
Tian et al. BMC Medical Genomics 2014, 7:45
http://www.biomedcentral.com/1755-8794/7/45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
RESEARCH ARTICLE Open Access
Functional characterization of breast cancer using
pathway profiles
Feng Tian1†, Yajie Wang2,3†, Michael Seiler1 and Zhenjun Hu1*
Abstract

Background: The molecular characteristics of human diseases are often represented by a list of genes termed
“signature genes”. A significant challenge facing this approach is that of reproducibility: signatures developed on a
set of patients may fail to perform well on different sets of patients. As diseases are resulted from perturbed cellular
functions, irrespective of the particular genes that contribute to the function, it may be more appropriate to
characterize diseases based on these perturbed cellular functions.

Methods: We proposed a profile-based approach to characterize a disease using a binary vector whose elements
indicate whether a given function is perturbed based on the enrichment analysis of expression data between
normal and tumor tissues. Using breast cancer and its four primary clinically relevant subtypes as examples, this
approach is evaluated based on the reproducibility, accuracy and resolution of the resulting pathway profiles.

Results: Pathway profiles for breast cancer and its subtypes are constructed based on data obtained from
microarray and RNA-Seq data sets provided by The Cancer Genome Atlas (TCGA), and an additional microarray
data set provided by The European Genome-phenome Archive (EGA). An average reproducibility of 68% is achieved
between different data sets (TCGA microarray vs. EGA microarray data) and 67% average reproducibility is achieved
between different technologies (TCGA microarray vs. TCGA RNA-Seq data). Among the enriched pathways, 74% of
them are known to be associated with breast cancer or other cancers. About 40% of the identified pathways are
enriched in all four subtypes, with 4, 2, 4, and 7 pathways enriched only in luminal A, luminal B, triple-negative,
and HER2+ subtypes, respectively. Comparison of profiles between subtypes, as well as other diseases, shows that
luminal A and luminal B subtypes are more similar to the HER2+ subtype than to the triple-negative subtype, and
subtypes of breast cancer are more likely to be closer to each other than to other diseases.

Conclusions: Our results demonstrate that pathway profiles can successfully characterize both common and
distinct functional characteristics of four subtypes of breast cancer and other related diseases, with acceptable
reproducibility, high accuracy and reasonable resolution.
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Background
Diseases are abnormal conditions of the human body re-
sulted from significant nonlethal malfunctions that affect
the human physiological system. Traditionally, diseases
are characterized by pathology and observation of clin-
ical phenotypes. Although these methods have proved
successful in many applications, they lack the sensitivity
to detect diseases before the appearance of symptoms
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and also have a limited ability to distinguish complex
disease classes [1,2] which may present confusing or
overlapping symptoms.
With the development of genomic technology, a

promising approach to overcome limitations of the trad-
itional method is to identify a set of genes as a genetic
signature whose combined expression pattern is the
uniquely characteristic of a given phenotype [3,4]. In the
last decade, some gene signatures have been developed
for cancers [5-9] and other diseases [10,11], indicating
that the use of these signatures can assist in defining
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disease, predicting disease recurrence, aiding disease
diagnosis and guiding treatment decision.
There are still obvious obstacles that prevent the appli-

cation of gene signatures in clinical practice [12,13]. One
major problem is the low reproducibility between signa-
ture genes. The overlaps of gene signatures derived from
different data sets of the same disease are generally very
few compared to the total number of signature genes
[14], while stable gene signatures are crucial to the ro-
bustness of predictors [15]. The reasons for this discrep-
ancy may include different cohorts of patients, different
statistical methods, and different experimental technolo-
gies involved in identifying the signature genes [16]. It
has been further suggested that a large number of sam-
ples are required to achieve a robust gene signature
[14,15]. However, another reason for this discrepancy
may lie in the observation that diseases are directly re-
sulted from perturbed cellular functions which are gen-
erally carried out by groups of genes in the forms of
complexes, modules or pathways [17]. Therefore, it is
reasonable to assume that any gene whose change of ex-
pression leads to the perturbed molecular function may
be a potential signature gene. This assumption is par-
tially evidenced by the fact that both gene signatures de-
veloped in [18] and [19] can capture cell proliferation
related biological processes and pathways [20], and that
dysregulations of functionally related genes result in
similar clinical phenotypes [21]. This assumption may
also explain why sophisticated methods can rarely find
much better gene signatures than simple methods [22].
From this perspective, it may be more appropriate to
characterize diseases at the functional level.
Pathway-based methods have been extensively applied

