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Abstract The case of low invariant mass exclusive central
diffractive production is considered in the general theoretical
framework. It is shown that diffractive patterns (differential
cross sections in variables like transfer momenta squared,
the azimuthal angle between final hadrons and their com-
binations) can serve as a unique tool to explore the pic-
ture of the pp interaction and falsify theoretical models.
Basic kinematical and dynamical properties of the process
are considered in detail. As an example, visualizations of
diffractive patterns in the model with three pomerons for
processes p + p → p + R + p (R is a resonance) and
p + p → p + π+π− + p are presented.

1 Introduction

The central exclusive production process with quasi-
diffractively scattered initial particles is an important source
of information as regards high-energy dynamics of strong
interactions both in theory and experiment. If we consider
only one particle production, this is the first “genuinely”
inelastic process which not only retains a lot of features of
elastic scattering but also shows clearly how the initial energy
is being transformed into the secondary particles.

Theoretical consideration of these processes on the basis
of Regge theory goes back to papers [1–9]. Experimental
works were presented in [10–15]. Some new interest was
related to signals of centrally produced particles like Higgs
bosons, heavy quarkonia, di-gamma, exotics, dihadrons [16–
19,48]. Recent data from different experiments are also avail-
able [49–57].

In the previous paper [17] the exclusive central diffractive
production of heavy states was considered in detail. In this
paper we present properties of low-mass (central invariant
masses are less than 3 GeV) exclusive production.

a e-mail: Roman.Rioutine@cern.ch

In addition to the general advantages like clear signature
with two large rapidity gaps (LRG) [58,59] and the possibil-
ity to use the “missing mass method” [60], there are several
specific advantages of the low-mass case. The first one is
rather large cross sections. It is important, since the schedule
for LHC forward physics experiments is very limited, and
we need also special low luminosity runs to suppress pile-
up events. The second one is the possibility to use different
diffractive patterns (differential cross sections on variables
like transfer momenta squared, the azimuthal angle between
final hadrons and their combinations) as a unique tool to
explore the picture of the pp interaction and falsify theoret-
ical models.

The article is organized as follows. In the first chapter
we consider general kinematical properties and variables
of the process. In the second one we present some model
approaches for low-mass exclusive central diffraction. In the
third part we present visualizations of diffractive patterns
for different processes and kinematical variables and discuss
their general features. In the conclusions we touch on briefly
the future experimental possibilities. Appendices are basi-
cally devoted to calculations of amplitudes.

2 General kinematics and cross sections

Let us consider the kinematics of two processes

h1(p1) + h2(p2) → h1(p′
1) + R(pR) + h2(p′

2), (1)

h1(p1) + h2(p2) → h1(p′
1) + {a(ka) + b(kb)} + h2(p′

2),

(2)

with four-momenta indicated in parentheses. Initial hadrons
remain intact, {a b} can be a diboson or dihadron system
and R denotes a resonance; “+” signs denote large rapidity
gaps. Let us call them exclusive double diffractive events
(EDDE) as in our previous papers (see [61] and references
therein). These processes are also known in the literature
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as exclusive double pomeron exchange (EDPE) or central
exclusive diffractive production (CEDP).

We use the following set of variables:

s = (p1 + p2)
2, s′ = (p′

1 + p′
2)

2, t1,2 = (p1,2 − p′
1,2)

2,

s1,2 = (p′
1,2 + pR)2 or (p′

1,2 + ka + kb)
2, (3)

In the light-cone representation p = {p+, p−; p⊥}

p1 =
{√

s̄

2
,

m2

√
2s̄

; 0

}
,�1 =

{
ξ1

√
s̄

2
,
−�2

1 − ξ1m2

(1 − ξ1)
√

2s̄
; �1

}
,

p2 =
{

m2

√
2s̄

,

√
s̄

2
; 0

}
,�2 =

{
−�2

2 − ξ2m2

(1 − ξ2)
√

2s̄
, ξ2

√
s̄

2
; �2

}

p′
1,2 = p1,2 − �1,2, p2

1,2 = p′ 2
1,2 = m2,

s̄ = s − 2m2

2
+ s

2

√
1 − 4m2

s
� s. (4)

Here ξ1,2 are the fractions of the hadrons’ longitudinal
momenta lost.

The physical region of diffractive events with two large
rapidity gaps is defined by the following kinematical cuts:

0.01 GeV2 ≤ |t1,2| ≤ ∼ 1 GeV2 , (5)

ξmin � M2

sξmax
≤ ξ1,2 ≤ ξmax ∼ 0.1, (6)

(√−t1 − √−t2
)2 ≤ κ ≤ (√−t1 + √−t2

)2
(7)

κ = ξ1ξ2s − M2 	 M2.

