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Abstract

Background: Gene content differences in human gut microbes can lead to inter-individual phenotypic variations
such as digestive capacity. It is unclear whether gene content variation is caused by differences in microbial species
composition or by the presence of different strains of the same species; the extent of gene content variation in the
latter is unknown. Unlike pan-genome studies of cultivable strains, the use of metagenomic data can provide an
unbiased view of structural variation of gut bacterial strains by measuring them in their natural habitats, the gut of
each individual in this case, representing native boundaries between gut bacterial populations. We analyzed publicly
available metagenomic data from fecal samples to characterize inter-individual variation in gut bacterial species.

Results: A comparison of 11 abundant gut bacterial species showed that the gene content of strains from the
same species differed, on average, by 13% between individuals. This number is based on gene deletions only and
represents a lower limit, yet the variation is already in a similar range as observed between completely sequenced
strains of cultivable species. We show that accessory genes that differ considerably between individuals can encode
important functions, such as polysaccharide utilization and capsular polysaccharide synthesis loci.

Conclusion: Metagenomics can yield insights into gene content variation of strains in complex communities, which
cannot be predicted by phylogenetic marker genes alone. The large degree of inter-individual variability in gene
content implies that strain resolution must be considered in order to fully assess the functional potential of an
individual's human gut microbiome.
Background
The human intestinal microbiome plays an essential role
in human health and disease [1] and complements hu-
man metabolism in many aspects [2]. Almost 10 million
microbial genes were recently identified in 1,267 fecal
samples, of which about only 300,000 are shared be-
tween more than 50% of the individuals [3]. The implied
large gene content variation might be a consequence of
species variation between individuals, but could also
mirror strain variation of the same species. The latter
has not been systematically investigated or even esti-
mated yet although it is well known that strains of a
given prokaryotic species can greatly differ in gene con-
tent [4], which in turn can lead to major phenotypic
changes not only for the species, but also for the individ-
ual harboring it. For example, the bacterial polysaccharide
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utilization loci (PULs) can explain individual differences in
degrading different carbohydrate components that are
found in seaweed, fruits, and vegetables (for example, por-
phyran and xyloglycan) [5,6].
Studying gene content variation usually requires the

isolation and sequencing of bacterial strains [4,7]. In a
set of completely sequenced genomes from a given spe-
cies, core genes (present in all strains) and accessory
genes (missing in at least one strain) can be determined;
the sum of these genes represents the ‘pan-genome’
[4,7,8]. Pan-genome studies typically use isolates that
originate from limited geographical areas (for example,
a strain collection from a single hospital [9] or a single
country [10]) or focus on either pathogenic or clinically
relevant isolates (which are often enriched in virulence
genes [11,12] and reduced in genome size [13,14]). Con-
sequently, the strains to be studied are often pre-
selected according to specific criteria, due to the time
and costs associated with their isolation and sequencing
(for example, only around 9% of the more than 800
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Staphylococcus epidermidis isolates that are available
were sequenced based on their morphology [9]). Taken
together, reference genomes that are currently available
in public databases are skewed, often towards cultivable,
clinically relevant and closely related strains, which ham-
pers an unbiased analysis of gene content variation
across bacterial species [4,9,10,15-22]. In contrast, meta-
genomic sequencing of uncultured microbial communi-
ties is not affected by these biases since strains are
accessed directly as they exist in their natural environ-
ment. Using published metagenomic datasets, Schloissnig
et al. [23] demonstrated that it is possible to characterize
the variation landscape of gut microbial strains in a large
cohort of individuals based on single nucleotide poly-
morphism (SNP) and on structural variation (SV). The
study established individuality of the SNP variations,
which appear temporarily stable [23], suggesting long-
term persistence of individual-specific strains. However,
the extent of gene content differences between strains of
the same species across individuals remains to be shown.
In order to establish a baseline for functional differ-

ences of the microbiota between individuals that cannot
be explained by species composition, we here apply the
concept of core and accessory genes to abundant human
gut bacterial species in their natural habitat, by using
published metagenomic data [24-26]. We developed a
procedure that is robust against biases, such as sequen-
cing errors and stochastic effects, due to the application
of stringent filtering procedures. We characterize gene
content variation of the same species in different indi-
viduals in their genomic context and study the functions
of the respective accessory genes. Finally, we use the
large variations of capsular polysaccharide synthesis
(CPS) and polysaccharide utilization (PUL) loci to illus-
trate the potential functional impact of gene content
variability across individuals.

Results and Discussion
Data selection for metagenomic gene content variation
analysis
To enable the assessment of gene content variability be-
tween strains in unrelated individuals, we used 252 fecal
metagenomes of 207 individuals from publicly available
datasets (the NIH Human Microbiome Project [24], and
the European Metagenomics of the Human Intestinal
Tract consortium [25]). The metagenomics-based ap-
proach uses fragment recruitment to existing reference
genomes, where a total of 7.4 billion reads from 252
samples were mapped to representative reference ge-
nomes from 929 species [23] (Figure 1a). Multiple filter-
ing steps were applied to each sample to ensure high
accuracy in species and gene assignment (see details in
Material and Methods). Whenever more than one sam-
ple per individual was available, only one was chosen.
Only 11 species from the phyla of Bacteroidetes and Fir-
micutes fulfilled our stringent filtering criteria and were
sufficiently abundant in at least 10 individuals. In total,
sufficient coverage of at least one of the 11 species was
observed in 103 individuals. From the total pool of indi-
viduals where a species was sufficiently covered, 10 were
randomly selected for each species and used throughout
the study for comparability and to avoid potential sam-
pling biases (Table 1 and Additional file 1).

