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Abstract A continuum hypothesis-based model is devel-
oped for the simulation of the (long term) contraction of
skin grafts that cover excised burns in order to obtain
suggestions regarding the ideal length of splinting therapy
and when to start with this therapy such that the therapy
is effective optimally. Tissue is modeled as an isotropic,
heterogeneous, morphoelastic solid. With respect to the con-
stituents of the tissue, we selected the following constituents
as primary model components: fibroblasts, myofibroblasts,
collagen molecules, and a generic signaling molecule. Good
agreement is demonstrated with respect to the evolution over
time of the surface area of unmeshed skin grafts that cover
excised burns between outcomes of computer simulations
obtained in this study and scar assessment data gathered pre-
viously in a clinical study. Based on the simulation results,
we suggest that the optimal point in time to start with splint-
ing therapy is directly after placement of the skin graft on its
recipient bed. Furthermore, we suggest that it is desirable to
continue with splinting therapy until the concentration of the
signalingmolecules in the grafted area has become negligible
such that the formation of contractures can be prevented. We
conclude this study with a presentation of some alternative
ideas on how to diminish the degree of contracture forma-
tion that are not based on a mechanical intervention, and a
discussion about how the presented model can be adjusted.
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1 Introduction

In the United Kingdom, approximately 250,000 citizens get
injured due to burning each year (Hettiaratchy and Dziewul-
ski 2004). In the United States, about half a million citizens
require medical treatment as a result of thermal injury each
year (Gibran et al. 2013). The majority of these burns are
minor and do not require specialized care. However, a small
portion of the injuries is extensive and as a consequence
roughly 13,000 individuals in the United Kingdom and
approximately 40,000 individuals in the United States, are
admitted to a hospital or burn center for treatment each year
(Gibran et al. 2013; Hettiaratchy and Dziewulski 2004).

The core treatment of burns in these medical centers con-
sists usually of two subparts; first most of the burnt skin is
excised surgically and thereafter the newly created wound
is covered by a skin graft. The use of a skin graft to cover
a newly created wound has two widely recognized benefits
compared to the situation where these wounds are left to
heal by secondary intention alone; in general it reduces both
the overall contraction of the grafted area and the develop-
ment of hypertrophic scar tissue in these areas (Walden et al.
2000). Unfortunately, however, many times skin grafts still
contract considerably after placement on their recipient bed
and this may result then in substantial shrinkage of the grafts
and hence the development of contractures in these tissues
(Kraemer et al. 1988).
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The development of contractures is a serious complica-
tion that has a significant impact on an affected person’s
quality of life, and often requires substantial further cor-
rective surgery (Leblebici et al. 2006). Therefore, therapies
have been developed which aim at the prevention of the for-
mation of contractures. The main therapy in current usage
focuses on counteracting the mechanical forces generated
within the contracting graft by means of static splinting of
the covered wound after placement of the graft (Richard and
Ward 2005). How effective splinting therapy is in preventing
contracture formation is actually unclear at the moment; it is
a fact that contracture formation is still a common compli-
cation despite the frequent application of splinting therapy
(Schouten et al. 2012). This could be a consequence of the
fact that it is unclear at present what the optimal point in time
is after placement of the skin graft to start with the therapy.
Furthermore, it could also be a consequence of the fact that
it is also unclear how long the static splints have to be worn
for the therapy to be effective.

This unsatisfactory situation is probably partly caused by
the fact that actually little is known about the etiology of the
formation of contractures (Harrison and MacNeil 2008). We
think that a better understanding of the mechanism underly-
ing contracture formation probably aids in the development
of a better treatment plan that reduces the development of this
sequela, and argue that computational modeling studies can
contribute to the expansion of this understanding. Therefore
we develop here a new mathematical model for the simula-
tion of the contraction of skin grafts that cover excised burns
in order to gain new insights into the mechanism underly-
ing the formation of contractures. Based on the obtained
insights, we give suggestions regarding the ideal length of
splinting therapy and when to start with the therapy such that
the therapy is effective optimally. In addition, we put for-
ward some alternative ideas on how to diminish the degree
of contracture formation that are not based on a mechanical
intervention.

The development of the model is presented in Sect. 2.
Subsequently, the simulation results are presented in Sect.
3. Here, we also show good agreement with respect to the
evolution over time of the surface area of unmeshed skin
grafts that cover excised burns between outcomes of com-
puter simulations obtained in this study and scar assessment
data gathered previously in a clinical study. The model and
the simulation results are discussed in Sect. 4.

2 Development of the mathematical model

Given that contraction mainly takes place in the dermal layer
of skin tissues, we incorporate solely a portion of this layer
into the model. The layer is modeled as a heterogeneous,
isotropic, morphoelastic continuous solid with a modulus

of elasticity that is dependent on the local concentration
of the collagen molecules. With respect to the mechanical
component of the model, the displacement of the dermal
layer (u), the displacement velocity of the dermal layer (v),
and the infinitesimal effective strain present in the dermal
layer (ε) are chosen as the primary model variables (The
latter variable represents a local measure for the difference
between the current configuration of the dermal layer and
a hypothetical configuration of the dermal layer where the
tissue is mechanically relaxed (See also Eq. (3))). Further-
more, we select the following four constituents of the dermal
layer as primarymodel variables: fibroblasts (N ),myofibrob-
lasts (M), a generic signaling molecule (c), and collagen
molecules (ρ).

In order to incorporate the formation of contractures (i.e.,
the formation of long term deformations) into the model, we
use the theory of morphoelasticity developed by Hall (2009).
Central to this theory is the assumption that the classical
deformation gradient tensor (i.e., F) can be decomposed into
a product of two tensors (i.e., F = AZ) (Hall 2009; Goriely
and Ben Amar 2007; Rodriguez et al. 1994). The tensor Z
can be thought of as the locally defined deformation from
the fixed reference configuration to a hypothetical config-
uration (i.e., a zero stress state (Fung 1993)) wherein the
internal stresses around all individual points in the dermal
layer are relieved, and the tensor A can be thought of as the
locally defined deformation from this hypothetical configu-
ration to the current configuration of the dermal layer. Based
on this decomposition, Hall derived several related evolu-
tion equations that describe mathematically the change of
the effective strain over time. Hence, these equations basi-
cally give a mathematical description of the remodeling of
the dermal layer over time. In this study we assume that
the effective strains are small. Therefore, we use here the
evolution equation that describes the dynamic change of the
infinitesimal effective strain over time (i.e., Eq. (1c) in this
study and Eq. (5.64) in the PhD thesis of Hall (2009)). (The
derivation of this evolution equation is rather lengthy and
contains numerous subtleties. Therefore, we present here
solely the finally derived equation. The full derivation of
the evolution equation can be found in the PhD thesis of
Hall.)

Combined with the general conservation equations for
mass and linear momentum in local form, the following con-
tinuum hypothesis-based framework is used as basis for the
model:

Dzi
Dt

+ zi [∇ · v] = −∇ · Ji + Ri , (1a)

D(ρtv)

Dt
+ ρtv [∇ · v] = ∇ · σ + f, (1b)

Dε

Dt
+ [tr(ε) − 1]sym(L) = −G, (1c)
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where

v = Du
Dt

, (2)

ε = I − A−1, (3)

and
Dε

Dt
= Dε

Dt
+ εskw(L) − skw(L)ε. (4)

Equation (1a) is the conservation equation for the cell den-
sity / concentration of constituent i of the dermal layer, Eq.
(1b) is the conservation equation for the linear momentum
of the dermal layer, and Eq. (1c) is the evolution equation
that describes how the infinitesimal effective strain changes
over time. Within the above equations zi represents the cell
density / concentration of constituent i , Ji represents the flux
associated with constituent i per unit area due to random
dispersal, chemotaxis and other possible fluxes, Ri repre-
sents the chemical kinetics associated with constituent i , ρt
represents the total mass density of the dermal tissues, σ

represents the Cauchy stress tensor associated with the der-
mal layer, f represents the total body force working on the
dermal layer, L is the displacement velocity gradient tensor
(i.e., L = ∇v), and G is a tensor that describes the rate of
active change of the effective strain. The operator D(·)/Dt
is the Jaumann time derivative, and the operator D(·)/Dt is
thematerial time derivative. (If thematerial time derivative is
applied to the effective strain tensor, then it is applied to each
of the scalar elements of this tensor separately.) Given the
chosen primary model variables, we have i ∈ {N , M, c, ρ}.
In order to simplify the notation somewhat we replace zi by
i in the remainder of this study. Hence, zN becomes N , zM
becomes M , and so on.

