructively (destructively) when �+ is emitted in
(opposite to) the direction of the top spin.

4 Summary

We have computed the differential and total rate of the
semileptonic decay of polarized top quarks t → �ν�+b jet+
jet at next-to-leading order QCD. We have defined the jets
by the Durham algorithm, and we have presented a number
of distributions for two different values of the jet resolu-
tion parameter. The QCD corrections to the leading-order
distributions are �5 % in most of the kinematic range. Near
kinematic edges or significantly off the W resonance, the cor-
rections can become ∼10 %. Our results should be useful as
a building block for future analyses of top-quark production
and decay in hadron and in e+e− collisions.
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Appendix

In this appendix we collect, for convenience of the reader, the
un-integrated and integrated subtraction terms that we used
to handle the soft and collinear divergences which appear in
the phase space integrals of the real radiation matrix elements
of the processes (3) and in the 1-loop corrections to (2). We
use the dipole subtraction method [34] and its extension to
the decay of a massive quark, worked out in [33,36,37].

In this framework, the decay rate of (1) is given, as a
function of the jet resolution parameter Y , at NLO QCD by
�NLO(Y ) = �B(Y ) + δ�(Y ), where

δ�(Y )

=
∫

dφ4

(
δM(d)

V F4(Y ) + F4(Y )

∫
dφ(dip.) δM(d)

CT

)

d=4

+
∫

dφ5

(
(M∗

RMR)(4)F5(Y ) − F̃4(Y )δM(4)
CT

)
. (10)

Here, dφ4, dφ5 and dφ(dip) are the 4-particle, 5-particle, and
dipole phase-space measures, respectively, δMCT denotes,
schematically, the dipole subtraction counterterms for the
two real radiation processes (3), and

F4(Y ) = (Yb,g − Y ), F̃4(Y ) = (Ỹ(i j),l − Y ),

F5(Y ) =
∑
i, j �=l

(Yi, j − Y )(Y − Y(i j),l)

denote jet functions. The quantity Y(i j),l is calculated from
the momentum of the pseudo-jet that consists of partons i
and j , cf. Sect. 2, whereas the quantity Ỹ(i j),l is calculated
from the emitter and spectator momenta k̃i j and k̃l , which
are defined in terms of the 5-particle phase space φ5. The
following formulas are given for conventional dimensional
regularization.

Un-integrated dipoles

The set of counterterms δMCT for the real radiation pro-
cesses (3) can be constructed, using the emitter-spectator ter-
minology of [34], with so-called final–final and final–initial
dipoles. We denote the 4-momenta of the top quark and of
the b quark from the tW b vertex with kt and kb, and those of
the two gluons or the q, q̄ in (3) by k1, k2.

The final–final dipoles required for (3) can be obtained
from [34]:

Dλ1λ2
b→bg1,g2

= −1

2k1 · kb
4παsCFμ2ε

×
[
δλ1λ2

(
2

1 − Zb1,2(1 − Yb1,2)
− 1 − Zb1,2 − ε(1 − Zb1,2)

)]
,

Dλ1λ2
b→bg2,g1

= −1

2k2 · kb
4παsCFμ2ε

×
[
δλ1λ2

(
2

1 − Zb2,1(1 − Yb2,1)
− 1 − Zb2,1 − ε(1 − Zb2,1)

)]
,

Dρ1ρ2
g→gg,b = −1

2k1 · k2
8παsCAμ2ε

×
[
−gρ1ρ2

(
1

1−Z12,b(1−Y12,b)
+ 1

1−(1−Z12,b)(1−Y12,b)
−2

)

+ 1 − ε

k1 · k2
�

ρ1
FF�

ρ2
FF

]
,

Dρ1ρ2
g→qq̄,b = −1

2k1 · k2
4παs N f μ

2ε

[
−gρ1ρ2 − 2

k1.k2
�

ρ1
FF�

ρ2
FF

]
. (11)

Here ε = (4 − d)/2, CF = (N 2
c − 1)/(2Nc), CA = Nc,

N f = 5, and
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Yi j,l = ki · k j

ki · k j + (ki + k j ) · kl
,

Zi j,l = ki · kl

(ki + k j ) · kl
, (l �= i, j),

�
ρ1
FF = (1 − Z12,b) kρ1

1 − Z12,b kρ1
2 .

The indices λi and ρi transform according to the spinor and
vector representations of the Lorentz group, i.e., they refer
to the spin of the initial-state quark and gluon, respectively,
in (11).