High fraction of accessory genes that increases with
genome size
For each of the 11 species, genes that were detected
in all 10 individuals were categorized as ‘core’ and the
remainder as ‘accessory’ (Table 2). We found that
accessory genes are not evenly distributed across the
genome (Figure 1b). Several regions show a high con-
centration of accessory genes and many are located in
genomic islands (corresponding to 60 genomic islands
up to 57 kb that were detected across the 11 species,
Additional file 2). These are likely derived from mobile
genetic elements, such as prophages, integrative plas-
mids, or integrative and conjugative elements [27].
As accessory genes are known to vary greatly among

bacterial species (reviewed in [4]), we first estimated the
percentage of accessory genes in our set of 11 species in
all 10 individuals. To this end, we used an approach con-
sisting of a subsampling procedure, followed by expo-
nential model fitting [21] in order to extrapolate the
percentage of accessory genes (Figure 1c). The respective
rarefaction curve tended to saturate or was close to sat-
uration for all of the 11 species (Figure 1d), with the per-
centage of accessory genes in the range of 20.94% to
45.16% (average of 32.28%; Figure 2a). Note that these
estimates are based on gene deletions compared to the
respective reference genomes. Given that our approach
does not take into account individual-specific genes that
do not exist in the reference genome, these numbers
should be considered as lower limits. These individual-
specific genes can significantly increase the percentage
of accessory genes, like in Haemophilus influenza, where
strain-specific genes correspond to 19% of its gene rep-
ertoire [22]. Although it is impossible to estimate exact
numbers of individual-specific genes, those that are spe-
cific to the reference genome and are not observed in
any of the metagenomes, corresponding to an average of
3% in the species analyzed, can serve as minimum to be
added to estimate gene content variability. Taken to-
gether, the high fraction of accessory genes per species
as measured in their natural habitats is in a similar range
as has been estimated from pan-genome studies
[4,17,21,22,28]. In fact, it should be even higher as it is
derived from a limited number of individuals and based
on gene deletion analysis only, that is, gene insertions



Figure 1 (See legend on next page.)
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Figure 1 Summary of gene content determination pipeline. (a) Procedure of data selection for metagenomic gene content variation analysis.
The initial dataset consisted of 252 metagenomic samples and a non-redundant set of reference genomes representative of 929 species based on
40 universal single copy marker genes. Metagenomic reads from each sample were aligned to each species and was followed by a multi-step
filtering procedure used in sample and genome selection. The final dataset corresponded to 103 individuals that mapped to 11 species. (b) Diagram
illustrating gene coverage of core and accessory genes of one species (Dialister invisus) for 10 individuals. The species is used to exemplify the typical
variability in core and accessory genes coverage and location across the genome based on different individuals. Green denotes core genes,
red denotes accessory genes, and white to missing genes. The bottom bar corresponds to the cross-samples consensus gene representing
the core-accessory status, denoting the core, accessory and missing gene regions. (c) Boxplot shows the percentage of accessory genes (%) in
Dialister invisus calculated from a subsampling procedure. The median values of different sample sizes were used to fit to the exponential regression
model curve. (d) Shows the fitted exponential regression model for the 11 gut bacterial species and uses the same approach as in (c).
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are not accounted for, as complex de novo metagenomic
assembly of shotgun sequencing data cannot reconstruct
complete genomes, which could be used to further advance
our understanding of natural gut bacterial populations.
Regardless of the absolute numbers, Bacteroidetes

were found to have a larger percentage of accessory
genes compared to Firmicutes (P value <0.01). As Bac-
teroidetes have generally larger genomes, we separately
compared the correlation of genome size with the num-
ber of core genes and all genes. The increase in the
number of all genes was greater than the increase in the
number of core genes (Figure 2b). This result is in line
with a number of genome size ‘scaling laws’ that show
gene functional classes scale differently with genome size
[29-31], for example, that the number of transcription
factors, two component system, signal transduction
genes increase more than linearly with genome size [29].
It is also in agreement with the observation that larger
genomes have higher rates of horizontal gene transfer
compared to smaller genomes [32].