to analyze large-scale genome-wide data with varied pur-
poses and applications [23-29]. Some of them classify
tumor samples based on pathway-level measurements
[30]; many of them, such as PWEA [31] and GSEA [32]
identify perturbed pathways between two distinct pheno-
types (e.g., tumor vs. normal) using expression data [28].
These enrichment methods often require a significant
number of samples to achieve a statistically robust ana-
lysis. With appropriate stability and reliability, the result-
ing pathways of these methods may serve as reference
pathways to be compared against pathways identified
by sample-based analysis [33,34] in clinical applications
such as disease diagnosis and personalized medicine.
In this study, we report a new approach to characterize

diseases at the functional level, with our aim being to
both consolidate redundant gene lists and to generate a
list of pathways which is both accurate and reproducible.
For a given disease, a pathway profile is generated based
on the enrichment analysis of differential gene expres-
sion data between normal and tumor tissues: a binary
vector whose elements indicate whether a given function
(represented by a KEGG pathway) is perturbed. Using
breast cancer and four clinically-relevant subdivisions
(luminal A, luminal B, triple-negative and HER2+) as
examples, we examine the new approach from three per-
spectives: to determine whether the pathway profile can
be reproduced from the data generated by different
technologies (Microarray vs. RNA-Seq), as well as from
separate cohorts (The Cancer Genome Atlas (TCGA) vs.
The European Genome-phenome Archive (EGA)), to deter-
mine whether the resulting pathways are associated with
the functional perturbation resulted from the breast cancer
and its subtypes, and finally to determine whether the path-
way profile can distinguish different subtypes of breast
cancer as well as distinguish breast cancer from other dis-
eases. Our results indicate that the new approach achieves
68% average reproducibility between different data sets
(TCGA microarray vs. EGA microarray data) and 67% aver-
age reproducibility between different technologies (TCGA
microarray vs. TCGA RNA-Seq data). Among the enriched
pathways, 74% of them are known to be associated with
breast cancer or other cancers by extensive literature
search. Approximately 40% of the pathways are enriched in
all four subtypes and there are 4, 2, 4, and 7 pathways
enriched only in the luminal A, luminal B, triple-negative,
and HER2+ subtypes, respectively, implying that pathway
profiles not only reveal shared mechanisms in the four sub-
types but also outline the subtype-specific operations that
may potentially be used as signature pathways to distin-
guish them. Comparison of profiles between subtypes, as
well as other diseases including ovarian cancer, glio-
blastoma multiforme (GBM), and obesity, reveals that
the luminal A and luminal B subtypes of breast cancer
are closer to each other than to other subtypes, luminal
A and luminal B subtypes are closer to the HER2+ sub-
type than to the triple-negative subtype, and subtypes
of breast cancer are more likely to be closer to each
other than to other diseases.

Methods
Data sources
808 tumor and 106 normal samples of TCGA RNA-Seq
data (Illumina HiSeq 2000 RNA Sequencing platform)
were downloaded from the TGGA portal on Oct. 2012.
522 tumor samples with available PAM50 classification
[35] and 63 normal samples of TCGA microarray data
(Agilent G4502A platform) were downloaded on Nov.
2012. 496 tumor and 58 normal samples overlap be-
tween the two TCGA data sets (drawn from the same
patients). Both the “discovery” and “validation” EGA
data sets were also downloaded, which consisted of 997
and 995 tumor samples, respectively, and 144 normal
samples (Illumina HT-12 v 3 platform, accession number
EGA S00000000083) [36]. The EGA discovery data set
was used in our analysis and the EGA validation data set



Tian et al. BMC Medical Genomics 2014, 7:45 Page 3 of 13
http://www.biomedcentral.com/1755-8794/7/45
was used to further verify our major results (See discus-
sion in Additional file 1). For brevity, the “discovery”
EGA data is referred to as the EGA data set in the re-
mainder of this paper unless otherwise stated. 37 tumor
and 8 normal samples of the TCGA ovarian cancer
data set (Affymetrix HG-U133A platform, batch 9) were
downloaded on Feb. 2013, and 24 tumor and 10 normal
samples of TCGA GBM data set (Affymetrix HG-U133A
platform, batch 8) were download on Nov. 2013. The
obesity data set (Affymetrix HG-U133_Plus_2 platform)
of 5 obesity and 6 control samples was downloaded
from GEO [GDS3688] (omental adipose from obese,
prepubertal children).
No major batch effects were observed for the two

TCGA breast cancer data sets [35]. The batch effect of
EGA data set has been removed by a linear model [36].
To eliminate batch effects in the ovarian cancer data,
only batch 9 of TCGA ovarian cancer data set was used
[37]. Similarly, only batch 8 of the TCGA GBM data
set was used because the possibility of batch effects
within the GBM data set may not be ignored (http://
bioinformatics.mdanderson.org/main/TCGABatchEffects:
Overview).
A total of 269 human pathways were downloaded from