The final–initial dipoles for t → W bg1g2 were con-
structed in [33,36] (using, in part, results of [37]). They con-
tain the eikonal terms ∝ m2

t ki · k j/(kt · ki )
2 for canceling

the soft singularities that arise from gluon radiation off the
initial top quark. The final–initial dipole for t → W bqq̄ can
be constructed analogously.

Dt λ1λ2
b→bg1

= −1

2k1 · kb
4παsCFμ2ε

×
[
δλ1λ2

(
2

1 − Zt
b1

− 1 − Zt
b1 − εY t

b1(1 − Zt
b1) − m2

t k1 · kb

(kt · k1)2

)]
,

Dt λ1λ2
b→bg2

= −1

2k2 · kb
4παsCFμ2ε

×
[
δλ1λ2

(
2

1 − Zt
b2

− 1 − Zt
b2 − εY t

b2(1 − Zt
b2) − m2

t k2 · kb

(kt · k2)2

)]
,

Dt ρ1ρ2
g→gg = −1

2k1 · k2
8παsCAμ2ε

×
[
−gρ1ρ2

(
1 − Zt

12

Zt
12

+ 1 − Zt
21

Zt
21

− m2
t k1 · k2

2(kt · k1)2 − m2
t k1 · k2

2(kt · k2)2

)

+ 1 − ε

k1 · k2
�

ρ1
FI �

ρ2
FI

]
,

Dt ρ1ρ2
g→qq̄ = −1

2k1 · k2
4παs N f μ

2ε

[
−gρ1ρ2 − 2

k1.k2
�

ρ1
FI �

ρ2
FI

]
. (12)

Here

Zt
i j = 2 kt .ki

m2
t (1 − r2

i j )
, Y t

i j = 2 ki .k j

m2
t (1 − ri j )2

,

ri j = (kt − ki − k j )
2

m2
t

.

In this case the vector �
ρ
FI takes a more complicated form.

For the sake of brevity we refer to Eq. (20) of [33].

Integrated dipoles

For the analytical integration of the final–final dipoles over
the respective subspaces we use a phase-space splitting of
the form

dφ5(ki , k j , kl , . . .) = dφ4(k̃i j , k̃l , . . .) × dφ
(dip.)

i j,l (Yi j,l , Zi j,l),

such that one can, in the end, identify dφ4(k̃i j , k̃l , . . .) with
the four-particle phase space of the Born matrix elements or
of the virtual corrections.

The momenta of the emitter k̃i j and the spectator k̃l are
constructed according to [34] from the soft/collinear pair ki ,
k j and another parton momentum kl , whereas all remaining
momenta are unaffected. In our case the emitter and spectator
is either a b-quark or a gluon, i.e. k̃i j = k̃b/g and k̃l = k̃g/b.

The phase space of the final–final dipoles can then be
parameterized as

dφ
(dip.)

i j,l (Yi j,l , Zi j,l) =
⎡
⎢⎣

(
2k̃b · k̃g

)1−ε [d�(d−3)]
16π2(2π)1−2ε

× 
(
Zi j,l(1−Zi j,l)

)
dZi j,l(

Zi j,l(1 − Zi j,l)
)ε


(
Yi j,l(1 − Yi j,l)

)
dYi j,l(

1−Yi j,l
)2ε−1

Y ε
i j,l

⎤
⎥⎦ .

(13)

The double index i j labels the soft/collinear pair and the
index l refers to the momentum of the remaining final-state
parton.

Integration of (11) over the dipole phase space yields

Dλ1λ2
b→bg1,g2

= αs

4π

−CF

�(1 − ε)

(
μ̃2

S̃bg

)ε

×
[
δλ1λ2

(
1

ε2 + 3

2ε
+ 5 − π2

2
+ O(ε)

)]
,

Dλ1λ2
b→bg2,g1

= αs

4π

−CF

�(1 − ε)

(
μ̃2

S̃bg

)ε

×
[
δλ1λ2

(
1

ε2 + 3

2ε
+ 5 − π2

2
+ O(ε)

)]
,

Dρ1ρ2
g→gg,b = αs

4π

−2CA

�(1 − ε)

(
μ̃2

S̃bg

)ε

×
[
−gρ1ρ2

(
1

ε2 + 11

6ε
+ 50

9
− π2

2
+ O(ε)

)]
,

Dρ1ρ2
g→qq̄,b = αs

4π

−N f

�(1 − ε)

(
μ̃2

S̃bg

)ε

×
[
−gρ1ρ2

(
− 2

3ε
− 16

9
+ O(ε)

)]
. (14)

Here μ̃2 = 4πμ2 and S̃bg = (k̃b + k̃g)
2/m2

t = 2k̃b · k̃g/m2
t .