2.1 The cell populations

The functional forms for the biochemical kinetics associated
with the (myo)fibroblasts and the functional forms for the
movement of these cells are identical to functional forms
used previously (Koppenol et al. 2017b). For the biochemical
kinetics, the functional forms are

RN = rF

[
1 + rmax

F c

aI
c + c

]
[1 − κF F]N 1+q

− kFcN − δN N , (5)

RM = rF

{[
1 + rmax

F

]
c

aI
c + c

}
[1 − κF F]M1+q

+ kFcN − δMM, (6)

where

F = N + M. (7)

The parameter rF is the cell division rate, rmax
F is the

maximum factor with which the cell division rate can be

enhanced due to the presence of the signaling molecule, aI
c

is the concentration of the signaling molecule that causes
the half-maximum enhancement of the cell division rate,
κF F represents the reduction in the cell division rate due
to crowding, q is a fixed constant, kF is the signaling
molecule-dependent cell differentiation rate of fibroblasts
into myofibroblasts, δN is the apoptosis rate of fibroblasts,
and δM is the apoptosis rate ofmyofibroblasts. The functional
forms for the cell fluxes are

JN = −DF F∇N + χF N∇c, (8)

JM = −DF F∇M + χFM∇c, (9)

where DF is the cell density-dependent random motility
coefficient of the (myo)fibroblasts, andχF is the chemotactic
coefficient.

2.2 The generic signaling molecule

The functional form for the net production of the generic
signaling molecule (i.e., the first term on the right hand side
of Eq. (10)) and the functional form for the dispersion of
the signaling molecule are identical to functional forms used
previously (Koppenol et al. 2017b):

Rc = kc

[
c

aI I
c + c

] [
N + ηI M

]
− δcg(N , M, c, ρ)c, (10)

Jc = −Dc∇c. (11)

The parameter kc represents the maximum net secretion rate
of the signaling molecule, ηI is the ratio of myofibroblasts to
fibroblasts in themaximum net secretion rate of the signaling
molecule, aI I

c is the concentration of the signaling molecule
that causes the secretion rate of the signaling molecule to
be half of its maximum, and δc is the proteolytic breakdown
rate of the signaling molecules. The parameter Dc repre-
sents the randomdiffusion coefficient of the generic signaling
molecule. An example of a signaling molecule that can stim-
ulate processes such as the up-regulation of the secretion of
collagen molecules by (myo)fibroblasts and the cell differ-
entiation of fibroblasts into myofibroblasts, is transforming
growth factor-β (TGF-β) (Barrientos et al. 2008).

The second term on the right hand side of Eq.(10) requires
a more detailed introduction. In this study, we incorporate
into the model the proteolytic cleavage of the generic sig-
naling molecule by metalloproteinases (MMPs) (Mast and
Schultz 1996; Lint and Libert 2007). MMPs are secreted
by (myo)fibroblasts and are involved in the breakdown of
collagen-rich fibrils during the maintenance and the remod-
eling of the extracellular matrix (ECM) (Chakraborti et al.
2003; Lindner et al. 2012; Nagase et al. 2006). The secre-
tion of the MMPs is inhibited by the presence of signaling
molecules such as TGF-β (Overall et al. 1991). Therefore,
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we assume that the concentration of the MMPs is a function
of the cell density of the (myo)fibroblasts, the concentration
of the collagen molecules, and the concentration of the sig-
naling molecules:

g(N , M, c, ρ) =
[
N + ηI I M

]
ρ

1 + aI I I
c c

. (12)

The parameter ηI I is the ratio of myofibroblasts to fibrob-
lasts in the secretion rate of the MMPs, and 1/[1 + aI I I

c c]
represents the inhibition of the secretion of the MMPs due to
the presence of the signaling molecule.

2.3 The collagen molecules

The functional forms for the biochemical kinetics associated
with the collagen molecules and the functional form for the
transportation of these molecules are basically identical to
functional forms used previously (Koppenol et al. 2017b):

Jρ = 0, (13)

Rρ = kρ

{
1 +

[
kmax
ρ c

aIV
c + c

]} [
N + ηI M

]

− δρg(N , M, c, ρ)ρ. (14)

The parameter kρ is the collagen molecule secretion rate,
kmax
ρ is the maximum factor with which the secretion rate can
be enhanced due to the presence of the signaling molecule,
aIV
c is the concentration of the signalingmolecule that causes
the half-maximum enhancement of the secretion rate, and δρ

is the proteolytic breakdown rate of the collagen molecules.

2.4 The mechanical component

In this study, we use the following visco-elastic constitutive
relation for the mathematical description of the relationship
between the Cauchy stress tensor on the one hand, and the
effective strains and displacement velocity gradients on the
other hand:

σ = μ1sym(L) + μ2
[
tr (sym(L)) I

]

+
[
E(ρ)

1 + ν

]{
ε + tr(ε)

[
ν

1 − 2ν

]
I
}

, (15)

E(ρ) = E I√ρ. (16)

Here μ1 is the shear viscosity, μ2 is the bulk viscosity, ν

is Poisson’s ratio, E(ρ) is the Young’s modulus, and I is
the second-order identity tensor. Like Ramtani et al. (2004;
2002), we assume that the Young’s modulus is dependent on
the concentration of the collagen molecules. The parameter
E I is a fixed constant.

Furthermore, we incorporate into the model the genera-
tion of an isotropic stress by the myofibroblasts due to their
pulling on the ECM. This pulling stress is proportional to the

product of the cell density of the myofibroblasts and a sim-
ple function of the concentration of the collagen molecules
(Olsen et al. 1995; Koppenol et al. 2017a, b):

f = ∇ · ψ, (17)

ψ = ξM

[
ρ

R2 + ρ2

]
I. (18)

The parameter ψ represents the total generated stress by the
myofibroblast population, ξ is the generated stress per unit
cell density and the inverse of the unit collagen molecule
concentration, and R is a fixed constant.

Finally, we assume that the rate of active change of the
effective strain is proportional to the product of the amount
of effective strain (as suggested by Hall (2009)), the local
concentration of the MMPs, the local concentration of the
signaling molecule, and the inverse of the local concentra-
tion of the collagen molecules. The directions in which the
effective strain changes, are determined by both the signs of
the eigenvalues related to the effective strain tensor, and the
directions of the associated eigenvectors. Taken together, we
obtain the following symmetric tensor:

G = ζ

[
g(N , M, c, ρ)c

ρ

]
ε = ζ

{[
N + ηI I M

]
c

1 + aI I I
c c

}
ε, (19)

where ζ is the rate of morphoelastic change (i.e., the rate at
which the effective strain changes actively over time).

2.5 The domain of computation

We assume u = 0, ∂v/∂x = ∂w/∂x = 0, v1 = 0, ∂v2/

∂x = ∂v3/∂x = 0, ε11 = ε12 = ε21 = ε13 = ε31 = 0, and
∂ε22/∂x = ∂ε33/∂x = 0 hold within the modeled portion of
dermal layer for all time t , with the yz-plane running parallel
to the surface of the skin and

u =
⎡
⎣u

v

w

⎤
⎦ , v =

⎡
⎣v1

v2
v3

⎤
⎦ , and ε =

⎡
⎣ε11 ε12 ε13

ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ . (20)

Furthermore, we assume that the derivatives of the cell densi-
ties and the concentrations of the modeled constituents of the
dermal layer are equal to zero in the direction perpendicular
to the surface of the skin. Taken together, these assumptions
imply that the calculations can be performed on an arbitrary,
infinitely thin slice of dermal layer oriented parallel to the
surface of the skin, and that the results from these calcula-
tions are valid for every infinitely thin slice of dermal layer
oriented parallel to the surface of the skin. Therefore, we use
the following domain of computation:

�X ∈ {X = 0,−10 ≤ Y ≤ 10,−10 ≤ Z ≤ 10}, (21)
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where X = (X,Y, Z)T are Lagrangian coordinates.

2.6 The initial conditions and the boundary conditions

The initial conditions give a description of the cell densi-
ties and the concentrations immediately after placement of
the skin graft on its recipient bed. For the generation of the
simulation results, the following function has been used to
describe the shape of the skin graft:

w(Xr ) = 1 − [1 − I (Yr , 2.5, 0.10)] [1 − I (Zr , 2.5, 0.10)]

× I (Yr , 2.5, 0.10) I (Zr , 2.5, 0.10) , (22)

where

I (r, s1, s2) =

⎧⎪⎪⎨
⎪⎪⎩
0 if r < [s1 − s2] ,
1
2

[
1 + sin

(
[r−s1]π

2s2

)]
if |r − s1| ≤ s2,

1 if r > [s1 + s2] .