KEGG [38] on Jun. 2013. 175 of these pathways in 30
pathway categories were used in our analysis after ex-
cluding all disease pathways and pathways with size ei-
ther smaller than 16 or larger than 350 (to increase
statistical power).
Classification of breast cancer samples
To be consistent with clinical practice, we classified tumor
samples into luminal A, luminal B, triple-negative, and
HER2+ subtypes using the following steps. First, HER2+
samples were identified based on the test results of immu-
nohistochemistry (IHC) or florescence in situ hybridization
(FISH). The rest of the samples were then split into ER+
and ER- samples based on estrogen receptor (ER) status
provided by IHC test results. ER+ samples were then fur-
ther classified into luminal A and luminal B subtypes using
PAM50 classification. Finally, triple-negative samples were
extracted from the pool of ER- samples according to pro-
gesterone receptor (PR) status based on IHC test results.
PAM50 classification results alone were used whenever
ER or HER2 status was not available in the clinic data.
As EGA data does not provide the PR status, instead we
used the expression-based classification result for PR
status [36]. PAM50 classification results were down-
loaded from the UCSC Cancer Genomics Browser [39]
for TCGA data sets and the supplementary materials in
its original publication [36] for the EGA data set. More
details on sample classification can be found in Additional
files 1 and 2.
Pathway enrichment analysis
We focused on the enrichment of pathways abnormally
perturbed in the disease state compared to the normal
state in four major subtypes of breast cancer. PWEA
[31] was used in this study to carry out pathway enrich-
ment analysis, as a comprehensive study previously indi-
cated that it has a higher sensitivity than other enrichment
analysis methods including GSEA [32] with little or no loss
of specificity [31,40]. The PWEA results of all data sets are
provided in Additional file 3.

Definition of reproducibility
Our measure of reproducibility was applied to both
pathway and gene-based profiles. Using pathways as an
example, the reproducibility r can be defined as

r ¼ NC

N
þ NC

N
0

� �
=2

where N and N’ are the number of enriched pathways
for two different data sets, and Nc is the number of over-
lapping of enriched pathways between two data sets.

Pathway profile
For a given disease, a pathway profile p can be defined as:

p ¼ p1; p2;…pN½ �
where N is the total number of pathways used in the ana-

lysis and pn (1 ≤ n ≤ N) is equal to either 1 or 0 to indicate
whether nth pathway is enriched or not, respectively.

Analysis workflow
The sketch of our approach is depicted in Figure 1. Our
approach utilized three main data sets which encom-
passed two separate patient cohorts and three distinct
gene expression measurement platforms. The samples
were first split into luminal A, luminal B, triple-negative,
and HER2+ subgroups on each platform independently.
Perturbed functions (represented by KEGG pathways
[38]) were then identified using the PWEA algorithm
[31]. Pathway profiles were constructed thereafter as
binary vectors with length equal to the number of path-
ways with each element set to either 1 or 0 to indicate
whether the corresponding pathway is enriched. Finally,
correlations between breast cancer subtypes and other
diseases were calculated by comparing their pathway
profiles using hypergeometric statistics. The detail of our
results is described below according to three key factors
that may impact the performance of our analysis: repro-
ducibility, accuracy and resolution.

Results
Breast cancer is a complex and heterogeneous disease
[41] which consists of four major clinically-relevant
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Figure 1 The workflow of pathway profiling. The tumor samples of three data sets are classified into luminal A, luminal B, triple-negative, and
HER2+ subtypes by clinical data and PAM50 classification results. We then perform pathway enrichment analysis for each subtype in each data
set individually using the PWEA algorithm. After that we evaluate our method based on its reproducibility, accuracy, and resolution. Finally, we
build a small disease/subtype network based on the pathway profiles of each of the four subtypes of breast cancer as well as related diseases.
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subtypes: luminal A, luminal B, triple-negative, and HER2+,
which vary in prognosis and require distinct treatments
[5,42]. Gene signatures play an important role in the
classification of breast cancer subtypes. However, a
comparative study of five sets of gene signatures for
breast cancer indicated that the overlap between gene
signatures is still low [43]. Our goal therefore is to have
a stable and accurate characterization of breast cancer
subtypes using pathway profiles so that the common
perturbed pathways among the four subtypes, as well
as specific pathways uniquely perturbed for each sub-
type, will be appropriately identified.
The numbers of enriched pathways for each subtype

in different data sets are shown in Table 1. It is clear
that, on average, the luminal A subtype has fewer
enriched pathways than the other three subtypes. All of
the enriched pathways are identified based on a false dis-
covery rate (FDR) cut-off of 0.1, calculated using the
Benjamini-Hochberg method [44].