Gene content variability in gut bacteria: metagenomics
versus pan-genomics
To quantify gene content differences of bacterial strains,
we compared all pairs of individuals for each of the 11
Table 1 Information about the metagenomic samples and ref

NCBI taxID Representative genome strain name Contigs (n) Genes
referen

592028 Dialister invisus DSM 15470 1 2,015

657321 Ruminococcus bromii L2-63 1 1,852

511680 Butyrivibrio crossotus DSM 2876 31 2,576

657322 Faecalibacterium prausnitzii SL3/3 1 2,816

445970 Alistipes putredinis DSM 17216 11 2,795

537012 Bacteroides cellulosilyticus DSM 14838 66 5,771

483216 Bacteroides eggerthii DSM 20697 20 3,769

717959 Alistipes shahii WAL 8301 1 2,616

563193 Parabacteroides sp. D13 22 4,558

469586 Bacteroides sp. 1_1_6 71 5,648

537011 Prevotella copri DSM 18205 28 3,413

Description of the 11 representative reference genomes is summarized according to th
genes (both present in reference genome and seen in all metagenomes), contigs, orth
species. When considering the set of genes that are
present in either of the individuals and not in their inter-
section, the average gene content difference between in-
dividuals across all species was 13% ± 4.5% (mean ± SD)
(Figure 3). This difference was considerably larger than
the one observed between biological replicates (same in-
dividual, samples from different time points) and be-
tween technical replicates (same individual, same
sample, different sequencing reactions), which were on
average 0.81% and 0.51%, respectively, and statistically
not significantly different (P value = 0.71, Figure 3).
Among the 11 species, Bacteroides thetaiotaomicron

(represented by strain Bacteroides sp. 1_1_6 [23]) was
found to have the highest (16%), and Dialister invisus
(6%) the lowest average inter-individual variation. Again,
these numbers represent lower limits due to the depend-
ency on reference genomes for this estimate (see Mater-
ial and Methods). Yet, for all 11 species, no two
individuals share the same gene content, even when the
analysis was extended to all 103 individuals.
To compare differences between strains in natural

habitats with those derived from pan-genome studies,
we collected genome sequences from any species be-
longing to the phyla of Firmicutes and Bacteroidetes
(1,077 genomes assigned to pan-genomes of 35 species).
erence genomes used in the current study

in
ce (n)

Individuals (n) Genes in
metagenomes (n)

Gene mapped
to OG (n)

OG (n)

16 1,905 1,343 1,081

22 1,807 1,324 1,031

13 2,493 1,768 1,253

11 2,670 1,869 1,262

58 2,790 1,649 1,266

15 5,542 4,125 2,247

10 3,714 2,775 1,868

29 2,584 1,861 1,293

32 4,473 3,577 2,182

41 5,639 4,232 2,468

32 3,195 2,090 1,490

eir NCBI TaxID and strain name. Statistics regarding the number of individuals,
ologous groups, genes mapped to orthologous groups (OGs) are shown.



Table 2 Definitions used in the scope of the current study

Term Definition

Core gene Species specific gene seen in all samples

Accessory gene Species specific gene seen in some samples

Single-gene deletion block Single gene missing in a sample when compared to the reference genome

Gene deletion block Block of one or consecutive neighbour genes missing in a sample compared to reference genome

Large-gene deletion block Deletion of 50 or more genes when compared to the reference genome in a sample

Consecutive-gene block Consecutive genes that are present in a given sample

Individual Refers to an individual gut sample for a given species (in Results and Discussion section)

Description of definitions used throughout the current study, the terminology was adapted from pan-genome studies to suit metagenomic studies.
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We used this large dataset for comparison as for 10 out
of the 11 species we investigated in our study, not
enough genomes of other strains were available. We
found a significantly higher gene content variation
within our metagenomic dataset compared to published
pan-genomes (a mean of 12.97% ± 4.51% and 10.69% ±
5.13%, respectively; P value <10-16, Additional file 3).
The difference is even higher when pan-genomes
from all available species (2,033 genomes assigned to
110 species pan-genomes) are computed (a mean of
9.19% ± 6.22% for completely sequenced genomes,
P value <10-16, Additional file 3). Only for one species,
Parabacteroides D. 13, genomes from eight different
strains were available and differences between pairs of
completely sequenced genomes and between pairs of
metagenomes could be directly compared. The results
indicate that pairwise differences of metagenomic sam-
ples (4.32% to 22.64%) are in similar ranges as those for
completely sequenced genomes (6.68% to 20.61%), as
Figure 2 Percentage of accessory genes for 11 gut bacterial species. (a) Th
calculated based on the asymptotic number originated from the exponential
species which are grouped according to their phyla. (b) Dot plot displays the
genome size. The graph shows that number of core genes also correlates wit
genome size than the number of core genes.
shown in Additional file 4. Overall, these findings reveal
no large systematic differences between our metage-
nomic estimations and the ones obtained from ge-
nomes of isolated strains.
The large gene content variation observed between gut

strains implies considerable structural variation that
need to be factored into the interpretation of metage-
nomic studies (note that gene content variation covers a
large proportion of structural variation in prokaryotes
due to high coding density). Furthermore, the structural
variability of gut bacterial strains across individuals
(using gene content variation as a proxy) is considerably
larger compared to that of human genomes, as less than
1% of base pairs in structurally variable regions are
different between two individuals [33]. This large gene
content variation in gut strains could be due to a par-
ticularly high frequency of horizontal gene transfer
(HGT) events in the gut compared to any other human
body site or non-human habitats [34], which has been
e bars correspond to the percentage of accessory genes, which were
regression model. The values were estimated for the 11 gut bacterial
relation between number of core genes or total number of genes and
h genome size; however the total number of genes grows faster with



Figure 3 Inter-individual gene content variability of abundant
bacterial species. For each species, the gene content differences
between two individuals were calculated. Boxplots are colored
according to phyla (red for Bacteroidetes and blue for Firmicutes),
and species are sorted by decreasing mean. The inter-individual
boxplot (green) shows pairwise comparisons of the same species
between individuals. Biological replicates (purple) represent pairwise
gene content comparisons of the same species in samples from the
same individual at different time-points. Technical replicates represent
gene content differences of Prevotella copri in four sequencing
replicates of the same sample.
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linked to antibiotic usage (for example, tetracycline) and
inflammation [35,36]. Regardless of the underlying
mechanisms, we found that the concept of individuality
based on SNP variations [23] also holds at the level of
gene content variations, at least within this limited
dataset.