(23)

Here w = 0 corresponds to grafted dermis and w =
1 corresponds to unwounded dermis. The values for the
parameters s1 and s2 determine, respectively, the location
of the boundary between the skin graft and the undam-
aged dermis, and the minimum distance between completely
grafted dermis and unwounded dermis. Furthermore, Xr =
R(θr )X = (Xr ,Yr , Zr )

T with R(θ) the counterclockwise
rotation matrix that rotates vectors by an angle θ about the
X -axis, and θr = π/4 rad.

Based on the function for the shape of the skin graft, we
take the following initial conditions for the modeled con-
stituents of the dermal layer:

N (X, 0) = {
Iw + [

1 − Iw
]
w(Xr )

}
N ,

M(X, 0) = M,

c(X, 0) = [1 − w(Xr )]cw,

ρ(X, 0) = ρ. (24)

Here N , M , and ρ are, respectively, the equilibrium cell
density of the fibroblasts, the equilibrium cell density of
the myofibroblasts, and the equilibrium concentration of the
collagen molecules, of the unwounded dermis. Due to the
secretion of signaling molecules by for instance leukocytes,
signaling molecules are present in the wounded area. The
constant cw represents the maximum initial concentration of
the signaling molecule in the grafted area. Furthermore, we
assume that there are some fibroblasts present in the grafted
area. The value for the parameter Iw determines how much
fibroblasts are present minimally initially in the grafted area.

With respect to the initial conditions for the mechanical
component of the model, we take the following initial con-

Fig. 1 A graphical overview of the initial conditions. Depicted are the
initial shape of the skin graft and, in color scale, the initial cell density of
the fibroblasts (cells/cm3). The scale along both axes is in centimeters.
The X -axis points toward the reader. The black dots mark the material
points that were used to trace the evolution of the surface area of the
skin graft over time. That is, at each time point, the area of the polygon
with vertices located at the displaced black material points has been
determined

ditions for all x ∈ �x,0 where �x,0 is the initial domain of
computation in Eulerian coordinates:

u(x, 0) = 0, v(x, 0) = 0, and ε(x, 0) = 0. (25)

See Fig. 1 for a graphical representation of the initial condi-
tions that have been used in this study.

With respect to the boundary conditions for the con-
stituents of the dermal layer, we take the following Dirichlet
boundary conditions for all time t and for all x ∈ ∂�x,t

where ∂�x,t is the boundary of the domain of computation
in Eulerian coordinates:

N (x, t) = N , M(x, t) = M, and c(x, t) = c. (26)

The parameter c is the equilibrium concentration of the sig-
naling molecule in the unwounded dermis.

Finally, with respect to the boundary condition for the
mechanical component of the model, we take the following
Dirichlet boundary condition for all time t and for all x ∈
∂�x,t :

v(x, t) = 0. (27)

2.7 The parameter value estimates

Table 1 in Appendix 3 provides an overview of the dimen-
sional (ranges of the) values for the parameters of the model.
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Fig. 2 An overview of simulation results for the modeled constituents
of the dermal layer when the inhibition of the secretion of MMPs
due to the presence of signaling molecules is relatively low (aI I I

c =
2× 108 cm3/g) and the rate of morphoelastic change is relatively high
(ζ = 9×102 cm6/(cells g day)). The values for all other parameters are
equal to those depicted in Table 1 in Appendix 3. The top two rows show
the evolution over time of the cell density of, respectively, the fibroblast

population and the myofibroblast population. The color scales repre-
sent the cell densities, measured in cells/cm3. The bottom two rows
show the evolution over time of the concentrations of, respectively, the
signaling molecules and the collagen molecules. The color scales rep-
resent the concentrations, measured in g/cm3. Within the subfigures,
the scale along both axes is in centimeters

The majority of these values were either obtained directly
from previously conducted studies or estimated from results
of previously conducted studies. In addition, we were able to
determine the values for threemore parameters due to the fact
that these values are a necessary consequence of the values
chosen for the other parameters (Koppenol et al. 2017b).

3 Simulation results

In order to obtain some insight into the dynamics of the
model, we present an overview of simulation results for the
modeled constituents of the dermal layer in Fig. 2. Further-
more, we present an overview of simulation results for the
displacement field and the displacement velocity field in Fig.
3, and an overview of simulation results for the effective
strain in Fig. 4. For the generation of these overviews, the
same set of values for the parameters of the model was used.

Figure 2 shows that the cell density of the myofibroblasts,
and the concentrations of both the signaling molecules and
the collagen molecules increase first within the skin graft.
Subsequently, the concentrations of thesemolecules, just like
the cell density of the myofibroblasts, start to decline until
they reach the equilibrium concentrations and the equilib-

rium cell density of uninjured dermal tissue. Meanwhile, the
cell density of the fibroblasts starts to increase within the skin
graft until it reaches the equilibrium cell density of uninjured
dermal tissue.

Figure 3 shows that the boundaries between the skin
graft and the uninjured tissue are pulled inward increasingly
toward the center of the skin graft while the concentration of
the collagen molecules and the cell density of the myofibrob-
lasts increase. Looking at the displacement velocity field,
we observe that the boundaries are pulled inward relatively
fast initially. Subsequently, the speed with which the bound-
aries are pulled inward diminishes fast. Looking carefully at
the displacement velocity field, we observe that the inward
movement actually reverses fromacertain timepoint onward.
It is nice to observe that this phenomenon coincides with the
gradual increase in the surface area of the skin graft, and the
gradual decrease in both the cell density of the myofibrob-
lasts and the concentration of the collagen molecules within
the skin graft, as can be observed in, respectively, Fig. 6 and
Fig 2. Furthermore, we observe that the boundaries between
the skin graft and the uninjured tissue hardly move anymore
eventually (i.e., the individual components of the displace-
ment velocity field become approximately equal to zero over
the domain of computation), and that the surface area of the
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Fig. 3 An overview of simulation results for the displacement field
and the displacement velocity field when the inhibition of the secre-
tion of MMPs due to the presence of signaling molecules is relatively
low (aI I I

c = 2 × 108 cm3/g) and the rate of morphoelastic change
is relatively high (ζ = 9 × 102 cm6/(cells g day)). The values for all
other parameters are equal to those depicted in Table 1 in Appendix
3. The top two rows show the evolution over time of the displacement
in, respectively, the horizontal direction and the vertical direction. The

color scales represent the displacements, measured in centimeters. The
bottom two rows show the evolution over timeof the displacement veloc-
ity in, respectively, the horizontal direction and the vertical direction.
The color scales represent the displacement velocities, measured in
cm/day. Within the subfigures, the scale along both axes is in centime-
ters. The black squares within the subfigures represent the (displaced)
boundaries between the skin graft and the unwounded dermis

skin graft has diminished considerably after a year. This latter
phenomenon is also clearly visible in Fig. 6.

Figure 4 also shows something very interesting. If we look
at the effective strain at day 365, we observe that the individ-
ual components of the effective strain tensor are not equal
to zero over the domain of computation. This implies that
there are residual stresses present in the grafted area. Com-
paring the properties of the effective strain at day 180with the
properties of the effective strain at day 365, we observe that
these are more or less the same. Hence, the residual stresses
remain present in the modeled portion of dermal layer for a
prolonged period of time.

Figure 5 shows the evolution over time of the relative sur-
face area of skin grafts for particular combinations of values
for two parameters that are directly related to the tensor G
(See Eq. (19)). In addition, the figure shows averages of clin-
ical measurements over time of the relative surface areas of
placed unmeshed skin grafts in human subjects after both
early excision of burnt skin and late excision of burnt skin
(El Hadidy et al. 1994).

Furthermore, Fig. 6 shows the evolution over time of the
relative surface area of skin grafts for some more combina-
tions of values for the aforementioned parameters related to

the tensor G. The figure shows that both an increase in the
rate of morphoelastic change (i.e., the parameter ζ ), and an
increase in the inhibition of the secretion of MMPs due to
the presence of signaling molecules (i.e., an increase in the
value for the parameter aI I I

c ) results in a reduction of the final
surface area of a skin graft. Within the chosen ranges for the
values of the parameters, we observe that a change in the
value for the rate of morphoelastic change has a large impact
on the final surface area of a skin graft. Changing the value
for the parameter related to the inhibition of the secretion
of MMPs due to the presence of signaling molecules has a
smaller impact on the final surface area of a skin graft. Note
also that the value for the latter parameter has a relatively
large impact on the total number of days that the boundaries
between the skin graft and the uninjured tissue are pulled
inward after placement of the skin graft before the retraction
process starts.