M is the invariant mass of the central system. We can write
the above relations in terms of y1,2 (rapidities of hadrons), y
(rapidity of the central system) and η = (ηb − ηa)/2, where
ηa,b are the rapidities of particles a, b. For instance:

|y| ≤ y0 = ln

(√
sξmax

M

)
, |y1,2| = 1

2
ln

(1 − ξ1,2)
2s

m2 − t1,2
,

|y| ≤ 6.5, |y1,2| ≥ 8.75 for
√

s = 7 TeV,

| tanh η| ≤
√

1 − 4m2
0

M2 . (8)

Differential cross sections for the above processes can be
represented as

dσR

d�2
1d�2

2dφdy
�
∣∣MEDDE

R

∣∣2
29π4ss′ , (9)

dσEDDE
ab

d�2
1d�2

2dφdyd M2d	ab
�
∣∣MEDDE

ab

∣∣2
210π5ss′ , (10)

where φ is the azimuthal angle between outgoing protons,
	ab is the phase space of the dihadron system and MEDDE

R, ab
denote unitarized amplitudes of the corresponding processes
(see MU

i in Appendix C).

3 Double reggeon exchange amplitudes: approaches

If the central mass produced in EDDE is low (M ∼ 1 GeV,
Fig. 1), it is not possible to use perturbative representation
like in [17] for the amplitude of the process, and we have
to use more general “nonperturbative” form. In this case we
have to obtain somehow the pomeron–pomeron fusion vertex
(see Refs. [17,61,62] for details). The scheme of the calcu-
lations is depicted in Fig. 1. The first step is the calculation
of the “bare” reggeon–reggeon amplitude M, which consists
of diffractive form-factors T and the fusion vertex F . If the
“shoulder energies”

√
s1,2 are high enough (say, greater than

100 GeV), we also have to take into account rescattering cor-
rections in these channels (denoted by V1,2). For example, at√

s = 7 TeV in the kinematical region defined in (6) we
obtain 1 GeV <

√
s1,2 < 2 TeV. Then we should calculate

rescattering corrections in the pp channel, which are denoted
by V . In some works [21] they are called “soft survival proba-
bility”. Recently it was shown in [21] that enhanced diagrams
(additional soft interactions) can play a significant role.

V V

< S   >
2

1
V

2
V

s

1
s

2
s

1
t

2
t

T

T

F
M

Fig. 1 Scheme of calculation of the full EDDE amplitude in the case of low invariant masses (M < 3 GeV), i.e. nonperturbative pomeron–pomeron
fusion
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All the phenomenological models need to obtain values of
their parameters to make further predictions. For this purpose
we can use so called “standard candle” processes, i.e. events
which have the same theoretical ingredients for the calcula-
tions. For low central masses we can use the processes:

– γ ∗ + p → V + p (EVMP), mV < 3 GeV [63–65];
– p + p → p + M + p, M = {qq̄} (light meson) or

“glueball” [10–14], M = hh (dihadron system) [15].

From the first principles (covariant reggeization approach
[61]) we can write the general structure of the vertex for
different cases. For example, for the production of the
low invariant mass system with J P (spin–parity), when
si

√−ti �∼ 1 GeV3 and contributions of secondary
reggeons are small, we have for the “bare” amplitudes
squared

F0±
PP

=
∣∣∣∣∣∣
∏

i=1,2

T̃0(ti )
( si

M2

)αi
∞∑

k=0

˜̃f k
0±

(
2
√

t1t2 cos φ

M2

)k
∣∣∣∣∣∣
2

,

T̃0(ti ) = α′
P

2
T0(ti )

(√−ti
m

)αi

, (11)

˜̃f k = f̃ k [η1η21�(k − α1)�(α1 − α2 − k)

+η2η12�(k − α2)�(α2 − α1 − k)] , (12)∣∣∣M0+ ∣∣∣2 � F0+
PP

, (13)∣∣∣M0− ∣∣∣2 � F0−
PP

sin2 φ, (14)

ηi = (−1)σi + e−iπαi ,

ηi j = (−1)σi (−1)σ j + e−iπ(αi −α j ), (15)

αi = αP(ti ), σi = 0, (16)

with functions defined in Appendix A ( f̃ k are nonsingular at
ti → 0, T̃0(t) is usually represented by the exponential eBti

or 1/(1 − ti/B)). The transformation from integer spins to
trajectories was made like in Ref. [66].

As one can see from Appendix A, in the classical Regge
scheme (−ti )αi /2 is absorbed into the unknown residue of
the Regge pole. But for a fixed integer J this factor always
appears in the t-channel cosine. In Refs. [67,68] results were
obtained from the assumption that the pomeron acts as a
1+ conserved or nonconserved current. In particular, it was
shown that the cross section is proportional to t1t2, when
we replace the pomeron by the conserved vector current. To
remove such zero authors of [67] proposed to use singular
functions (nonconserved pomeron current).

Strictly speaking, in the real cross sections rescattering
corrections at rather high energies can naturally remove
zeroes of a cross section (see the typical situation in the Fig. 2)
without introducing singular functions.

Fig. 2 The unitarization of the cross section |t |e−2B|t | (B �
2.85 GeV−2,

√
s = 7 TeV) corresponding to the amplitude (89) in

Appendix C. The dashed curve represents the “bare” term and the solid
one represents the unitarized result. σB is the integrated “bare” cross
section. The zero at t = 0 disappears in the unitarized cross section

The general structure of EDDE amplitudes from the sim-
ple Regge behaviour was also considered in [62,69] by the
method of helicity amplitudes developed in [5]. As was
shown in [61], experimental data are in good agreement with
the above predictions.