Accessory genes are often derived from mobile elements
and are enriched in functions associated with cell wall
and cell membrane
In order to evaluate which functions are enriched in the
pool of accessory genes, we assigned core and accessory
genes to functional categories of clusters of orthologous
groups (COGs) [37] (Additional file 5). As expected,
accessory genes are enriched in functions that are often
associated to mobile elements, such as recombination
(this functional category includes several transposases
and viral proteins), and defense mechanisms (for ex-
ample, modification-restriction systems [38], ABC-type
antimicrobial and multidrug transporters). Accessory
genes were also enriched in functions associated to cell
wall and cell membranes. As many as 33% of them en-
code glycosyltransferases, which are important for the
modification of surface epitopes, such as capsular poly-
saccharides, O-antigens, and exopolysaccharides. The
large panoply of glycosyltransferases may aid bacteria in
the adaptation to colonize the gut environment [39,40].
In line with our observations, they have been already
associated with HGT in gut-dwelling Bacteroidetes
[39]. Lastly, accessory genes were enriched in genes
with unknown function, and further exploration of
their roles might reveal important phenotypes for
which individuals differ.
Highly abundant single gene deletions and their
association to mobile elements
To gain mechanistic insights into the emergence of gene
content variability we studied the architectural context
of accessory genes based on gene deletion blocks
[41,42]. We define a gene deletion block as a group of
contiguous accessory genes that are absent in one indi-
vidual when compared to the reference genome and a
single-gene deletion block as a gene that is absent, but
whose neighboring genes are certainly present in order
to have a very strict criterion (Table 2). Such measurable
deletion blocks can arise either by gene deletion in an
individual or by gene insertion(s) in the reference gen-
ome. The number of gene deletion blocks and the num-
ber of genes they contained were determined in each
metagenomic sample (Figure 4a and Additional file 6).
We found that the most frequent gene deletion

blocks were single-gene deletions, corresponding to a
mean of 33.74% of all blocks and 25% of all deleted
genes. In the 11 gut species analyzed, several ATPases,
transcription and recombination related proteins, such
as retron-type reverse transcriptase, transcriptional reg-
ulators and recombinases, were at the top of this cat-
egory (Additional file 7). These functional categories
clearly link single gene deletions to mobile elements
and the functional nature of the genes involved sup-
ports hypotheses that previously integrated mobile ele-
ments underwent erosion through deletion of their
mobilization and integration machinery [43], although
we cannot exclude that some of these are gene inser-
tions in the reference genome.



Figure 4 Gene deletion block size distribution. (a) Frequency of gene deletion blocks with a given number of contiguous absent genes (%) for
11 gut bacterial species. Each point corresponds to the mean frequency across 10 individuals for a given species. (b) Length of different large
deletion blocks across gut bacterial species. Several large deletion blocks are associated with prophage and conjugative elements and one
containing PUL and CPS loci. (c) Heatmap showing an example of a large deletion block (containing 73 genes) in Bacteroides thetaiotaomicron species
across the 41 individuals and four sequenced reference genomes. Metagenomic samples are represented in blue and reference genomes are
represented in purple. The genes are represented by its NCBI sequence identifier (GI). The labeling of the reference genome used for metagenomic
samples mapping is highlighted in bold. SusC/SusD and CPS annotations are based on those described in Xu et al. [46]. Upstream of the CPS there are
three SusC/SusD genes, which can be associated with one or more PULs, and downstream of the CPS there is another PUL. These PULs are associated
with plant carbohydrate degradation based on eggNOG and MetaCyc annotation (cf [68]). For CPS and both PULs related sub-regions, where the loci
are present, they show a conserved modularity in all individuals except for one individual (where one SusC/SusD was missing). In agreement with
metagenomic samples in the completely sequenced genomes, CPS and PULs loci are present in three genomes and absent in another one.
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Accessory genes with functionality that imply phenotypic
differences of an individual
At the other end of the size spectrum of gene deletions,
we also detected large-gene deletion blocks with 50 or
more genes in several species, the longest of which con-
tained 172 genes, with deleted segment sizes in the
range of 37 to 135 kilobases (Figure 4a, b and Additional
file 8). In this category we found a mean of 21% of all
deleted genes, which contain considerable numbers of
operons, likely integrated into active mobile elements.
Indeed, we found large integrons containing a likely
queuosine biosynthetic pathway, several peptidases (for
example, involved in lysis of cell wall peptidoglycan),
and a toxin-antitoxin system (Additional file 9) that may
confer functional differences between strains.
As it is also likely that differences in large gene blocks
have phenotypic consequences in the respective individ-
uals, we studied them in more detail. In total we de-
tected 21 such large deletion blocks in eight species,
with each species harboring between one and seven of
them. Not unexpectedly, we found that many of them
are associated with prophages of both Bacteroidetes and
Firmicutes or conjugative transposable elements for Bac-
teroidetes (see Additional file 8) implying a mechanism
for the transfer of functionality.
One of the large-gene deletion blocks found in Bacter-