Finally, it is nice to observe in Fig. 6 that, as expected, the
surface area of a skin graft returns to its initial value when
the rate of morphoelastic change is equal to zero. If this rate
is equal to zero, then the tensor G is equal to the zero tensor.
In this case, one would expect an initial period during which
the surface area of a skin graft diminishes due to the pulling
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Fig. 4 An overview of simulation results for the effective strain when
the inhibition of the secretion of MMPs due to the presence of signaling
molecules is relatively low (aI I I

c = 2×108 cm3/g) and the rate of mor-
phoelastic change is relatively high (ζ = 9 × 102 cm6/(cells g day)).
The values for all other parameters are equal to those depicted in Table
1 in Appendix 3. The separate rows show the evolution over time of the

different components of the effective strain that are unequal to zero. The
color scales represent the amount of effective strain. Within the sub-
figures, the scale along both axes is in centimeters. The black squares
within the subfigures represent the (displaced) boundaries between the
skin graft and the unwounded dermis
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Fig. 5 The evolution over time of the relative surface area of wounds
(i.e., skin grafts) for particular combinations of values for the rate of
morphoelastic change (i.e., the parameter ζ ), and the parameter related
to the inhibition of the secretion of MMPs due to the presence of sig-
naling molecules (i.e., the parameter aI I I

c ). The values for all other

parameters are equal to those depicted in Table 1 in Appendix 3. The
black circles and the black squares show the evolution over time of the
average of clinical measurements of the relative surface areas of placed
unmeshed skin grafts after, respectively, early excision of burnt skin
and late excision of burnt skin (El Hadidy et al. 1994)
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Fig. 6 The evolution over time of the relative surface area of wounds
(i.e., skin grafts) for some combinations of values for the rate of mor-
phoelastic change (i.e., the parameter ζ ), and the parameter related to

the inhibition of the secretion of MMPs due to the presence of signaling
molecules (i.e., the parameter aI I I

c ). The values for all other parameters
are equal to those depicted in Table 1 in Appendix 3

action of the myofibroblasts, followed by a period during
which this surface area slowly returns to its initial value due
to the apoptosis of the myofibroblasts. This is exactly what
can be observed in the figure.

4 Discussion

We have presented a continuum hypothesis-based model for
the simulation of the (long term) contraction of skin grafts
that cover excised burns. Since skin contraction and con-
tracture formation mainly take place in the dermal layer of
the skin, we incorporated solely a portion of this layer into
the model. The dermal layer is modeled as a heterogeneous,
isotropic, morphoelastic solid with a Young’s modulus that
is locally dependent on the concentration of the collagen
molecules. For this end, we used the theory of morphoe-
lasticity developed by Hall (2009). In particular, we used in
this study the derived evolution equation that describes the
dynamic changeof the infinitesimal effective strain over time.
Furthermore, we used the general conservation equations for
linear momentum and mass to describe mathematically the
dynamic change over time of, respectively, the linearmomen-
tum, and the cell densities and concentrations of the modeled
constituents of the dermal layer. For the description of the
relationship between the Cauchy stress tensor on the one
hand, and the effective strain tensor and displacement veloc-
ity gradients on the other hand, we used the visco-elastic
constitutive relation given in Eq. (15).

Related to the mechanical component of the model, we
want to remark the following. Traditionally, the dermis is
modeled as a linear visco(elastic) solid in mechano-chemical
continuum models for dermal wound healing (Javierre et al.
2009; Murphy et al. 2012; Olsen et al. 1995; Ramtani
2004; Ramtani et al. 2002; Valero et al. 2014a, b; Vermolen
and Javierre 2012). More recently, continuum models have
appeared where the dermis is modeled as a hyperelastic solid
(Koppenol et al. 2017a; Valero et al. 2013, 2015). Unfortu-
nately, it is difficult with any of these models to simulate the
long term deformation of dermal tissues and the development
of residual stresses within these tissues while these phenom-
ena are often observed in the medical clinic (Schouten et al.
2012). Therefore, we adopted like Murphy et al. (2011) and
Bowden et al. (2016), a morphoelastic framework in this
study. With the application of such a framework, it becomes
relatively simple to simulate both the long term deformation
of a skin graft and the development of residual stresseswithin
the modeled portion of dermal layer.

With respect to the constituents of a recovering injured
area, we selected the following four constituents as primary
model variables: fibroblasts, myofibroblasts, a generic sig-
naling molecule, and collagen molecules. The mathematical
descriptions for the movement of the cells, the biochemi-
cal kinetics associated with these cells, the dispersion of
the generic signaling molecule, and the release, consump-
tion, and removal of both the collagen molecules and the
generic signaling molecule are nearly identical to the func-
tional forms used previously (Koppenol et al. 2017b).
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Furthermore, we present an overview of the applied
numerical algorithm that has been developed for the gen-
eration of computer simulations in Appendix 1. The devel-
opment of this algorithm was necessary to “catch” the local
dynamics of the model and obtain sufficiently accurate sim-
ulations within an acceptable amount of CPU time. For
this end, we combined a moving-grid finite-element method
(Madzvamuse et al. 2003) with an element resolution refine-
ment / recoarsement method (Möller et al. 2008) and an
automatically adaptive time-steppingmethod (Kavetski et al.
2002).We present the derivation of the general finite-element
approximation in Appendix 2. Furthermore, we applied both
a source term splitting procedure (Patankar 1980) and a semi-
implicit flux-corrected transport (FCT) limiter (Möller et al.
2008) on the discretized system of equations that describes
the dynamics of the modeled constituents of the dermal layer
in order to guarantee the positivity of the approximations of
the solutions for these primary model variables.

With the developed model, it is possible to simulate some
general qualitative features of the healing response that is ini-
tiated after the placement of a skin graft on its recipient bed
(Harrison andMacNeil 2008). The restoration of the presence
of fibroblasts within the skin graft and the temporary pres-
ence of myofibroblasts during the execution of the healing
response can be simulated. Due to the initial presence of sig-
naling molecules and the gradual increase in the cell density
of the myofibroblasts in the grafted area, the secretion rate of
collagenmolecules is considerably larger than the proteolytic
breakdown rate of these molecules in the grafted area for a
prolonged period of time (See also Eq. (14)). Consequently,
the concentration of the collagen molecules in the grafted
area becomes substantially higher than the concentration of
the collagen molecules in the surrounding uninjured dermal
tissue before it gradually decreases toward the concentra-
tion of the collagen molecules in the surrounding uninjured
dermal tissue. Furthermore, it is possible to simulate both
the long term contraction and subsequent retraction of a skin
graft, and the development of residual stresses within the der-
mal layer. These phenomena can be observed, respectively,
in Figs. 3 and 4; both the displayed components of the dis-
placement field and the displayed components of the effective
strain tensor are not equal zero over the domain of computa-
tion at day 365, and the values of the individual components
over the domain of computation at day 365 are roughly equal
to the values of the individual components over the domain
of computation at day 180. Looking at the individual com-
ponents of the displacement velocity field in Fig. 3, it can
be observed that these have become approximately equal to
zero over the domain of computation at day 365.

Focusing on the simulation of the contraction of skin grafts
and the formation of contractures we observe the following.
Figure 5 shows a good match with respect to the evolution
over time of the relative surface area of skin grafts between

measurements obtained in a clinical study by El Hadidy et
al. (1994) and outcomes of computer simulations obtained in
this study. This agreement provides us some confidence about
the validity of the model. Obviously, the number of models
with which it is possible to produce the depicted contraction
curves is infinite in theory. Therefore, we would have liked
to validate the presented model against scar assessment data
of a different kind such as cell density profiles and collagen
molecule concentration profiles, in order to increase our con-
fidence about the validity of the model. However, we have
not been able to find more appropriate experimental mea-
surement data in the available literature. We are not the only
ones who have to deal with this issue. Unfortunately, it is a
fundamental problem in the field of mathematical modeling
of dermal wound healing processes to find suitable experi-
mental measurement data for the proper validation of models
(Bowden et al. 2016). In our opinion, this does not imply
that we should refrain from deducing biomedical implica-
tions from the results obtained in this study. However, we
do think that it is very important to be careful when doing
so, and to keep in mind that these deductions are based on
outcomes of a mathematical modeling study.