There were some attempts to obtain the vertex in spe-
cial models. Let us mention first the old paper [66], where
reggeon–reggeon–particle vertex was exactly calculated in
the covariant formalism, and the double reggeon amplitude
has the form

M �
2∑

i �= j=1

α′
iα

′
j

4

( si

M2

)αi
(

s j

s0

)α j

ηiη j iFi j ,

Fi j =
∞∑

k=0

1

k!

(
M2⊥
s0

)k

�(k − αi )�(αi − α j − k)

= �(−αi )�(αi − α j )1 F1

(
−αi , 1 − αi + α j ;− M2⊥

s0

)
,

αi = α′
i (0)ti + αi (0), (17)

where s0 = 1 GeV2 and σi is the parity of a reggeon. For
the double pomeron exchange α1,2 = α′

P
(0)t1,2 + αP(0).

It is close to the representation (11) with exactly calculated
couplings.

The pomeron–pomeron fusion based on the “instanton”
or “glueball” dynamics was considered in [70–72]. One can
see also recent papers [37,73] devoted to calculations of
the pomeron–pomeron fusion vertex in the nonperturbative
regime.

4 Diffractive patterns

Since EDDE is the diffractive process, it retains almost all
the features of the classical optical diffraction, namely the
diffractive pattern or distribution in the scattering angle. It
contains the diffractive peak at low angles and different struc-
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Fig. 3 Diffractive t-distributions for different final states (correspond-
ing amplitudes are indicated): a “glueball-like” (89); b η′ (88); c
π+π− (72). Solid curves in a, b are given for

√
s = 30 GeV, dashed

and dotted curves in a, b, c represent
√

s = 7 TeV and
√

s = 14 TeV,
respectively. Picture d shows the simple e2Bt cross section (dashed
curve) and the unitarized result (solid curve) at

√
s = 7 TeV

tures (dips and kinks) at higher angles. Some speculations on
the meaning of these features can be found in [23] and further
publications. Here we would like to point out the following:

– From the diffractive pattern we extract model indepen-
dent parameters of the interaction region such as the t-
slope which is R2/2, with R the transverse radius of the
interaction region.

– We can also estimate the longitudinal size of the interac-
tion region [74]:

�xL >

√
s

2
√〈t2〉 − 〈t〉2

. (18)

The longitudinal interaction range is somehow “hidden”
in the amplitude but it is this range that is responsible for
the “absorption strength”. A rough analogue is the known
expression for the radiation absorption in media which
critically depends on the thickness of the absorber.

– The very presence of dips is the signal of the quantum
interference of hadronic waves.

– The depth of the dips is determined by the real part of the
scattering amplitude.

What else could we extract from it? What is the physical
meaning of the dip position, number of dips or kinks and so
on? These questions stimulate us for future investigations.

Fig. 4 Diffractive patterns in different t-like variables: a τ = (t1 +
t2)/2; b δ2 = (�1 − �2)

2/4. Born amplitude (dashed curve) and the
unitarized result (solid curve) are shown for

√
s = 7 TeV

4.1 t-Like variables

In this subsection we present diffractive patterns in t-like
variables for different physical situations. From the experi-
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Fig. 5 The situation after the unitarization (solid curve), when the
“bare” amplitude contains a dip structure (dashed curve)

mental point of view it would be more useful to have distinct
structures in distributions, since their position can show the
dynamics of the interaction and can help to extract parame-
ters with better accuracy.

In Fig. 3 one can see distributions in t of one of the final
protons integrated in other variables. Pictures correspond to
“bare” amplitudes for 0− (88), “glueball” (89) states and for
the pion–pion production (72). For the simple eB(t1+t2) (87)
amplitude picture Fig.3d shows the significance of the rescat-
tering corrections.

Let us illustrate how the situation changes, when we
use other variables that seem more natural for the study of

diffractive structures. In Fig. 4 we present distributions in
τ = (t1+t2)/2 and δ2 = (�1−�2)

2/4 for the case, when the
“bare” amplitude is the simple exponent (87) without addi-
tional structures. For these variables the situation changes
more drastically after taking into account the unitarization.

On the other hand, as one can see from Fig. 5, the effect
can be the opposite. The “bare” amplitude contains the dip
at some position, which disappears in the unitarized distri-
bution, and other complicated structures arise. Here we use
the toy model based on the parameters of the third pomeron
from [84]:

M ∼ eB̃(t1+t2)/2
(

eB̃t1/2 − Ã
) (

eB̃t2/2 − Ã
)

, (19)

B̃ = 1.2046 + 0.5912
(

ln
[
s(M2⊥))

]
− ıπ

)
/2, (20)

Ã = 49.138
(−ı

√
s M⊥

)0.0703
/(32π B̃), (21)

M2⊥ = M2 − t1 − t2 + 2
√

t1t2 cos φ, (22)

M = 1.5 GeV,
√

s = 7 TeV. (23)

4.2 Azimuthal correlations

As was shown earlier in Refs. [62,69], as well as later on
in Refs. [45,47,61], the distribution in the azimuthal angle
between final protons can serve as a powerful tool to obtain
quantum numbers of centrally produced particles.