oides thetaiotaomicron contains four susC/susD genes
that are likely associated with two polysaccharide
utilization loci (PULs) and a capsular polysaccharide
synthesis locus (CPS) with 25 genes (Figure 4c). Bacterial
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PULs are important for foraging glycans and polysaccha-
rides in the human intestine [44,45]. The two PULs we
detected have been associated with plant carbohydrate
degradation in B. thetaiotaomicron [46,47]. CPS loci are
sensitive to the nutrient availability and are involved in
the defense of the bacteria against environmental factors,
such as the host immune system, phage attack and anti-
peptide produced by the host or other bacteria [48,49].
Cross-individual comparison of the gene deletion pat-
terns show that this large deletion block is further sepa-
rated into at least three different sub-regions of
consecutive-gene blocks (Figure 4c), with one corre-
sponding to the CPS and two sub-regions containing
PULs. We observed that each sub-region is present in
some and missing in other individuals independent of
the other sub-regions. This pattern is observed not only
for the subset of 10 individuals that was comparatively
analyzed, but extends to all individuals where Bacter-
oides thetaiotaomicron was detected according to our
strict criteria (41 in total).
We further tested for the presence of these loci in

three other completely sequenced genomes of this spe-
cies (Figure 4c) and found that for Bacteroides thetaio-
taomicron type strain VPI-5482 (ATCC 29148) the
whole region is present, whereas some genes were miss-
ing in the other two sequenced strains. Thus, the vari-
ation in the gene content of this large deletion block in
completely sequenced genomes of this species is in
agreement with the variation observed between individ-
uals. Before concluding about functional differences,
paralogs have to be taken into account as they could
compensate functionality at alternative loci. B. thetaio-
taomicron produces more than 200 glycan-modifying en-
zymes, and several of them are paralogs [39], but we
could not identify any paralogs for any of the genes
within the large-gene deletion block. Thus, unless the in-
dividuals have inserts with corresponding functionality
that we cannot measure, in some individuals CPS and
the two PULs appear to be completely absent in B. the-
taiotaomicron, limiting its potential for polysaccharide
utilization and capsular polysaccharide synthesis.
More specifically, our findings regarding PULs support

the idea that carbohydrate degradation is strain-specific
as has also been found experimentally in Bifidobacteria
[50], in which strains with different key enzymes are able
to utilize different carbohydrate sources; these differ-
ences in carbohydrate utilization potential likely reflect
differential niche adaptation [51-53]. For example, a
study that compared B. thetaiotaomicron and B. ovatus
showed that each species acquires niche-specific PULs
that degrade different carbohydrate sources [51,53],
which could be an effect of an individual’s dietary habits.
The latter could also be influenced by strain-specific
CPS architectures, as the expression of B. thetaiotaomicron
CPSs has been coupled to diet changes [47,49,54] and as
there is evidence of coordinated regulation of CPS with
PULs [49]. The response of CPSs to dietary change is likely
to help the bacteria to create a capsule with a similar
glycan composition as the glycan landscape of individual’s
gut, and affect the interaction between the bacteria and the
immune system [48].
Conclusion
This study addresses a current need to characterize gene
content of species in their natural habitats, where bac-
terial species undergo natural selection and are influ-
enced by a complex web of environmental factors. We
have developed a method for gene deletion detection in
metagenomic data and have demonstrated its applicabil-
ity to complex microbial communities such as those
inhabiting the human gut. Despite limited sample sizes,
we show that in their natural habitats, strains of the
same human gut bacterial species vary considerably in
their gene content. The observed scaling of accessory
genes with genome size (cf [29]) shows that the
metagenomics-derived results are robust, also at the
level of individual species. Given the considerable struc-
tural variation, it is likely that gene content might be as
individual as SNP patterns have been proposed to be
[23], although this concept needs to be validated in lar-
ger cohorts and with more species analyzed.
The fact that gene content variability of the same spe-

cies implies potentially important functional differences
that cannot be predicted by phylogenetic marker mole-
cules alone [55] underlines the importance of global ap-
proaches like metagenomics in providing a complete
functional fingerprint of an individual. The methods de-
veloped here can be applied to other environments in
which the functional potential might be even more
reflected in structural variations of strains than in the
human gut. For example, soil samples harbor even more
diverse microbial communities with larger genome sizes
and hence should have an even higher fraction of
accessory genes; the analysis of gene content variation of
species in various environments might help to under-
stand the gene flow within, but also between species in
their natural habitats.
Material and methods
Data availability
Detailed information pertaining to the accessibility of
the 252 metagenomic samples and reference genomes
used in this study can be found in Supplementary Tables
1 and 2 in Schloissnig et al. [23]. The metagenomes are
deposited in NCBI under the accession number BioPro-
ject PRJEB2054 (MetaHIT), and PRJNA43017 (HMP) in
Additional file 1.
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Representative reference genomes selection and read
mapping
Representative reference genomes were selected accord-
ing to Schloissnig et al. [23,56]. In summary, a set of
1,511 prokaryote genomes was downloaded from Gen-
Bank and the MetaHIT Consortium on 4 July 2010.
These genomes were clustered into a non-redundant set
of 929 clusters based on 95% average nucleotide identity
(ANI) of 40 universal single copy marker genes between
sets of two genomes [57,58]. For each cluster, the gen-
ome recruiting the highest number of reads was selected
to be the representative reference of that species [23,59].
Illumina reads from 252 metagenomic samples were