Having said that, we focus now on the implications of the
results depicted in Fig. 5. In this study, we assumed that the
rate at which the effective strain is changing actively over
time is proportional to the product of the amount of effective
strain, the local concentration of the MMPs, the local con-
centration of the signaling molecule, and the inverse of the
local concentration of the collagenmolecules. The directions
in which the effective strain changes, are determined by both
the signs of the eigenvalues related to the effective strain ten-
sor, and the directions of the associated eigenvectors. The
good match between the gathered scar assessment data and
the outcomes of the computer simulations suggests that this
combination of relationships might describe appropriately in
mathematical terms themechanism underlying the formation
of contractures.

If the mathematical description for the mechanism under-
lying the formation of contractures is indeed appropriate,
then this suggests the following. Looking at Eq. (19), it is
clear that the effective strain can change solely when the
local concentration of the signaling molecules is unequal to
zero. Given the presence of signaling molecules within the
grafted area immediately after placement of the skin graft on
its recipient bed, this implies that the optimal point in time to
start with splinting therapy is directly after surgery. It is inter-
esting to note that this implication matches nicely with the
finding that early mechanical restraint of tissue-engineered
skin leads to a reduction in the extent of contraction (Harri-
son andMacNeil 2008). Furthermore, it is also evident that it
is desirable to continue with splinting therapy until the con-
centration of the signaling molecules in the grafted area has
become negligible such that the formation of contractures
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can be prevented. Given that it is unclear at present what the
optimal point in time is after surgery to start with splinting
therapy, and how long the static splints have to be worn for
the therapy to be effective (Schouten et al. 2012), these are
interesting observations.

Furthermore, Fig. 5 shows that the difference in the evo-
lution over time of the average of the relative surface areas of
placed unmeshed skin grafts between grafts that are placed
after early excision of the burnt skin and grafts that are placed
after late excision of the burnt skin might be caused by both
a change in the rate of morphoelastic change and a change
in the degree of inhibition of the secretion of MMPs due
to the presence of signaling molecules. In itself, this is an
interesting observation. In addition, it provides us with some
alternative ideas on how to diminish the degree of contracture
formation that are not based on amechanical intervention. As
demonstrated in Fig. 6, the final surface area of a skin graft
can be increased by both a reduction in the rate of morphoe-
lastic change, and a reduction in the inhibition of the secretion
of MMPs due to the presence of signaling molecules. Within
the investigated ranges of values, the former reduction has a
huge impact on the final surface areawhereas the latter reduc-
tion has a smaller impact on the final surface area. Perhaps
that the reduction in the rate of morphoelastic change can be
accomplished through the local inhibition of certain cross-
linking enzymes. For instance, perhaps it is possible to use
the chemical β-aminopropionitrile (BAPN) for the inhibition
of the cross-linking enzyme lysyl oxidase, which is crucial
for the stabilization of collagen fibrils (Kagan and Li 2003;
Wilmarth and Froines 1992). The reduction in the inhibition
of the secretion of MMPs due to the presence of signal-
ing molecules can be accomplished perhaps by influencing
the regulation of the transcription of MMPs by signaling
molecules such as TGF-β (Overall et al. 1991). Given that
it is actually unclear at present how effective splinting ther-
apy is in preventing contracture formation (Schouten et al.
2012),we think that these suggestions,which are not basedon
a mechanical intervention, could be interesting alternatives
for the reduction of the degree of contracture formation.

We want to conclude this section with a short discussion
about how the presented model can be adjusted. We want to
mention here a couple of ways in which the model can be
adjusted. In this study, we made some assumptions which
made it possible to perform the calculations on an infinitely
thin slice of dermal layer oriented parallel to the surface of
the skin. An obvious benefit of this is that it results in a seri-
ous reduction of the computation times to obtain computer
simulations. However, it is probably very interesting to inves-
tigate in a three-dimensional portion of dermal layer what
would happen to the (long term) contraction and subsequent
retraction of skin grafts. For this end, the main adaptations
to the model presented in this study would be the removal
of the assumptions made in Sect. 2.5, and the introduction

of additional boundary conditions for the interfaces between
the epidermis and the dermis and the subcutaneous tissue and
the dermis. In a three-dimensional setting, we could use, for
example, the spring-like boundary conditions introduced in
the study by Koppenol et al. (2017b) to describe the attach-
ment of the dermal tissues to the subcutaneous tissue.

Unfortunately, there is no information presented about the
shapes and the absolute surface areas of the excised burns in
the study by El Hadidy et al. (1994). Therefore, we decided
to use the same shape for the grafted area in all computer
simulations. Obviously, it is easy to obtain computer sim-
ulations with the presented model for grafted areas with a
different shape and / or surface area. The only element of the
model that needs to be adjusted is the function given in Eq.
(22). In particular, when more detailed clinical measurement
data about the evolution over time of the shapes of skin grafts
become available in the scientific literature, it will become
very interesting to investigate to what extent the presented
model in this study can replicate such clinical measurement
data. Furthermore, the presented model could also be used
for the simulation of the healing of dermal wounds that heal
by secondary intention alone (i.e., without the placement of a
skin graft). The only element of the model that would really
need to be adjusted is the initial condition for the collagen
molecules presented in Eq. (24).

In this study we assumed that the effective strains are
small. As a consequence, we used in this study the evo-
lution equation that describes the dynamic change of the
infinitesimal effective strain over time (i.e., Eq. (1c)). How-
ever, it might actually be more appropriate to assume that the
effective strains can become arbitrary large. If we make this
assumption, then we can replace Eq. (1c) with the following
evolution equation that gives a description of the dynamic
change of the Eulerian finite effective strain (e) over time
(Hall 2009):

De
Dt

= sym

⎛
⎝B−1L − 1√

det
(
B−1

)B−1G

⎞
⎠ , (28)

where

e = 1

2

{
I −

[
A−1

]2}
, (29)

and

B = [I − 2e]−1 . (30)

Subsequently, we can replace the constitutive relation pre-
sented in Eq. (15) with, for instance, the following constitu-
tive relation:
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σ = μ1sym(L) + μ2
[
tr (sym(L)) I

]

+
{{

E(ρ)

2 [1 − 2ν]

} [√
det (B) − 1

]}
I

+
{

E(ρ)

2 [1 + ν]

} [√
det (B)

]− 5
3
[

B − 1

3
tr (B) I

]
. (31)

Here the elastic component of the constitutive relation is
equal to constitutive relation for a heterogeneous, isotropic
and compressible neo-Hookean solid (Koppenol et al. 2017b;
Treloar 1948).

The second way in which the mechanical component of
the model can be adjusted is the following. It is known that
the way that collagen molecules are organized into intercon-
nected sheets and bundles influences the response of dermal
tissues to mechanical forces (Jor et al. 2011). Therefore,
we have developed a continuum hypothesis-based model in
which the bulk mechanical behavior of the involved dermal
tissues is dependent on the geometrical arrangement of the
collagen bundles (Koppenol et al. 2017a). In this model, a
tensorial approach is used to represent the collagen bundles,
and the bulk mechanical properties of the tissues such as the
Young’s moduli and Poisson ratios are dependent on both the
local concentration and the local geometrical arrangement
of these collagen bundles. Hence, the model we have pre-
sented here can be adjusted by using the tensorial approach
for the representation of collagen bundles, and by replacing
the elastic component of the constitutive relation given in
Eq. (15) with the constitutive relation derived in the study
by Koppenol et al. (2017a). Due to these adaptations to the
model presented in this study, it becomes possible to study
the impact of tissue anisotropy on the deformation of skin
grafts during healing.
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Appendix 1: The applied numerical algorithm

In this section, we present an overview of the numerical
algorithm that we developed for the generation of com-
puter simulations. The development of this algorithm was
necessary to “catch” the local dynamics of the model,
obtain sufficiently accurate simulations within an accept-
able amount of CPU time, and guarantee the positivity of the
approximations of the solutions for the modeled constituents
of the dermal layer.