Fig. 6 Azimuthal distributions for different final states: a “glueball-
like” (89); b η′ (88); c π+π− (72). Solid (red) curves in a, b are given
for

√
s = 30 GeV, dotted curves in a, b, c, d represent unitarized results

at
√

s = 7 TeV. Dashed curves show the behaviour of Born cross sec-
tions at

√
s = 7 TeV: a cos2 φ, b sin2 φ, c π+π−, d “flat”
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In Fig. 6a–c we present diffractive azimuthal patterns for
0−, 0+ (“glueball”), 0+ (pion–pion) states. Shapes are very
different and can be used as a peculiar “filter”. Furthermore,
the φ-distribution also has a strong dependence on the model
that we use for diffractive processes. The unitarization effect
for the “flat” distribution is shown in Fig. 6d.

5 Conclusions

The phenomenon of diffraction is always accompanied by
specific patterns, partially considered in this paper. We have
to take it into account when we try to define the diffractive
process experimentally. Many features of such distributions
can be very helpful. To continue the paper [17], here we pre-
sented only general aspects of the exclusive central produc-
tion of low invariant mass states, but it is possible to find the
same properties in other processes (elastic scattering, single
and double diffractive dissociation). For example, we could
apply to them the procedure of the amplitude construction,
which is similar to the one stated in Appendix A. This hope-
fully will be done in further work.

As one can see from the above figures, rescattering cor-
rections can play significant role and drastically change the
shape of diffractive patterns. We can use this property to fal-
sify diffractive models, which are very numerous “on the
market” [75], with an unprecedented accuracy.

Finally, let us mention some possible experimental facili-
ties for this task. Since cross sections of the low-mass EDDE
are rather large (10 → 1000 μb), it is possible to use low
luminocity runs of the LHC, as was proposed in the starting
projects [76–78,81]. The recent success of the TOTEM col-
laboration in t-measurements [82] shows that it is realistic.
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Appendix A

In this appendix we construct exact reggeon–reggeon fusion
amplitudes for the exclusive production of 0+ and 0− states
by the covariant reggeization method proposed in [61]. For
other states calculations are similarly based on formulae for
vertices from [61].

The amplitude MJ P
(the left picture in Fig. 1) is com-

posed of vertices T μ1···μJ1 , T ν1···νJ2 , F
μ1...μJ1 , ν1...νJ2
α1...αJ and

propagators d(Ji , t)/(m2(Ji ) − t) which have the poles at

m2(Ji ) − t = 0, i.e. Ji = αRi (t), (24)

after an appropriate analytic continuation of the signatured
amplitudes in Ji . We assume that these poles, where αRi

are reggeon trajectories, give the dominant contribution at
high energies after having taken the corresponding residues.
Regge cuts are generated by unitarization.

For vertex functions T1,2 we can obtain the following ten-
sor decomposition:

T (Ji ) ≡ T μ1...μJi (pi ,�i )

= T0(�
2
i )

[
Ji
2

]
∑
n=0

C
n
Ji

(
P(Ji −2n)

i G(n)
i

)
, (25)

C
n
Ji

= (−1)n(2(Ji − n))!

(Ji − n)!n!(Ji − 2n)!
, (26)

that satisfies Rarita–Schwinger conditions (transverse-
symmetric-traceless):

�μi T
μ1...μi ...μJ = 0 (27)

T μ1...μi ...μ j ...μJ = T μ1...μ j ...μi ...μJ (28)

gμi μ j T
μ1...μi ...μ j ...μJ = 0 (29)

The tensor structures
(

P(Ji −2n)
i G(n)

i

)μ1...μJi satisfy only

the two conditions (27) and (28) (transverse-symmetric) and
consist of the elements Pμ

i and Gμ1μ2
i :

P μ
i = (pμ

i − �
μ
i /2
)
/

√
m2 − �2

i /4, (30)

Gμ1μ2
i = gμ1μ2 − �

μ1
i �

μ2
i

�2
i

, (31)(
P(Ji −2n)

i G(n)
i

)

= P (μ1
i ·...·P μJi −2n

i G
μJi −2n+1μJi −2n+2

i ·...·GμJi −1μJi )

i

N n
Ji

, (32)

N n
Ji

= Ji !