mapped to the 929 representative reference genomes,
with an alignment identity cut-off of 95% using Mosaik,
according to Schloissnig et al. [23] (a summary of the
pipeline is illustrated in Figure 1a).
Filtering of genomes and individuals
Three data filtering steps were applied for each species-
individual combination: (1) at least 40% of the genome
of the species was covered by at least one read from an
individual (breadth coverage) [23], and (2) a set of 40
universal single copy marker genes [57,58] had to be
present. Both criteria are used to guarantee that the spe-
cies detected corresponds to the reference genome
mapped and not a close relative species with a similar
genome composition. (3) At least 30× average genome
coverage depth (the de facto standard for high coverage
[60]) was required to assure determination of gene pres-
ence is not affected by sequencing depth. Only species
with a minimum of 10 individuals (in the range of 10 to
58) were selected to increase statistical power. A final
set of 11 species was used in the current study and for
each species a random set of 10 individuals were chosen.
Determination of core and accessory genes
The categorization of a gene as a core or accessory
gene is based on presence or absence of the gene in all
10 individuals for each species, which can be seen in
Figure 1b. A gene is considered present if it is covered
with reads in at least 40% of its gene length. We set
this gene length coverage filter to ensure that the gene
is not called present due to spuriously assigned reads
or reads originating from an orthologue belonging to a
close relative species. To determine a cutoff for gene
length coverage filter we compared the gene content
between pairs of biological replicates (time-series)
using cutoffs in the range of 0% to 100% in intervals of
10% (Additional file 10). A cutoff of 40% gene length
coverage filter resulted in the lowest variability be-
tween biological replicates (Additional file 10) and af-
fected 3% of the genes (Additional file 11).
This categorization of the genes into core and
accessory was not affected by either the abundance or
genome coverage of the species within the samples (cal-
culated according to Schloissnig et al. [23]), since the
fraction of accessory genes did not correlate with either
of the two variables (correlation with coverage has a
R = 0.08, P value = 0.82, see Additional file 12a, and
correlation with abundance has a R = 0.07, P value = 0.84,
see Additional file 12b).

Estimation of percentage of accessory genes
To estimate the percentage of accessory genes we applied
a subsampling procedure followed by model building. The
subsampling procedure used random subsample sets of
the 10 individuals with a defined sample size. The sample
size was in the range of 2 to 10 and for each sample size
all combinations of random subset of individuals were
used. For each subsample set the ‘subsample-based frac-
tion’ was calculated, that is the percentage of genes that
were missing in at least one of the samples. For each sam-
ple size the mean subsample-based fraction was calculated
and used to build the model. Two main models have been
used in pan-genome studies, exponential regression model
[21] and power law regression model [7]. In addition to
these two models, we also tested using a negative expo-
nential model and a spline function.
To evaluate the models we required the determination

of the ‘expected fraction’, that is the expected fractions
of accessory genes observed when the sample size in-
creased beyond 10 individuals, which were used to com-
pare with the estimated values generated by the models.
The ‘expected fractions’ were calculated by using the
same subsampling procedure as before but applied to all
the available individuals, instead of the 10 randomly
chosen. Therefore, the sample size was in the range of
two to the total number of individuals where the species
was observed; as the number of combinations increases
rapidly with sample size, we randomly selected up to
500 combinations from each sample size. Next we com-
pared the curve extrapolated from the model with the
tendency observed in the ‘expected fraction’. The curves
for the exponential and power law regression model are
shown in Additional file 13. The exponential model pre-
dicts the curve closest to the expected fraction; expo-
nential model showed a mean deviation from the
expected fraction of 8% and the power law regression
model a mean deviation of 12% and the other two
models performed even worse. The exponential model
was therefore chosen and the asymptotic number ob-
tained from the model was used to predict the percent-
age of accessory genes. The exponential regression
models tended to underestimate, so the values estimated
here will correspond to a lower bound of the percentage
of accessory genes.
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Estimation of the number of different genes between pairs
of metagenomic samples and pairs of reference genomes
Inter-individual gene content variability was calculated
for each of the 11 species by pair-wise comparisons be-
tween all pairs of individuals A and B in the following
manner. The gene content difference between two indi-
viduals of one species was calculated by dividing number
of genes present in only one of the individuals by the
total number of genes present in either or both of the
individuals (symmetric difference). Note that all ob-
served genes have to be present in the reference genome
to which the reads were mapped as well.
Gene content differences between biological and tech-