Reproducibility
Reproducibility is an essential requirement for almost all
published scientific work. We focused on the reproduci-
bility of our method over varying patient cohorts and
platforms, with the intention to show that our result can
be broadly applied in practice.
The reproducibility (See definition in Methods) of our

method was evaluated using the gene expression data
generated either from different expression measurement
technology (Microarray vs. RNA-Seq), different sample
Table 1 Number of enriched pathways for each subtype
of breast cancer and data set

Data set Luminal A Luminal B Triple-negative HER2+

TCGA RNA-Seq 66 84 55 85

TCGA microarray 48 66 65 69

EGA microarray 61 87 111 103
sets (TCGA vs. EGA), or both. Only matched tumor
samples (496) and normal samples (58) from each TCGA
data set were used when examining the reproducibility
between two technologies, and all 914 TCGA RNA-Seq
samples (808 tumor and 106 normal) and 585 TCGA
microarray samples (522 tumor and 63 normal) were
used for the rest of the analysis.
Overall, about 67%, 71%, 67% and 76% average repro-

ducibility were achieved (Figure 2) for luminal A, lu-
minal B, triple-negative, and HER2+, respectively over
different data sets. This result is consistent with a previous
study [45] where RNA samples were analyzed separately on
4 different microarray platforms and the percentage of
overlapped functional perturbation between any two plat-
forms fell in the range of 57-70%. On the contrary, it has
been shown that any pair of gene signatures developed for
breast cancer share only a few common genes [43]. For ex-
ample, there are only 17 overlapping genes in the two sig-
natures sets [14] (with 456 and 231 genes respectively)
developed for breast cancer survival-related prediction
[6,18]. Similarly, only three common genes have been found
[46] in two sets of genetic markers (each has about 70
genes) predicting the metastasis of breast cancer [7,19] with
similar accuracy. To make a more intuitive comparison
with the gene-based method, we calculated the reproduci-
bility of the top 1500 DEGs between each pair of our data
sets. As shown in Figure 2, the reproducibility of each
enriched pathway set is clearly much higher than that of
the top DEGs for all pairs of data sets. These results further
verified that pathway profiling has a much better reproduci-
bility than gene-based methods.

Reproducibility across technologies
Recently, RNA-Seq has become a powerful alternative to
microarrays due to advantages such as high resolution,
increased dynamic range, lower background noise, rela-
tively little technical variation, and the ability to profile
the entire transcriptome [47,48]. It is therefore expected



Figure 2 Reproducibility of enriched pathways (the left side) and top DEGs (the right side) between each pair of data sets for each
subtype of breast cancer. The FDR cut-off is set as 0.1 for enriched pathways. The top 1500 genes are used to calculate reproducibility for DEGs.
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that the TCGA RNA-Seq data set may provide more re-
liable results than other two data sets.
We focus on the matched samples between the TCGA

RNA-Seq and TCGA microarray data sets to examine
the effect of gene expression measurement technology
on the reproducibility of our approach. The comparison
of enriched pathways generated from the two data sets
results in 60%, 73%, 65% and 70% reproducibility for the
luminal A, luminal B, triple-negative, and HER2+ sub-
types respectively, with about 67% on average. We also
found that the reproducibility based on matched samples
was slightly smaller than those based on all samples ex-
cept in the case of luminal B: 65%, 70%, 66%, and 75%
respectively, for luminal A, luminal B, triple-negative
and HER2+ subtypes as shown as blue bars in the left
side of Figure 2. This observation implies that increasing
the number of samples may improve reproducibility
[14,15]. Meanwhile, only 45%, 53%, 50%, and 52% repro-
ducibility was found for the top 1500 DEGs for the cor-
responding subtypes with 50% on average. These results
indicate that the functional profile-based method pre-
sents advantages over the gene-based method and can
be used to directly compare results that are generated
from data sets produced by different technologies.

Reproducibility across different data sets
We further investigate the reproducibility of our ap-
proach across different data sets. Among the three data
sets used in the study, there is, as expected, the smallest
difference between TCGA RNA-Seq and TCGA micro-
array data sets because 496 out of 522 samples from the
TCGA microarray data are drawn from the same patient
pool as the TCGA RNA-Seq data set, whereas the largest
difference separated the TCGA RNA-Seq and EGA
microarray data (different patients and different tech-
nologies). However, the corresponding average reprodu-
cibility over four subtypes is almost invariable with 69%,
68%, and 74% for the data set pairs TCGA RNA-Seq vs.
TCGA microarray, TCGA microarray vs. EGA micro-
array, and TCGA RNA-Seq vs. EGA microarray respect-
ively (left side of Figure 2). On the contrary, there is an
obvious difference with regards to the reproducibility of
the top 1500 DEGs between each dataset pair, and this is
shown on the right side of Figure 2. For example, the re-
producibility of top DEGs between the two TCGA data
sets is always larger than the reproducibility of the other
two data set pairs in all four subtypes. From this per-
spective, pathway profiles would appear to be better
suited for comparative studies with different data sets
that may be generated by different technologies.