In the case of the final–initial dipoles the phase-space split-
ting takes a slightly different form:

dφ5(ki , k j , R) = dφ4(k̃i j , R̃) × dφ
t (dip.)

i j (Y t
i j , Zt

i j ).

Again dφ4(k̃i j , R̃) can be identified with the phase space
of the Born matrix elements or of the virtual corrections.
Here, the phase-space mapping 5 → 4 affects, besides the
soft/collinear pair, also all other final-state momenta, denoted
by R.
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This procedure, as well as the dipole phase-space param-
eterization,

dφ
(dip.)

i j (Y t
i j , Zt

i j ) =
⎡
⎢⎣
(
m2

t

)1−ε [d�(d−3)]
16π2(2π)1−2ε

(1 − ri j )
2
(

1 + ri j

1 − ri j

)2ε

×

(

Zt
i j (1 − Zt

i j )
)

dZt
i j(

Zt
i j + r2

i j (1 − Zt
i j )
)ε


(

Y t
i j (Ymax − Y t

i j )
)

dY t
i j(

Ymax − Y t
i j

)ε (
Y t

i j

)ε

⎤
⎥⎦ ,

is adapted from [33,37].
The boundary of the Y t

i j integration is

Ymax = (1 + ri j )
2 Zt

i j (1 − Zt
i j )

(1 − Zt
i j ) + r2

i j Z t
i j

.

Integration of (12) over the dipole phase space yields
hypergeometric functions 2F1, which we expanded in powers
of ε using the package HPL 2.0 [45]. We obtain

Dt λ1λ2
b→bg1

= αs

4π

−CF

�(1 − ε)
μ̃2ε

×
[
δλ1λ2

(
1

ε2 + 5−4 ln(1−T̃b)

2ε
+ Fbg + O(ε)

)]
, (15)

Dt λ1λ2
b→bg2

= αs

4π

−CF

�(1 − ε)
μ̃2ε

×
[
δλ1λ2

(
1

ε2 + 5−4 ln(1−T̃b)

2ε
+ Fbg + O(ε)

)]
, (16)

Dt ρ1ρ2
g→gg = αs

4π

−2CA

�(1 − ε)
μ̃2ε

×
[
−gρ1ρ2

(
1

ε2 + 17 − 12 ln(1−T̃g)

6ε
+Fgg +O(ε)

)]
,

(17)

Dt ρ1ρ2
g→qq̄ = αs

4π

−N f

�(1 − ε)
μ̃2ε

×
[
−gρ1ρ2

(
− 2

3ε
+ Fqq̄ + O(ε)

)]
, (18)

where

Fbg = − ln
(

T̃b

) T̃b

(
6 − 7 T̃b

)

2
(

1 − T̃b

)2 + 27 − 25 T̃b

4
(

1 − T̃b

)

+2 Li2(1 − T̃b) − 5

6
π2 − 5 ln

(
1 − T̃b

)
+ 2 ln2

(
1 − T̃b

)
,

Fgg = − ln
(

T̃g

) T̃g

(
24 − 84 T̃g + 134 T̃ 2

g − 91 T̃ 3
g + 23 T̃ 4

g

)

6
(

1 − T̃g

)5

+ 901 − 3694 T̃g + 5326 T̃ 2
g − 3534 T̃ 3

g + 881 T̃ 4
g

120
(

1 − T̃g

)4

+2Li2(1 − T̃g) − 5

6
π2 − 17

3
ln
(

1 − T̃g

)
+ 2 ln2

(
1 − T̃g

)
,

Fqq̄ = ln
(

T̃g

) T̃g

(
3 + 8 T̃ 2

g − 7 T̃ 3
g + 2 T̃ 4

g

)

3
(

1 − T̃g

)5
+ 4

3
ln
(

1 − T̃g

)

−
(

101 − 494 T̃g + 526 T̃ 2
g − 334 T̃ 3

g + 81 T̃ 4
g

)

60
(

1 − T̃g

)4 . (19)

Here T̃b = (kt − k̃b)
2/m2

t , and T̃g = (kt − k̃g)
2/m2

t . Equa-
tion (15) agrees with the result of [36], and Eqs. (16) and
(17) with those of [33].
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