nical replicates were calculated using samples from differ-
ent time-points of the same individual and multiple
sequencing reactions for a given sample, respectively. For
33 individuals, one of the 11 species was detected in mul-
tiple time-points and their samples were used as biological
replicates. The sample MH0006 was sequenced in four
different lanes, and Prevotella copri had sufficiently high
base pair coverage in each lane to pass our filtering cri-
teria. Therefore data from each lane were used as tech-
nical replicates of gene content variability in Prevotella
copri. Pairwise comparisons of gene content between bio-
logical and technical replicates were done in a similar
fashion as described for inter-individual comparisons.
The outlined calculation was also applied for completely

sequenced genomes. A total of 110 species were used after
filtering for species where at least 10 completely se-
quenced genomes were available. For metagenomics, the
calculation is dependent on the reference genome chosen
to map the sequencing reads of samples. In order to emu-
late this reference genome dependency when surveying
the gene content differences between completely se-
quenced genomes, we randomly selected one genome for
each species as a ‘reference’ genome. This ‘reference’ gen-
ome was used as a third genome for each pair-wise gen-
ome comparison and all genes present in only one of the
two compared genomes and not in the second one but
present in the ‘reference’ genome were counted as ‘unique’
genes. The number of ‘unique genes’ was divided by the
number of genes that were observed in the ‘reference’
genome and either or both of the two genomes. Metage-
nomic comparisons were compared to completely se-
quenced genome using a Wilcoxon-Mann-Whitney test.

Functional annotation and enrichment test
Genes in each species were mapped to orthologous groups
by using Blastp [61] (bitscore >60). The Cluster of Ortho-
logous Group (COG) and Non-supervised Orthologous
Group (NOG) from the eggNOG v3.0 pipeline [62] were
used as orthologous groups. On average 71% of the genes
per species have been assigned to orthologous groups in
eggNOG database. The orthologous groups were further
categorized into the COG functional categories [37].
Fisher test was used to find enrichment in COG func-
tional categories and multiple testing was adjusted with
FDR. Genes were also annotated with KEGG v62 [63]
and MEROPs [64] by using Blastp [61] (bitscore >60).
Genomic islands of the 11 species were detected using
IslandViewer’s methods IslandPath-DIMOB and SIGI-
HMM using default options [65].

Accessory gene deletion block determination
In order to determine gene deletion blocks, we com-
pared each of our metagenomes of a given species with
the representative reference genomes, and located the
genes that were absent in each metagenome. Contiguous
absent accessory genes were clustered and named gene
deletion blocks. When an accessory gene is absent and
its two upstream and downstream closest neighbor
genes are present, it is defined as single-gene deletion
block. For each species we determine gene deletion
blocks for each of the 10 individuals independently.
Number of genes and number of gene deletion blocks
were counted for each block size. For seven species the
reference genomes were not completely assembled, and
were composed of several contigs (Table 1). In these
cases, the gene deletion block could only be counted
within the context of a given contig. Hence, there is the
possibility that gene deletion block could be split into
two. Single-gene deletion blocks that occur in the start
or end of a contig are not counted in order to not inflate
the number of single-gene deletion blocks.

Paralog determination within and between reference
genome
Paralog determination for both within and between refer-
ence genomes was based on Alonso-Saez et al. [66]. The
95% ANI of 40 universal single copy marker genes men-
tioned above was used to find sequenced genomes that be-
long to the B. thetaiotaomicron species. Four genomes
were found; apart from Bacteroides sp. 1.1.6 (the genome
used in our study), we used B. thetaiotaomicron VPI-5482
(ATCC, NCBI TaxID 226186), B. thetaiotaomicron
dnLKV9 (NCBI TaxID 1235785) and Bacteroides sp.
1.1.14 (NCBI TaxID 469585). These genomes were used
to build Bacteroides thetaiotaomicron-specific orthologous
groups (NOG) based on the eggNOG pipeline [67]. The
genes were assigned to B. thetaiotaomicron NOG using
Blastp [61] with a bit score cutoff of 60 and a 95% identity.
Furthermore, to make sure that genes found in the large-
deletion block do not even have distant paralogs within
Bacteroides thetaiotaomicron, a less stringent cutoff of
40% identity and 80% protein length was also used. Anno-
tation from the B. thetaiotaomicron VPI-5482 available in
the MetaCyc database [68] was also used to annotate the
B. thetaiotaomicron NOG.
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Additional files

Additional file 1: List of 10 individuals randomly chosen for each
species. For each of the 11 species the representative reference genome
NCBI Tax ID and strain name are given together with the name of the 10
randomly selected individuals that were used throughout the study.

Additional file 2: List of Genomic islands found using IslandViewer.
For each of the 11 species the location and length of genomic islands on
genomic contigs are listed.

Additional file 3: Variability between (1) sequenced reference
genomes, (2) Bacteroidetes and Firmicutes reference genomes, and
(3) metagenomic samples. Boxplots showing the difference in number
of genes (%) between pairs of: (1) sequenced reference genomes across
the 110 bacterial species, (2) subset of sequenced reference genomes
restricted to 35 Bacteroidetes and Firmicutes species, and (3) metagenomic
samples across the 11 gut bacterial species used in this study. Only species
with at least 10 sequenced reference genomes are included. Each boxplot
corresponds to a pooling of pairwise comparisons between two samples
from all the available species. The differences observed in metagenomic
samples were significantly higher than in completely sequenced genomes,
even when considering reference genomes from the same phyla.