Determination of the appropriate data set
As mentioned at the beginning of the previous section,
RNA-Seq data is expected to generate more reliable
results than two other data sets [47,48]. However, in
general it is challenging to determine which pathway
profiles are better due to the lack of a gold standard
[40,49]. Here we adopt a simple strategy to address this
issue with the assumption that the pathways predicted
by multiple data sets should be more reliable than those
predicated by only one data set. This assumption is
partly evidenced by the observation that the pathways
enriched in all three data sets generally have lower
p-value while the pathways enriched in only one data set
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often have higher p-values (more discussion can be
found in Additional files 1 and 4). From these perspec-
tives, we first generated a reference pathway profile as
the benchmark where a pathway is enriched only if it is
enriched in more than one data set. We then calculated
the reproducibility of pathway profiles in each data set
against the reference pathway profiles for each subtype.
As shown in Table 2, the pathway profile resulted from
the TCGA RNA-Seq data set has the highest average re-
producibility. As a result of these findings, the analyses
in the remainder of this paper are performed against the
RNA-Seq data set unless otherwise stated.

Accuracy
The accuracy of the perturbed pathways identified in
our analysis is measured by their biological relevance to
breast or other cancers based on survey of relevant lit-
erature sources. About 74% of the enriched pathways
(enriched in at least one subtype) are known to be asso-
ciated with breast cancer or cancers such as those shown
in Table 3 and 4.

Common enriched pathways
As shown in Figure 3, there are 28 common enriched
pathways (CEPs) across all four subtypes of breast can-
cer (See Additional file 5 for the whole list), which in-
dicate the shared features of breast cancer. The CEPs
occupy about 42%, 33%, 51%, and 33% of the total
enriched pathways in luminal A, luminal B, triple-
negative, and HER2+ subtypes, respectively. To test
the reliability of CEPs, we first performed the enrich-
ment analysis over all tumor samples without the sep-
aration of subtypes, and 86% of these CEPs are
enriched in this case. We also checked enrichment
analysis results in the TCGA and EGA microarray
datasets, where we found that 24 of the total 28 CEPs
(86%) are confirmed by at least one other data set and
15 of them are confirmed in both (Table 3). An exten-
sive literature search indicates that 24 CEPs show
relationships with either breast cancer or cancers (See
Table 3 for details). These results indicate that despite
the heterogeneity of breast cancer samples, different
subtypes share a relatively high degree of similar molecular
mechanisms to support tumor growth and metastatic
dissemination. These CEPs might also be used as the
“signature pathways” of breast cancer when compared
to other diseases.
Table 2 Reproducibility between pathway profiles (PPs) of ea

Luminal A Lu

PPs of TCGA RNA-Seq data set vs. RPPs 88%

PPs of TCGA microarray data set vs. RPPs 76%

PPs of EGA microarray data set vs. RPPs 86%
Among 28 CEPs, 9 are relevant to metabolism such
as Glycolysis/gluconeogenesis, Purine metabolism and
Tyrosine metabolism. This is not surprising, as cancer
cells must perturb metabolic pathways to provide en-
ergy and building blocks to support aggressive cell
growth and proliferation [50]. Thus, these pathways
may account for higher biosynthesis of nucleic acids
(e.g., pathways in the category of nucleotide metabol-
ism) and proteins (e.g., pathways in the category of
amino acid metabolism) and higher energy demands
(e.g., pathways in the category of carbohydrate metab-
olism) of tumors.
We also noted that CEPs consist of some well-known

cancer related pathways such as pathways in the categor-
ies of replication and repair, signal transduction, cell
growth and death. For example, the CEP “Cell cycle”
appears to be in agreement with the intuition that in-
appropriate proliferation is one of the most remarkable
characteristics of the cancer cell. This is expected and
can be considered as a benchmark result for our
method, as several other pathway-based studies in can-
cer have observed similar results [51-53]. Additionally,
the CEPs also contain the PI3K-Akt signaling pathway.
It has been shown that many breast cancer tumors har-
bor mutations in the PI3K-Akt signaling pathway [35].
These mutations are thought to lead to activation of
RHEB, which in turn promotes activation of the mTOR
gene [54], one downstream effect of which is vastly in-
creased protein production and much larger cancer cells.
The notch signaling pathway, on the other hand, has
attracted increasing attention as the potential new thera-
peutic targets for cancer patients [55], and our results indi-
cate that it may also be applicable to the breast cancer.
Two hormonally-related pathways are observed to