For the kernel of the concrete expression of the algo-
rithmwe used MATLAB together with its Parallel Computing
Toolbox (MathWorks 2014). Furthermore, we interfaced this
kernel consecutively with an adapted version of the mesh
generator developed by Persson and Strang (2004) for the
generation of a base triangulation of the domain of com-
putation, the element resolution refinement / recoarsement
tool of the computational fluid dynamics software package
FEATFLOW2 for the adjustment of the resolution of the
elements of the base triangulation (Turek 1998), and the per-
mutation routine HSL_MC64 for the permutation of the n×n
matrices related to the resulting systems of linear algebraic
equations after full discretization of themodel equations such
that thematrices have n entries on their diagonal (HSL 2013).
Finally, we applied the following nondimensionalisation to
the model:

x = Lx∗, t = [
L2/

[
DF N

]]
t∗, ρ = ρρ∗, N = NN∗,

u = Lu∗, v = [[
DF N

]
/L
]

v∗, c = cwc∗, M = NM∗,
ε = ε∗, σ = [[

ξN
]
/ρ
]
σ ∗,

(32)

where L = 1 cm is the length scale of the model. The vari-
ableswith the asterisks are the nondimensionalised variables.

In the following paragraphs, we present a step-by-step
description of the algorithm. Basically, the algorithm con-
sists of two parts. The first part of the algorithm is dedicated
to the generation of a proper triangulation of the domain of
computation. The second part of the algorithm is dedicated
to obtaining an approximation of the solution for the pri-
mary model variables from Eq. (1c) after application of the
nondimensionalisation.

In order to create a conforming base triangulation we used
the adapted version of themesh generator developed by Pers-
son and Strang (2004). This results in a triangulation of the
domain of computation where most of the triangles are equi-
lateral and have an average initial edge length of 1.65 cm.
The triangles that are not equilateral, are located near the
boundary of the domain of computation. Using the follow-
ing measure for the quality of a triangle ABC :

α(ABC) = 2
√
3

[ ‖CA × CB‖
‖CA‖2 + ‖AB‖2 + ‖BC‖2

]
, (33)
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we observed that α > 0.86 for all triangles in the generated
triangulation, where 0 ≤ α ≤ 1 and α = 1 for equilateral tri-
angles (Lo 1989). Hence, the triangles that are not equilateral
are nearly equilateral.

After the generation of the base triangulation, we used
the element resolution refinement / recoarsement tool to
adjust the resolution of the elements of the base triangulation
(Möller 2008). For this purpose, the L2-normof an estimation
of the error in the gradient of the numerical approximation
of the function that gives a mathematical description of the
shape of the skin graft (i.e., Eq. (22)) per element is deter-
mined first (Möller and Kuzmin 2006). Subsequently, the
resolution of the elements is adapted in order to adjust the
estimated error. For this end, we used the following measure
to determine the relative error per element Kt in the gradient
of the numerical approximation of the function that gives a
mathematical description of the shape of the skin graft with
respect to the other elements:

β(Kt ) =

⎡
⎢⎢⎣

∣∣Th,t
∣∣ ∥∥ê

∥∥2
L2(Kt )∑

Kt∈Th,t

(
‖σh‖2L2(Kt )

+ ∥∥ê
∥∥2
L2(Kt )

)
⎤
⎥⎥⎦

1
2

. (34)

Here, Th,t represents the current triangulation,
∣∣Th,t

∣∣ repre-
sents the number of elements that constitute this current trian-
gulation,

∥∥ê
∥∥
L2(Kt )

represents the L2-norm of the estimation
of the error in the gradient of the numerical approximation
of the function that gives a mathematical description of the
shape of the skin graft over element Kt , and ‖σh‖L2(Kt ) rep-
resents the L2-norm of a low-order estimation of the gradient
of the numerical approximation of the function that gives a
mathematical description of the shape of the skin graft over
element Kt (Möller and Kuzmin 2006). If β(Kt ) > 0.2, then
the resolution of the element Kt is increased. If β(Kt ) <

0.04, then the resolution of the element Kt is decreased. In
this study, the resolution of the elements in the base trian-
gulation can be increased at most four times and the size of
the elements in the base triangulation cannot be increased
beyond the size they have in this base triangulation.

The estimation of the error
∥∥ê
∥∥
L2(Kt )

and the subsequent
adjustment of the resolution of the elements are repeated until
either the absolute value of the relative change of the sum of
the L2-norm of the estimation of the error of the gradient over
all elements is smaller than 5%, or the maximum number of
allowed for iterations is reached. In this study we set this
latter number to ten.

As was mentioned before, the second part of the algo-
rithm is dedicated to obtaining an approximation of the
solution for the primary model variables from Eq. (1c). In
order to find such an approximation, we used the method of
lines together with the standard fixed-point defect correction

method (Van Kan et al. 2014). The equations from Eq. (1c)
are solved in a segregatedway. That is, each fixed-point itera-
tionwithin each time step approximations of the solutions for
the modeled constituents of the dermal layer are determined
together first, and subsequently approximations of the solu-
tions for the displacement velocity and the effective strain are
determined by solving Eq. (1b) and Eq. (1c) simultaneously.
Finally, using the fact that the following holds

u(x(X, t), t) = U(X, t), and v(x(X, t), t) = V(X, t),

(35)

where U and V are, respectively, the displacement and the
displacement velocity of the dermal layer inLagrangian coor-
dinates, we determine an approximation of the solution for
the displacement of the dermal layer from Eq. (2) via post-
processing in the following way:

U(m+1)
n+1 = Un + �t

{
[1 − θ ]Vn + θV(m+1)

n+1

}
. (36)

Here, Un and Vn are, respectively, the final approximations
of the solutions for the displacement and the displacement
velocity after n time steps. Furthermore, U(m+1)

n+1 and V(m+1)
n+1

are, respectively, the new approximations of the solutions for
the displacement and the displacement velocity after appli-
cation of m + 1 fixed-point iteration(s). The parameter �t is
the size of the current time step and the parameter θ is a fixed
constant which is set to 0.55 in this study. After obtaining a
new approximation of the solution for the displacement of the
dermal layer, the position of the vertices in the triangulation
is updated in the following way:

x(m+1)
j (X j , t) = X j + U(m+1)

j (X j , t). (37)

Here x(m+1)
j (X j , t) is the new location of vertex j in Eulerian

coordinates after application ofm+1 fixed-point iteration(s),
X j is the fixed location of vertex j in Lagrangian coordinates,

and U(m+1)
j (X j , t) is the new approximation of the solution

for the displacement at vertex j after application of m + 1
fixed-point iteration(s).

The fixed-point defect correction scheme is iterated until
both the maximum of the relative 1-norms of the residuals
of the approximations is smaller than one, and the maximum
of the relative 1-norms of the difference between subsequent
approximations per variable is smaller than 5 × 10−2. If the
correction scheme does not meet these convergence criteria
within five iterations, then the scheme is interrupted, the time
step is decreased to85%of its current value, and subsequently
the scheme is restarted.

For the discretization of the system of equations from Eq.
(1c), a moving-grid finite-element method is used (Madz-
vamuse et al. 2003) together with the backward Euler
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time-integrationmethod. The derivation of the finite-element
approximationof the solution for the primarymodel variables
is presented in Appendix 2. The integrals over the interior
of the elements are approximated by a second-order accu-
rate Newton-Cotes quadrature rule and the integrals over the
boundaries of the elements are approximated by a second-
order accurate Gaussian quadrature rule. Furthermore, we
applied both a semi-implicit flux-corrected transport (FCT)
limiter (Möller et al. 2008) and Patankar’s source / sink sep-
aration technique (Patankar 1980) on the discretized system
of equations that describes the dynamics of the modeled con-
stituents of the dermal layer. Taken together, these latter two
techniques enforce positivity of the approximations of the
solutions for the constituents of the dermal layer.

In order to obtain approximate solutions for the resulting
systems of linear algebraic equations, we used MATLAB’s
backslash operator (MathWorks 2014) after application of
the LU-factorization algorithm (Davis and Duff 1997) on
scaled and permuted versions of the original linear systems.
For the scaling and permutation of the linear systems, several
inbuilt scaling and permutation routines of MATLAB were
used (Davis et al. 2004; Duff and Koster 1999) together with
the permutation routine HSL_MC64 (HSL 2013).

The individual time steps were chosen automatically by
using an automatically adaptive time-stepping method with
inbuilt local truncation error control (Kavetski et al. 2002).
The maximum size of the initial time step is set to 10−5

dimensionless units and the upper bound of the size of the
time step is set to 10−3 dimensionless units. If a time step is
accepted, then the subsequent time step is at most 1.25 times
the size of the current time step. If a time step is rejected,
then the subsequent time step is at least a quarter of the size
of the current time step. For completeness, we mention here
also that we set the absolute and relative truncation error
tolerance to, respectively, 10−2 and 5× 10−2 dimensionless
units. (See the article by Kavetski et al. (2001) for further
details.)After obtaining and accepting an approximation for a
certain time step, the local extrapolation procedure proposed
by Kavetski et al. (2002) is applied to increase the accuracy
of the approximation.