2nn!(Ji − 2n)!
. (33)

The coefficients C
n
Ji

in (25) can be obtained from the con-
dition (29), which leads to a recurrent set of equations. For
each transverse-symmetric structure we have

gμ1μ2

(
P(Ji −2n)

i G(n)
i

)μ1...μJi

= (Ji − 2n)(Ji − 2n − 1)

Ji (Ji − 1)
×
(

P(Ji −2n−2)
i G(n)

i

)

+2n(2(Ji − 2)N n−1
Ji −3+(Ji − 2)(Ji − 3)N n−2

Ji −4+3N n−1
Ji −2)

Ji (Ji − 1)N n−1
Ji −2

×
(

P(Ji −2n)
i G(n−1)

i

)
= 0, (34)

where the first term corresponds to the tensor contraction

Pμ1
i Pμ2

i gμ1μ2 = 1, (35)
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and three items in the second term correspond to

Pμ1
i Gμ2μk

i gμ1μ2 = Pμk
i , (36)

Gμ1μk
i Gμ2μl

i gμ1μ2 = Gμkμl
i , (37)

Gμ1μ2
i gμ1μ2 = 3. (38)

Finally, we have
[

Ji
2

]
∑
n=0

C
n
Ji

×
[
(Ji − 2n)(Ji − 2n − 1) ×

(
P(Ji −2n−2)

i G(n)
i

)

+ 2n(2Ji − 2n + 1) ×
(

P(Ji −2n)
i G(n−1)

i

)]

=

[
Ji
2

]
∑
n=1

[
C

n−1
Ji

(Ji − 2n + 2)(Ji − 2n + 1)

+ C
n
Ji

2n(2Ji − 2n + 1)
]

×
(

P(Ji −2n)
i G(n−1)

i

)
= 0

(39)

and

C
n
Ji

= C
n−1
Ji

(−1)(Ji − 2n + 2)(Ji − 2n + 1)

2n(2Ji − 2n + 1)

= (−1)n(2(Ji − n))!

(Ji − n)!n!(Ji − 2n)!

[
C

0
Ji

(Ji !)2

(2Ji )!

]
, (40)

which is equal to (26), if we set the expression in square
brackets to unity.

Now let us obtain the general expression for the vertex
F (J1),(J2)

(J ) ≡ F
μ1...μJ1 , ν1...νJ2
α1...αJ , when J = 0. Since this tensor

has to satisfy (27)–(29) in each group of indices, it should be
represented as

F (J1),(J2)

0+ =
min[J1,J2]∑

k=0

[
Ji −k

2

]
∑
ni =0

C
k,n1,n2
J1,J2

×
(

D(J1−k−2n1)
1 G(n1)

1 G(k)
12 G(n2)

2 D(J2−k−2n2)
2

)
. (41)

Here the transverse-symmetric structure in parentheses con-
tains two groups of indices: {μ} ≡ μ1 . . . μJ1 and {ν} ≡
ν1 . . . νJ2 and consists of the following elements:

Dρ
1,2 =

(
�

ρ
1,2 + d2

1,2

(�1�2)
�

ρ
2,1

)
/
(
d1,2 K12

)
, (42)

d1,2 = √−t1,2, K12 =
√

1 − d2
1 d2

2

(�1�2)2 , (43)

Gμν
12 = gμν − �

μ
2 �ν

1

(�1�2)
, (44)

and Gi is defined in (31). The number of different terms in
each structure is

N k,n1,n2
J1 J2

= N n1
J1

N n2
J2

k!
. (45)

For 0− state we have to add the anti-symmetric element

Fμν
A = εμνρσ �1,ρ�2,σ /(d1d2), (46)

and the vertex looks as follows:

F (J1),(J2)

0− =
min[J1,J2]−1∑

k=0

[
Ji −1−k

2

]
∑
ni =0

C
k,n1,n2
J1,J2

×
(

FA D(J1−1−k−2n1)
1 G(n1)

1 G(k)
12 G(n2)

2 D(J2−1−k−2n2)
2

)
.

(47)

For further calculations let us define additional quantities
and functions (approximate values are given for d1,2 	 m ≤
M 	 √

s1,2):

X1,2 = (P1,2�2,1) d1,2

(�1�2) Q1,2
� s1,2 d1,2

M2 m
, (48)

Q1,2 =
√

1 + d2
1,2/(�1�2), (49)

Z12 = (P1 P2) (�1�2)

(P1�2) (P2�1)
� 1 − 2�1�2

M2 , (50)

C
k,0,0
J1 J2

=
(

d1d2

(�1�2)

)k

f k
J1 J2

, (51)

where f k
J1 J2

are nonsingular at ti → 0 functions of t1, t2 and

M2.
We can construct F (J1)(J2)

0± vertices as we did for T (Ji )

in (34)–(40), taking the trace in each group of indices and
obtaining recurrent equations for C

k,n1,n2
J1 J2

. It will be done in
further work. Here we note that in the contraction

VJ1 J2, 0± = T (J1)
{μ}

T0(t1)
⊗ F (J1), {μ} (J2), {ν}

0± ⊗ T (J2)
{ν}

T0(t2)
(52)

F-vertices can be replaced by

F (J1),(J2)

0+ →
(

d1

(�1�2)K12

)J1
(

d2

(�1�2)K12

)J2

×
min[J1,J2]∑

k=0

f k
J1,J2

(
(�1�2)K 2

12

)k

×�
μk+1
2 ·...·�μJ1

2 Gμ1ν1
12 ·...·Gμkνk

12 �
νk+1
1 ·...·�νJ2

1 , (53)

F (J1),(J2)

0− →
(

d1

(�1�2)K12

)J1
(

d2

(�1�2)K12

)J2

×
min[J1−1,J2−1]∑

k=0

f k
J1,J2

(
(�1�2)K 2

12

)k

×Fμ1ν1
A �

μk+2
2 ·...·�μJ1

2 Gμ2ν2
12 ·...·Gμk+1νk+1

12 �
νk+2
1 ·...·�νJ2

1 ,

(54)
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due to transverse-symmetric-traceless properties of T struc-
tures. It is possible to show that in the exact F-vertices coef-
ficients C

k,n1,n2
J1 J2

, ni > 0 can be expressed in terms of f k
J1 J2

only, i.e. we can obtain the exact formulae for (52) by the
use of the simplified expansions (53) and (54), which is done
below.