be enriched in CEPs as well, including Progesterone-
mediated oocyte maturation and the Estrogen signaling
pathway. As expected, we observe that Estrogen signal-
ing is significantly upregulated in ER+ tumors (luminal
A and luminal B) and significantly downregulated in
triple-negative tumors. Though HER2+ tumors are
not known to be directly enriched in estrogen-related
genes, nevertheless we find that the pathway is still
significantly dysregulated in HER2+ tumors. It has
been suggested that ER+/HER2+ tumors utilize cross-
talk between the MAPK signaling pathway and the ER
signaling pathway to evade common anti-estrogenic
therapies such as Tamoxifen [56].
ch data set and reference pathway profiles (RPPs)

minal B Triple-negative HER2+ Average

90% 79% 91% 87%

80% 89% 85% 83%

86% 79% 88% 85%



Table 3 Overlaps of common enriched pathways across
three data sets

Pathway Pathway category Referencea

Glycolysis/Gluconeogenesis Carbohydrate metabolism [82]

Sphingolipid metabolism Lipid metabolism [83]

Purine metabolism Nucleotide metabolism [84]

Pyrimidine metabolism Nucleotide metabolism [85]

Arginine and proline
metabolism

Amino acid metabolism [86]

Tyrosine metabolism Amino acid metabolism [87]

Phenylalanine metabolism Amino acid metabolism [88]

One carbon pool by folate Metabolism of cofactors
and vitamins

[89]

Fanconi anemia pathway Replication and repair [90]

PI3K-Akt signaling pathway Signal transduction [91]

Regulation of actin
cytoskeleton

Cell motility [92]

Focal adhesion Cell communication [93]

Adipocytokine signaling
pathway

Endocrine system [94]

Progesterone-mediated
oocyte maturation

Endocrine system -

Axon guidance Development [95]
aReference shows association between a given pathway and breast cancer or
other cancers.

Table 4 HER2+ specific pathways

Pathway Pathway category Referencea

Tryptophan metabolism Amino acid metabolism -

Terpenoid backbone
biosynthesis

Metabolism of terpenoids
and polyketides

-

Drug metabolism - cyto-
chrome P450

Xenobiotics biodegradation
and metabolism

-

mTOR signaling pathway Signal transduction [63]

Serotonergic synapse Nervous system -

Long-term depression Nervous system -

Circadian rhythm Environmental adaptation [64]
aReference shows association between a given pathway and the
HER2+ subtype.

Luminal A

Luminal B Triple-negative

HER2+

Figure 3 The Venn diagram of pathway enrichment analysis
results from the RNA-Seq data. There are 15 regions in the Venn
diagram including common enriched pathways and subtype-specific
pathways. Common enriched pathways are pathways enriched in
all four subtypes of breast cancer. Subtype specific pathways are
pathways enriched in only one subtype of breast cancer.
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Subtype-specific pathways
Subtype-specific pathways are especially interesting, since
they are potential candidates for signature pathways for
each subtype of breast cancer. As shown in Figure 3, lu-
minal A, luminal B, triple-negative, and HER2+ subtypes
have 4, 2, 4, and 7 subtype-specific pathways (about 6%, 2%,
7%, and 8% of their enriched pathways) respectively. These
pathways represent the heterogeneity of breast cancer
subsets.

Luminal A specific pathways
Luminal A has 4 subtype-specific pathways: Ubiquitin
mediated proteolysis, Endocytosis, Carbohydrate digestion
and absorption, and Vasopressin-regulated water reabsorp-
tion. The enrichment of Ubiquitin mediated proteolysis
pathway is evidenced by the recent work [57] where it is
found that the luminal A subtype had an increased expres-
sion level of cyclin D1 which regulates proteolysis mediated
by ubiquitin [58].
There are two interesting pathways that are not enriched

in luminal A subtype in comparison to the other three sub-
types: the Homologous recombination and the p53 signal-
ing pathways. This observation is consistent among all
three data sets and may therefore be used to aid in the dis-
tinguishability of the luminal A subtype. This observation is
also supported in the literature where it has been reported
that a functional defect in homologous recombination is
common in triple-negative breast cancer and in a subset of
high grade ER and/or HER2 positive breast cancer [59].
Homologous recombination may also be associated with
the luminal B subtype through the BRCA2 gene which is
known to be involved in error-free DNA repair of double-
strand breaks (DSBs) through homologous recombination
and BRCA2 mutation carriers have a predilection for devel-
oping breast cancers of the luminal B subtype [60]. On the
other hand, the luminal A subtype has the lowest mutation
frequency among the four subtypes of breast cancer [35],
therefore it is not surprising that the p53 signaling pathway
is not enriched in the luminal A subtype.