Finally, the element resolution refinement / recoarsement
tool is applied after every ten time steps in order to adjust the
resolution of the elements of the triangulation. For this end,
the L2-normof an estimation of the error in the gradient of the
numerical approximation of the solution for the concentra-
tion of the collagen molecules per element is determined first
(Möller and Kuzmin 2006). Subsequently, in order to adjust
the estimated error, the resolution of the elements is adapted
in a fashion identical to the procedure described above for the
adaptation of the resolution of the elements of the base trian-
gulation. For the interpolation of the approximations to new
vertices in the triangulation, we used a piecewise bivariate
Hermite interpolation (Feng and Zhang 2013). The required

gradients of the approximations at the existing vertices were
estimated by using a polynomial preserving gradient recov-
ery scheme (Zhang and Naga 2005).

Appendix 2: Derivation of the general finite-element
approximation

In order to derive the general finite-element approximation,
we rewrite Eq. (1b) as a systems of equations, using the
assumptions described in Sect. 2.5:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1 = 0, (38)
D(ρtv2)

Dt
+ ρtv2 [∇ · v] = ∇ · σ·2 + f2, (39)

D(ρtv3)

Dt
+ ρtv3 [∇ · v] = ∇ · σ·3 + f3, (40)

where

σ =
⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ =

⎡
⎣σ·1 σ·2 σ·3

⎤
⎦ , and f =

⎡
⎣ f1
f2
f3

⎤
⎦ .

(41)

We also rewrite Eq. (1c) as a system of equations, using again
the assumptions described in Sect. 2.5. Furthermore, we add
the term εi j [∇ ·v] for i, j ∈ {2, 3} to the left hand side (LHS)
and the right hand side (RHS) of these evolution equations.
That is, to the evolution equation that describes the dynamic
change of ε22 we add the term ε22[∇ · v] to the LHS and the
RHS, to the evolution equation that describes the dynamic
change of ε23 we add the term ε23[∇ · v] to the LHS and the
RHS, and so on. Finally, we rewrite the individual equations
of the system andmake use of the fact that the effective strain
tensor is symmetric for all time t , and obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11 = ε12 = ε21 = ε13 = ε31 = 0, (42)
Dε22

Dt
+ ε22[∇ · v] = [1 − ε33]∂v2

∂y
+ ε22

∂v3

∂z
+

1

2

[
∂v2

∂z
− ∂v3

∂y

]
[ε23 + ε32] − G22, (43)

Dε23

Dt
+ ε23[∇ · v] = ε23

[
∂v2

∂y
+ ∂v3

∂z

]
+

1

2

{
[1 − 2ε22]∂v2

∂z
+ [1 − 2ε33]∂v3

∂y

}
− G23, (44)

Dε33

Dt
+ ε33[∇ · v] = [1 − ε22]∂v3

∂z
+ ε33

∂v2

∂y
−

1

2

[
∂v2

∂z
− ∂v3

∂y

]
[ε23 + ε32] − G33, (45)

ε32 = ε23, (46)
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where

G =
⎡
⎣G11 G12 G13

G21 G22 G23

G31 G32 G33

⎤
⎦ =

⎡
⎣G11 G21 G31

G21 G22 G32

G31 G32 G33

⎤
⎦ . (47)

Next, we derive the weak formulations of Eqs. (1a), (39),
and (40). For this end, we multiply these equations by a test
function η(x, t) ∈ H1(�x,t ), t ∈ [0, T ], where T is the
total simulation time, first. Subsequently, we integrate the
equations over the domain of computation and apply Green’s
first identity. Taken together this results in the following:

∫
�x,t

{
η
Dzi
Dt

+ ηzi [∇ · v]
}
d�x,t

=
∫

�x,t

[∇η · Ji + ηRi ] d�x,t −
∫

∂�x,t

η [Ji · n] d�x,t , (48)

ρt

∫
�x,t

{
η
Dv2

Dt
+ ηv2[∇ · v]

}
d�x,t

=
∫

�x,t

[η f2 − ∇η · σ·2] d�x,t +
∫

∂�x,t

η [σ·2 · n] d�x,t , (49)

ρt

∫
�x,t

{
η
Dv3

Dt
+ ηv3[∇ · v]

}
d�x,t

=
∫

�x,t

[η f3 − ∇η · σ·3] d�x,t +
∫

∂�x,t

η [σ·3 · n] d�x,t , (50)

with n the unit outward pointing normal vector to the
boundary of the domain of computation. Next, we apply
the product rule of differentiation on the first term of the
integrands on the LHS of the above equations and we use
Reynold’s transport theorem on the LHS of the above equa-
tions. Taken together this results in the following weak
formulations. Find zi (x, t) ∈ H1(�x,t ), t ∈ [0, T ] for
i ∈ {N , M, c, ρ}, v2(x, t) ∈ H1(�x,t ), t ∈ [0, T ], and
v3(x, t) ∈ H1(�x,t ), t ∈ [0, T ] such that

d

dt

∫
�x,t

ηzid�x,t =
∫

�x,t

[
∇η · Ji + ηRi + zi

Dη

Dt

]
d�x,t

−
∫

∂�x,t

η [Ji · n] d�x,t , (51)

ρt
d

dt

∫
�x,t

ηv2d�x,t =
∫

�x,t

[
η f2 − ∇η · σ·2 + v2

Dη

Dt

]
d�x,t

+
∫

∂�x,t

η [σ·2 · n] d�x,t , (52)

ρt
d

dt

∫
�x,t

ηv3d�x,t =
∫

�x,t

[
η f3 − ∇η · σ·3 + v3

Dη

Dt

]
d�x,t

+
∫

∂�x,t

η [σ·3 · n] d�x,t , (53)

for all η(x, t) ∈ H1(�x,t ), t ∈ [0, T ].
Repeating the above procedure without the application

of Green’s first identity results in the following weak for-
mulations of Eqs. (43), (44), and (45). Find ε22(x, t) ∈
L2(�x,t ), t ∈ [0, T ], ε23(x, t) ∈ L2(�x,t ), t ∈ [0, T ], and
ε33(x, t) ∈ L2(�x,t ), t ∈ [0, T ] such that

d

dt

∫
�x,t

ηε22d�x,t

=
∫

�x,t

{
ε22

Dη

Dt
− η

{
[ε33 − 1]∂v2

∂y
+ G22

}}
d�x,t

+
∫

�x,t

η

{
ε22

∂v3

∂z
+ 1

2

[
∂v2

∂z
− ∂v3

∂y

]
[ε23 + ε32]

}
d�x,t ,

(54)
d

dt

∫
�x,t

ηε23d�x,t

=
∫

�x,t

{
ε23

Dη

Dt
− η

{
G23 − ε23

[
∂v2

∂y
+ ∂v3

∂z

]}}
d�x,t

+1

2

∫
�x,t

η

{
[1 − 2ε22]∂v2

∂z
+ [1 − 2ε33]∂v3

∂y

}
d�x,t ,

(55)
d

dt

∫
�x,t

ηε33d�x,t

=
∫

�x,t

{
ε33

Dη

Dt
− η

{
[ε22 − 1]∂v3

∂z
+ G33

}}
d�x,t

+
∫

�x,t

η

{
ε33

∂v2

∂y
− 1

2

[
∂v2

∂z
− ∂v3

∂y

]
[ε23 + ε32]

}
d�x,t ,

(56)

for all η(x, t) ∈ L2(�x,t ), t ∈ [0, T ].
In order to derive the finite-element approximation, we

give the general triangulation of the domain of computa-
tion �x,t first. Subsequently, we introduce the used finite-
dimensional subspace of the Hilbert space H1(�x,t ), t ∈
[0, T ] and the Lebesgue space L2(�x,t ), t ∈ [0, T ], and then
we introduce the used basis (shape) functions for this finite-
dimensional subspace. Finally, we present new versions of
the above derived weak formulations. These new versions of
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the weak formulations are the general finite-element approx-
imations of the solution for the primarymodel variables from
Eq. (1c).