Additional file 4: Variability of gene content in Parabacteroides
D.13 estimated using pairs of sequenced reference genomes and
pairs of metagenomic samples. Boxplots show differences in the
number of genes (%) of Parabacteroides D.13 between pairs of sequenced
reference genomes and pairs of metagenomic samples. The differences
observed in metagenomic samples were in a similar range as in completely
sequenced genomes.

Additional file 5: Difference plot of orthologous groups functional
categories between gene number of core and accessory genes. The
heatmap shows the difference between the numbers of core genes and
the number of accessory genes belonging to a certain functional category.
Darker green corresponds to functional categories with higher number of
accessory genes compared to core genes. Species and functional categories
are clustered according to the mean difference between gene number of
core and accessory genes.

Additional file 6: Cumulative number of genes in deletion blocks of
a given size. The total number of absent genes (%) that are located in a
deletion block with size smaller or equal to the given block size (x axis) is
plotted for 11 gut bacterial species. Each data point corresponds to the
mean across the 10 individuals. The block size is defined by the number
of genes absent in a given metagenomic sample and the block sizes
were binned in bins of sizes multiples of 10.

Additional file 7: Table with OG associated with single-gene
deletion blocks. Describes the number of genes found in single-gene
deletion blocks that were associated with a given OG based on eggNOG
v.3 [62]. The number of occurrences corresponds to a pooling of all the
paralogs and orthologs found across the 11 species. The OGs are ranked
according to the number of occurrences.

Additional file 8: Table with mobile elements annotation associated
with the 21 large deletion block. Each large deletion block is identified by
the reference genome NCBI Tax ID, contig, the start and end nucleotide
positions. Annotation of the large deletion blocks is based on eggNOG [62],
KEGG [63], and MetaCyc [68]. The deletion block is annotated as phage or
conjugative transposon when the whole machinery is present or
defined as such in MetaCyc. In contrast, when only some genes but not
the whole machinery is present the deletion block is annotated as
phage or conjugative transposon proteins. NA signifies that none of the
genes within the large deletion block were annotated with functions
associated with mobile elements. Deletion sizes are expressed in
kilobases. Many of the large deletion blocks are associated with
prophages and conjugative transposons.

Additional file 9: Table with examples of function encoded in large
deletion blocks that are likely to differ between strains. The genes
are grouped by regions, note that each region contain more genes,
however for most of the remaining genes their function is currently
unknown, only the relevant genes involved in queuosine biosynthetic
pathway (Folate metabolism), toxin-antitoxin system and peptidases are
described. Each gene is described with the genome of origin (NCBI Tax
ID), the gene NCBI sequence identifier (NCBI GI), and their annotation to
eggNOG [62], KEGG [63], MEROPs [64], and MetaCyc [68]. NA means that
no functional annotation was found for the specific NCBI GI in the given
database.

Additional file 10: Gene content variability of abundant bacterial
species between biological replicates using different gene length
coverage filters. Each boxplot represents the gene content differences
between pairs of metagenomic samples of biological replicates (time-series)
after applying a given gene length coverage filter. The gene length
coverage filter is the fraction of a gene length that is covered with
reads. The filter ranged between 0% and 100% (in intervals of 10%). The
figure shows that the average variability is minimized at 40% gene
length coverage filter.

Additional file 11: Figure with gene length coverage filter from the
11 species. Dotplot shows the percentage of genes that are called
absent in all species-individual pairs if the gene length coverage filter
cutoff is set at a certain x value, represented in the x axis. The gene
length coverage filter is the fraction of a gene length that is covered with
reads. With the chosen gene length coverage filter of 40%, 3% of all the
genes that had reads mapped are considered as a result of spurious read
mapping or homology with closely relative species and are regarded as
absent. The plot was generated by pooling all metagenomic samples of
the 11 species.

Additional file 12: Percentage of accessory genes is not dependent
on genome abundance nor genome coverage. Boxplot shows the (a)
depth of genome coverage and (b) relative abundance of each species
within an individual. Also shown is the species fraction of accessory
genes observed across 10 individuals. Species are sorted by the fraction
of accessory genes and boxplot are colored according to which phylum
a species belongs.

Additional file 13: Percentage of accessory genes curve based on
subsampling for each of the 11 species. Each graph corresponds to a
comparison between the ‘expected fraction’ and the percentage of
accessory genes estimated by the models (exponential regression and
power law regression). Within each graph the boxplots show the ‘expected
fractions’; blue curve represents the fitting of the exponential regression
model and the red curve represents the fitting of the power law regression
model. ‘Expected fractions’ were calculated based on a subsampling
procedure applied to all individuals. Exponential regression model and power
law regression model were fitted to the median values of ‘subsample-based
fraction’ that were based on 10 randomly chosen individuals. For small
sample sizes both the curve fit similarly to the ‘expected fractions’, as sample
size increases exponential regression model curve tend to underestimate the
values while the power law regression model tend to overestimate. For larger
sample sizes the difference between the values in the boxplot and two
curves is smaller for the exponential regression model than the power law
regression model.
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