Luminal B specific pathways
The luminal B subtype has only two subtype-specific
pathways: Histidine metabolism and Phosphatidylinositol
signaling systems, although it has many more enriched
pathways than the luminal A subtype. It should also be
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noted that pathways enriched by the luminal B subtype
have much more overlaps with those found enriched in
the triple-negative and HER2+ subtypes than in the lu-
minal A subtype (Figure 3).
Since ER status is a very important factor in planning

breast cancer treatment, we also outline the pathways
that are specific to the ER+ subtype (luminal A and
luminal B). Among 6 ER+ specific pathways, four of
them have supporting evidence from previous studies:
the Primary bile acid biosynthesis, Jak-STAT signaling
pathway, Complement and coagulation cascades, and
GnRH signaling pathways (More details can be found in
Additional file 1).

Triple-negative specific pathways
The triple-negative subtype has 4 subtype-specific path-
ways: Alanine, aspartate and Glutamate metabolism, Ly-
sine degradation, Vascular smooth muscle contraction,
and Glutamatergic synapse. Two of these have support-
ing evidence in previous studies. Metabotropic glutamate
receptor-1 (GRM1) has been reported as an oncogene in
the progression of triple negative breast cancer [61],
whose alteration may affect the pathway Alanine, aspar-
tate and glutamate metabolism. It has been observed
that the amino acid metabolism is also a major source of
energy and carbon for tumor cell growth and survival in
invasive breast cancer such as the triple-negative subtype
[62]. Thus, the perturbation of the Lysine degradation
pathway is very likely resulted from the changes in the
energy metabolism of tumor cells.

HER2+ specific pathway
The HER2+ subtype has the largest number of subtype-
specific pathways among the four subtypes as shown in
Table 4, which may be due to the important role of HER2
in promoting cell growth and proliferation. Among 7
HER2+ specific pathways, mTOR signaling pathway
and Circadian rhythm have supporting evidence from
previous studies. For example, it was pointed out that
constitutively activating HER2 and EGFR stimulated
many of the same intracellular signaling proteins and
pathways as wild type receptors, including the mTOR
pathway [63]. Additionally, the deregulated expression
of the circadian related genes PER1, PER2 and PER3 in
breast cancers has been studied [64]. It was found that
methylation of the PER gene promoters has a strong
correlation with c-erbB2 expression.

Resolution
The resolution of our approach aims to test whether the
pathway profiles have enough detail not only to distinguish
the different diseases but also to correctly assess the corre-
lations between them based on the perturbed functions.
To achieve this, we evaluate the disease correlation by
calculating the hypergeometric probability of correspond-
ing pathway profiles: a method that has been successfully
applied to calculate the correlation between phylogenetic
profiles in our previous study [65]. We further generated
pathway profiles for ovarian cancer (TCGA, Affymetrix
HG-U133A platform), GBM (TCGA, Affymetrix HG-
U133A platform) and obesity (GEO, GDS3688, HG-
U133_Plus_2 platform) in order to compare breast
cancer against other diseases.
The resulting profiles are drawn in Figure 4A using

Gitools [66] with 11, 85, and 14 enriched pathways for
ovarian cancer, GBM, and obesity respectively according
to PWEA results (See Additional file 6). Figure 4B shows
the correlations between seven diseases/subtypes as a
small network drawn by VisANT [67-71] where 4 sub-
types are encapsulated by the metanode [72-74] of
breast cancer and the edge thickness is roughly propor-
tional to correlation strength. With a 0.05 p-value cutoff,
a total of 17 disease pairs exhibit significant correlation
with varied strength (See Additional file 7). As expected,
most of the correlations between four subtypes are
stronger than those between subtypes and the other
three diseases. Among the four subtypes, luminal A and
luminal B subtypes are closer to each other than to the
other two subtypes. On the other hand, the luminal A
and luminal B subtypes are closer to the HER2+ subtype
than to the triple-negative subtype, which may not be
surprising because the HER2+ subtype is simply charac-
terized by copy number variation in the HER2 amplicon,
while it has been suspected that ER+ (luminal A and lu-
minal B) and ER- subtypes may have differing cells of
origin [75]. Similarly, both triple-negative and HER2+
subtypes have stronger correlation to ovarian cancer
than luminal A and luminal B subtypes have, most likely
because of the effect of P53 gene [35]. Meanwhile, the
fact that luminal B, triple-negative, and HER2+ subtypes
are more aggressive tumors than the luminal A subtype
is reflected by the observation that both triple-negative
and HER2+ subtypes are closer to the luminal B subtype
than the luminal A subtype. We also find the luminal A
subtype is closer to obesity than to ovarian cancer, indi-
cating the potential connection between breast cancer
and obesity through estrogen [76]. Interestingly, our
results show that GBM is significantly correlated with
luminal A, luminal B, HER2+ breast cancer and obesity.
It was pointed out that sex hormones are important in
the growth of breast cancer and are also important in
the development of GBM [77]. Furthermore, the anti-
estrogen drug Tamoxifen has been found to be effective
in decreasing glioblastoma cell proliferation [78]. On the
other hand HER2 is the most frequently expressed tyro-
sine kinase receptors in GBM cells [79]. The association
between GBM and obesity may be explained by the im-
portant role of leptin in both of these two diseases. The