Let us calculate leading terms in the expansions of con-
tracted vertices,

VJ1 J2, 0+ =
min[J1,J2]∑

k=0

V k
J1 J2, 0+ , (55)

VJ1 J2, 0− =
min[J1−1,J2−1]∑

k=0

V k
J1 J2, 0− . (56)

It is rather easy to show that

V 0
J1 J2, 0+ = f 0

J1 J2

2∏
i=1

(
2Qi

K12

)Ji

PJi (Xi )

� f̃ 0
J1 J2

X J1
1 X J2

2 for Xi � 1, ti 	 m2, (57)

where PJ (X) are Legendre polynomials and numerical fac-
tors are absorbed into f̃ 0

J1 J2
. For the next term we can apply

the following trick:(
P(J1−2n1)

1 G(n1)
1

)
{μ}

= Pμ1
1

J1 − 2n1

J1

(
P(J1−2n1−1)

1 G(n1)
1

){μ}�=μ1

+
J1∑

i=2

Gμ1μi
1

2n1

J1

(
P(J1−2n1)

1 G(n1−1)
1

){μ}�=μ1,μi
(58)

and the same for the second structure. Effectively in the con-
traction the following dimensionless factor has to be added:[

(J1 − 2n1)
√

(�1�2)

J1(P1�2)
Pμ1

1 + (2n1)d1 K12

J1
√

(�1�2)Q2
1

Dμ1
1

]

× [1 → 2, μ → ν] . (59)

Then we have to contract these structures with Gμ1ν1
12 and

Fμ1ν1
A to calculate V 1

J1 J2, 0+ and V 0
J1 J2, 0− , respectively. The

final result can be represented as

V 1
J1 J2, 0+ = f 1

J1 J2

(
2Q1

K12

)J1
(

2Q2

K12

)J2 K 2
12

J1 J2

×
{

[Z12 − 1] P ′
J1

P ′
J2

+ d2
1 d2

2

(�1�2)2

[
K 2

12

Q2
1 Q2

2

P ′′
J1

P ′′
J2

+ 1

Q2
2

P ′
J1

P ′′
J2

+ 1

Q2
1

P ′′
J1

P ′
J2

]}

� f̃ 1
J1 J2

X J1
1 X J2

2
2�1�2

M2 , (60)

V 0
J1 J2, 0− = f 0

J1 J2

⎧⎨
⎩

√
1 − 4m2

s

1 − s1+s2
2s + M2−4m2−d2

1 −d2
2

4s

⎫⎬
⎭

×
(

2Q1

K12

)J1
(

2Q2

K12

)J2 Z12

J1 J2
P ′

J1
P ′

J2

[�1 × �2]

d1d2

� f̃ 0
J1 J2

X J1
1 X J2

2
[�1 × �2]

d1d2
, (61)

where the term in braces is close to unity and

P ′
J = X

∂

∂ X
PJ (X)

= J X

X2 − 1
(X PJ (X) − PJ−1(X)) , (62)

P ′′
J = − ∂

∂ X
PJ−1(X)

= − J

X2 − 1
(PJ (X) − X PJ−1(X)) . (63)

For d1,2 	 m ≤ M 	 √
s1,2 ≤ √

s and Xi � 1 we can
write the expressions for leading terms of amplitudes

M0+ �
∑
J1,J2

∏
i=1,2

[
T0(ti )X Ji

i

]

×
min(J1,J2)∑

k=0

f̃ k
J1 J2

(
2
√

t1t2 cos φ

M2

)k

, (64)

M0− �
∑
J1,J2

∏
i=1,2

[
T0(ti )X Ji

i

]

×
min(J1,J2)−1∑

k=0

f̃ k
J1 J2

(
2
√

t1t2 cos φ

M2

)k

sin φ. (65)

Then we have to continue analytically the above expres-
sions to complex J1,2 planes. It can be done like in Ref. [66],
using the reggeization prescription

∑
J

F J

(t − m2)
→ α′

R

2
ηR(t)�(−αR(t))FαR(t). (66)

To check that the above approach coincides with the usual
Regge one, let us calculate the amplitude of the elastic scat-
tering of two particles with equal masses m. For the exchange
of the meson with spin J it is equal to the contraction

Mel(s, t) = T (J )
{μ} (p1,�) ⊗ T (J )

{μ} (p2,−�)

= T0(t)
22J

C
0
J PJ

(
s − 2m2 + t/2

2m2 − t/2

)
∼
( s

m2

)J
, (67)

which leads to the basic reggeon exchange formula after
appropriate analytical continuation to the complex J plane.

More complicated situation occurs in the case of unequal
masses. For example, let us consider the process p + p →
p + X , where m p = m, m X = M � m. For the exchange
of the meson with spin J we have

123
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M(s, t) = T (J )
{μ} (p1,�) ⊗ T (J )

{μ} (p2,−�)

= T01(t)T02(t)2
J
C

0
J PJ

(
(2s − 3m2 − M2 + t)

√−t√
4m2 − t λ1/2(t, m2, M2)

)

∼
(

s
√−t

M2m

)J

. (68)

Here the argument of the Legendre function is the t-
channel cosine zt = cos θt , and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The factor
√−t is a consequence of the tensor meson

current conservation (27). In the classical Regge scheme

∑
J

(2J + 1)MJ PJ (−zt ) → ηR(t)βR(t)

(
s

s0

)αR(t)

, (69)

where this factor is absorbed into the unknown residue βR(t).
In our prescription the t dependence of the residue looks like

βR ∼ T01(t)T02(t)(−t)αR/2. (70)

There is no zero in t, since the Regge approach is valid
only for |zt | � 1. But sometimes this behaviour at small t is
extracted in an explicit form like in Ref. [83], devoted to the
process of single diffraction dissociation.

Appendix B

Here we present the general structure of the amplitude for
the 2 → 4 process p + p → p + hh̄ + p. This amplitude is
depicted in Fig. 7. The definitions for the kinematics are

s1{a,b} = (p′
1 + ka,b)

2, s2{a,b} = (p′
2 + ka,b)

2,

t̂a,b = (p1 − p′
1 − ka,b)

2 = (p2 − p′
2 − kb,a)2. (71)

Leading contribution to the reggeon–reggeon fusion ver-
tex is given by the exchange amplitude (the right part of
Fig. 7). In this case we can write

Mhh̄ = Mel
hp(s1a, t1)

(
Fh(t̂a)

)2
(t̂a − m2

0)
Mel

h̄ p
(s2b, t2)

+Mel
hp(s1b, t1)

(
Fh(t̂b)

)2
(t̂b − m2

0)
Mel

h̄ p
(s2a, t2). (72)

Here Mel
hp and Mel

h̄ p
are amplitudes of the elastic hadron–

proton scattering, which can be evaluated in any appropriate
approach, Fh is the formfactor taking into account the off-
shellness of the exchanged hadron. For example, we can use
simple reggeon exchanges for these amplitudes as was done
in [47,48]. Strictly speaking, we have to take into account
rescattering (unitarity) corrections since si{a,b} can be of the
order ∼ √

s.
Calculations for the π+π− production in this paper are

based on the simple Regge formula (as in [47,48]) for pion–
proton elastic amplitudes

Mel
π± p(s, t) =

∑
i=P,R

C±
i Fi (t)

(
s

s0

)αi (t)

, (73)

Fi (t) = eB0
i t , αi (t) = α0

i + α′
i t, (74)

CP = iCP , C±
R

= C f (a f + i) ± Cρ(aρ − i),

CP = 13.63 mb, C f = 31.79 mb, Cρ = 4.23 mb,

a f = −0.860895, aρ = −1.16158, (75)

B0
P

= 2.75 GeV−2, B0
R

= 2 GeV−2, (76)

αP(t) = 1.088 + 0.25t, αR = 0.5475 + 0.93t, (77)

Fπ (t̂) � e

t̂−m2
π

�2
e f f , �2

e f f = 1 GeV2. (78)

Appendix C

Here we calculate the hadron–hadron “soft” interaction in the
initial and in the final states (unitary corrections or rescatter-
ing). It is denoted by V in Fig. 1 and given by the following
analytical expressions:

Fig. 7 Scheme of calculation
of the “bare” EDDE amplitude
in the case of the low invariant
mass (M < 3 GeV) dihadron
production. Elastic amplitudes
are shown here as reggeon
exchanges enclosed in ellipses

T

T

F

1as
T

T

Th

Th

T

T

Th

Th

2bs

1bs

2as

h
h
-

-

-Mel

hp

M el

ph M el

hp

M el

ph
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MU (p1, p2,�1,�2) =
∫

d2qT

(2π)2

d2q ′
T

(2π)2 V (s, qT )

×M(p1 − qT , p2 + qT ,�1T ,�2T ) V (s′, q ′
T ), (79)

V (s, qT ) =
∫

d2b eiqT b
√

1 + 2iT el
pp→pp(s, b), (80)

where �1T = �1 − qT − q ′
T , �2T = �2 + qT + q ′

T , M is
the “bare” amplitude of the process p + p → p + M + p. In
the case of the eikonal representation of the elastic amplitude
T el

pp→pp we have

V (s, qT ) =
∫

d2b eiqT beiδpp→pp(s,b), (81)

where δpp→pp is the eikonal function. In this case ampli-
tude (79) can be rewritten as