Figure 4 Evaluate disease correlations by using pathway profiles. (A) Pathway profiles for luminal A, luminal B, HER2+, and triple-negative
subtypes of breast cancer, as well as ovarian cancer, glioblastoma multiforme (GBM), and obesity. Each red rectangle represents an enriched
pathway. From right to left, KEGG pathways are sorted according to pathway categories and have the same order as the FDR values of enriched
pathways in these 7 diseases/subtypes (Additional file 6). Due to limitation of space, here only pathway categories are labeled. This figure roughly
shows that luminal A and luminal B subtypes are closer to the HER2+ subtype than the triple-negative subtype. (B) Disease/subtype correlation
networks based on pathway profile. Each node represents one disease and subtypes are embedded in a metanode representing breast cancer
[72-74]. The width of each edge is roughly proportional to the correlation between the disease/subtype pair. Here only the significant correlations
(p-value < 0.05) are displayed (See Additional file 7). The network is drawn by the VisANT system [67-71].
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current model suggests that obesity in human is due to a
desensitization to leptin while within gliomas, there is a
correlation between tumor grade and tumor expression
of leptin and its receptor [80].

Discussion
All the enriched pathways in this study are identified
based on a FDR cut-off 0.1. This cut-off was optimized
to achieve reasonable reproducibility (Figure 5) while
maintaining adequate coverage and accuracy. More de-
tail on the FDR cut-off is addressed in Additional file 1.
Another important factor that needed to be taken into
account is the coverage of KEGG pathway genes with
the corresponding gene expression measurement tech-
nology. All three data sets used in this study have a good
coverage of KEGG pathway genes (TCGA RNA-Seq,
TCGA microarray and EGA microarray data sets contain
about 20360, 17814 and 17621 genes, corresponding to
the 97%, 91% and 90% coverage of 5584 total KEGG
pathways genes, respectively), which however may not
hold for the large sets of microarray array data available
in GEO databases. More discussion of the pathway
coverage can also be found in Additional file 1.
The comparison of the reproducibility resulted from

the pathway profiles and top DEGs are in general con-
servative. From a hypergeometric statistics perspective, a
larger number of genes resulted from the different ana-
lyses will achieve better reproducibility. We therefore
used the top 1500 DEGs in the reproducibility com-
parison instead of known signature genes available in
the literature because the number of the latter is gener-
ally much smaller than 1500. In addition, we also per-
formed the comparison using the top 6000 DEGs and
the enriched pathways still achieves better reproduci-
bility (See details in Additional file 1). The robustness
of our approach is further verified by using the EGA
validation data set [36]. There is little change in the re-
producibility between two TCGA data sets and the
EGA data set when substituting the EGA discovery set
with the validation set (in Additional file 1 Figure S5



Figure 5 Reproducibility of enriched pathways between different data sets/platforms vs. FDR cut-off for each subtype of breast cancer.
In general, the reproducibility increases quickly at the beginning and gradually becomes flat as FDR cut-off increases.
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where more discussion of the EGA validation set can
also be found).
Despite the improvement over classical gene-based

methods in characterizing breast cancer and related dis-
eases, this approach has great potential to be further
enhanced. First, it depends on the prior knowledge of
pathways which are far from complete, and identifying
new pathways is a difficult, time-consuming, and labor
intensive work. An alternative approach to partially
ameliorate this limit is to replace pathways with func-
tional modules that may be computationally identified
[81]. Second, current pathway profiles are represented as
a simply binary vector that may be improved by incorporat-
ing some additional information such as the corresponding
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statistical significance of the enriched pathway to make
each profile more quantitative. For a simple approach, one
may directly set elements of pathway profile as the p-values
or enrichment scores of given pathways.
Conclusion
Reproducibility is one of the main challenges for the
identification of gene signatures. Besides technical fac-
tors, the disparity may result from the fact that diseases
are directly caused by the perturbations of the molecular
function that are generally carried out by a set of genes
in the form of modules or pathways. Therefore it may be
more appropriate to characterize diseases at the func-
tional level than at the gene level. Following this per-
spective, we developed a novel approach to characterize
diseases using the pathway profiles and evaluated the ap-
proach based on profiles’ reproducibility, accuracy and
resolution. Using four subtypes of breast cancer as an
example, the results of this new approach are promising
with 70% average reproducibility, 74% average accuracy
(e.g., references in Table 3 [82-95]) and reasonable
resolution to identify the correlations between not only
different diseases, but also their subtypes.
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