MU (�1,�2) =
∫

d2b
2π

e−iδb−�(s,b)−�(s′,b)

×
∫

d2κ

2π
eiκbM(� − κ,� + κ),

�(s, b) = −iδpp→pp(s, b),

� = �2 + �1

2
, δ = �2 − �1

2
,

κ = δ + qT + q ′
T . (82)

Here we use the following representation for the elastic
amplitude [84]:

Tel(s, b) = ı
(

1 − e−2�(s,b)
)/

2. (83)

Some other groups [85,86] use another conventions

Tel(s, b) = ı
(

1 − e−�(s,b)/2
)

, (84)

or [87]

Tel(s, b) = ı
(

1 − e−�(s,b)
)

, (85)

which are mathematically equivalent.
Let us consider calculations for concrete expressions of

M. To explore general features of diffractive patterns for
the eikonal function we take the model [88] (which origi-
nates from [84] and uses simple eikonal approximation) as an
example. Nevertheless, some authors [85,89] point out that
we have to use multichannel eikonals to take into account
multiple diffractive eigenstates. Here we have to point out
that the parametrization (83) satisfies exactly the unitarity
condition and can be used without consideration of any inner
structure of the eikonal (diffractive eigenstates) as it was done
in the multichannel approach. We assume that the model [88]
is rather good for our purposes, at least for |ti | < 1.5 GeV2,
since it describes well the latest data [82].

For the amplitude we perform calculations for several
cases:

Mi (�1,�2) = H(�2)e−B1�
2
1−B2�

2
2Ki (�1,�2)

→ H(�2)e−B+
(
�2+κ2

)+2B−(�κ)Ki

×(� − κ,� + κ), (86)
B± = B1 ± B2,

K0 = 1, (87)

KV = [�1 × �2] → 2 [� × κ] , (88)

KS = (�1�2) → �2 − κ2, (89)

KT = �2
1�

2
2 →

(
�2 + κ2

)2 − 4 (�κ)2 . (90)

We have to calculate the following auxiliary integrals:

Iv
κ =

∫
d2κ

2π
eiκb−B+κ2+2B−(�κ) v, (91)

I1
κ = 1

2B+
ea/B+ ,

a = B2−�2 + iB− (�b) − b2/4, (92)

Iκ(i)
κ = −i

∂

∂b(i)
I1

κ =
(

B−
B+

�(i) + i
b(i)

2B+

)
I1

κ , (93)

Iκ2

κ = − ∂

∂ B+
I1

κ = 1

B+

(
1 + a

B+

)
I1

κ , (94)

Iκ4

κ = − ∂

∂ B+
Iκ2

κ = 1

B2+

(
2 + 4a

B+
+ a2

B2+

)
I1

κ . (95)

Further calculations are expressed in terms of the function
h (see Fig. 8),

h(λ, B+) =
∫

d2b
2π

e−iλb−�(s,b)−�(s′,b)−b2/(4B+)

=
∫

db b J0(λb)e−�(s,b)−�(s′,b)−b2/(4B+),

λ = |λ| =
∣∣∣∣δ − B−

B+
�

∣∣∣∣ . (96)

We can write

MU
i = 1

2B+
H(�2)e

−B+
(

1− B2−
B2+

)
�2

K̂i h(λ, B+), (97)

K̂0 = 1, (98)

K̂V = − 1

B+
[� × λ]

1

λ

∂

∂λ
, (99)

K̂S = − 1

B+
+ �2

(
1 − B2−

B2+

)

+ B−
B2+

(�λ)
1

λ

∂

∂λ
+ ∂

∂ B+
, (100)

K̂T =
[

2

B2+
+ 2�2

B+

(
1 + 2B2−

B2+

)
+ �4

(
1 − B2−

B2+

)]

+
[

2B−
B2+

(
− 2

B+
+ �2

(
1 − B2−

B2+

))
(�λ)
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Fig. 8 Function |h(λ, B+)|2 at a
√

s = 62 GeV and b
√

s = 7 TeV.
|h(0., 4.)|2 = 20.5 GeV−2 at

√
s = 62 GeV and |h(0., 4.)|2

= 5.27 GeV−2 at
√

s = 7 TeV

− �2

B2+

(
1 − B2−

B2+

)]
1

λ

∂

∂λ

−2

(
1

B+
+ �2

(
1 + B2−

B2+

))
∂

∂ B+

+ ∂2

∂2 B+
+ 2

B−
B2+

(�λ)
1

λ

∂

∂λ

∂

∂ B+

− 1

B2+

(
1 − B2−

B2+

)
(�λ)2 1

λ

∂

∂λ

1

λ

∂

∂λ
. (101)

The ratio

〈S2〉 =
∫ ∫

d2�1d2�2
∣∣MU

∣∣2∫ ∫
d2�1d2�2 |M|2 (102)

is usually called the “soft survival probability”. For example,
at

√
s = 14 TeV the value of 〈S2〉 is about 0.03 for the slope

of the t-distribution ∼ 4 GeV−2 (invariant masses about
100 GeV) and 0.13 for the slope ∼ 10 GeV−2 (invariant
masses about 1 GeV).
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