In this study, we used the following general triangulation
Th,t of the domain of computation �x,t , t ∈ [0, T ]:

�x,t =
⋃

Kt∈Th,t

Kt , (57)

where

– the elements Kt of the triangulation are straight triangles
with the general property that meas(Kt ) �= 0,

– meas(K 1
t ∩ K 2

t ) = 0 for every pair of distinct elements
K 1
t , K

2
t ∈ Th,t ,

– if F = K 1
t ∩ K 2

t �= ∅, then F is either a common side or
a common vertex of K 1

t and K 2
t ,

– diam(Kt ) ≤ h for all Kt ∈ Th,t .

Each of the elements Kt of Th,t is obtained by applying
the following invertible affine mapping TK ,t on a reference
triangle K̂ with vertices (0, 0), (1, 0), and (0, 1) through
Kt = TK ,t (K̂ ) with TK ,t defined by

TK ,t (x̂) = BK ,t x̂ + bK ,t . (58)

Here, the coordinates x̂ are the reference coordinates.
Let us now introduce the used finite-dimensional subspace

that has been used in this study:

Xh(t) =
{
ηh ∈ C0(�x,t ) | η̂hK ∈ P1 ∀Kt ∈ Th,t , t ∈ [0, T ]

}
,

(59)

with ηh(x, t) = η̂hK (T−1
K ,t (x)) and P1 the space of polynomi-

als of degree less than or equal to one in two space variables
defined on the reference triangle K̂ . (See for example Quar-
teroni and Valli (2008) for a proof of the fact that Xh(t) ⊂
H1(�x,t ), t ∈ [0, T ], and see the Sobolev embedding the-
orem for a proof of the fact that H1(�x,t ), t ∈ [0, T ] ⊂
L2(�x,t ), t ∈ [0, T ] (Quarteroni and Valli 2008). Note that
these inclusions also imply Xh(t) ⊂ L2(�x,t ), t ∈ [0, T ].)

In this study, the values of the functions ηh(x, t) at the
vertices of each element Kt have been chosen as the degrees
of freedom on each of these elements. Denoting by Nh the
total number of vertices in the triangulation Th,t and denoting
by a j , j ∈ {1, . . . , Nh} the coordinates of these vertices
within �x,t , we chose the functions ϕi ∈ Xh(t) with

ϕi (a j , t) = δi j , i, j ∈ {1, . . . , Nh} (60)

as basis (shape) functions for the finite-dimensional subspace
Xh(t).

Hence, we are looking for finite-element approximations
zhi (x, t), vh2 (x, t), vh3 (x, t), εh22(x, t), εh23(x, t), εh33(x, t) ∈ Xh

(t), t ∈ [0, T ] for i ∈ {N , M, c, ρ} with

zhi (x, t) =
Nh∑
j=1

z ji (t)ϕ j (x, t),

vh2 (x, t) =
Nh∑
j=1

v
j
2 (t)ϕ j (x, t),

vh3 (x, t) =
Nh∑
j=1

v
j
3 (t)ϕ j (x, t),

εh22(x, t) =
Nh∑
j=1

ε
j
22(t)ϕ j (x, t),

εh23(x, t) =
Nh∑
j=1

ε
j
23(t)ϕ j (x, t),

εh33(x, t) =
Nh∑
j=1

ε
j
33(t)ϕ j (x, t), (61)

such that

d

dt

∫
�x,t

ηhzhi d�x,t

=
∫

�x,t

[
∇ηh · Jhi + ηhRh

i + zhi
Dηh

Dt

]
d�x,t

−
∫

∂�x,t

ηh
[
Jhi · n

]
d�x,t , (62)

ρt
d

dt

∫
�x,t

ηhvh2 d�x,t

=
∫

�x,t

[
ηh f h2 − ∇ηh · σ h·2 + vh2

Dηh

Dt

]
d�x,t

+
∫

∂�x,t

ηh
[
σ h·2 · n

]
d�x,t , (63)

ρt
d

dt

∫
�x,t

ηhvh3 d�x,t

=
∫

�x,t

[
ηh f h3 − ∇ηh · σ h·3 + vh3

Dηh

Dt

]
d�x,t

+
∫

∂�x,t

ηh
[
σ h·3 · n

]
d�x,t , (64)

d

dt

∫
�x,t

ηhεh22d�x,t
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=
∫

�x,t

{
εh22

Dηh

Dt
− ηh

{
[εh33 − 1]∂vh2

∂y
+ Gh

22

}}
d�x,t

+
∫

�x,t

ηh

{
εh22

∂vh3

∂z
+ 1

2

[
∂vh2

∂z
− ∂vh3

∂y

][
εh23 + εh32

]}
d�x,t ,

(65)
d

dt

∫
�x,t

ηhεh23d�x,t

=
∫

�x,t

{
εh23

Dηh

Dt
− ηh

{
Gh

23 − εh23

[
∂vh2

∂y
+ ∂vh3

∂z

]}}
d�x,t

+1

2

∫
�x,t

ηh

{
[1 − 2εh22]

∂vh2

∂z
+ [1 − 2εh33]

∂vh3

∂y

}
d�x,t ,

(66)
d

dt

∫
�x,t

ηhεh33d�x,t

=
∫

�x,t

{
εh33

Dηh

Dt
− ηh

{
[εh22 − 1]∂vh3

∂z
+ Gh

33

}}
d�x,t

+
∫

�x,t

ηh

{
εh33

∂vh2

∂y
− 1

2

[
∂vh2

∂z
− ∂vh3

∂y

][
εh23 + εh32

]}
d�x,t ,

(67)

for all ηh(x, t) ∈ Xh(t), t ∈ [0, T ]. Here Jhi , R
h
i , σ h·2, σ h·3,

f h2 , f h3 ,Gh
22,G

h
23, and G

h
33 are equal to, respectively, Ji , Ri ,

σ·2, σ·3, f2, f3,G22,G23, and G33 where the primary model
variables have been replaced by their respective finite-
element approximations from Eq. (61).

The linear systems of algebraic equations related the
above weak formulations can be obtained now by apply-
ing consecutively the first-order backward Euler method and
the fixed-point defect correction method, and by replacing
ηh(x, t) with ϕ j (x, t) for j ∈ {1, . . . , Nh}. (See for example
Van Kan et al. (2014) for more details about these proce-
dures.) Finally, note that the following holds for the chosen
basis functions of the subspace Xh(t) (Dziuk and Elliott
2007):

Dϕ j

Dt
= 0. (68)

This property of the chosen basis functions simplifies the
construction of the linear systems of equations.

Appendix 3: The parameter value estimates

See Table 1.

Table 1 An overview of the
dimensional (ranges of the)
values for the parameters of the
model

Parameter Value Dimensions Reference

DF 10−7 cm5/(cells day) Sillman et al. (2003)

χF 2 × 10−3 cm5/(g day) Murphy et al. (2012)

q −4.2 × 10−1 − NC

rF 9.24 × 10−1 cm3q/(cellsq day) Ghosh et al. (2007)

rmax
F 2 − Strutz et al. (2001)

aI
c 10−8 g/cm3 Grotendorst (1992)

κF 10−6 cm3/cells Vande Berg et al. (1989)

kF 1.08 × 107 cm3/(g day) Desmoulière et al. (1993)

δN 2 × 10−2 /day Olsen et al. (1995)

δM 6 × 10−2 /day Koppenol et al. (2017b)

Dc 2.9 × 10−3 cm2/day Murphy et al. (2012)

kc 4 × 10−13 g/(cells day) Olsen et al. (1995)

ηI 2 − Rudolph and Vande Berg (1991),

Moulin et al. (1998)

aI I
c 10−8 g/cm3 Olsen et al. (1995)

δc 5 × 10−4 cm6/(cells g day) Olsen et al. (1995)

ηI I 5 × 10−1 − TW

aI I I
c (2 − 2.5) × 108 cm3/g Overall et al. (1991)

kρ 6 × 10−8 g/(cells day) NC

kmax
ρ 10 − Olsen et al. (1995)

aIV
c 10−9 g/cm3 Roberts et al. (1986)
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Table 1 continued
Parameter Value Dimensions Reference

δρ 6 × 10−6 cm6/(cells g day) Koppenol et al. (2017b)

ρt 1.02 g/cm3 Liang and Boppart (2010)

μ1 102 (N day)/cm2 TW

μ2 102 (N day)/cm2 TW

E I 3.2 × 10 N/((g cm)1/2) Liang and Boppart (2010)

ν 4.9 × 10−1 − Liang and Boppart (2010)

ξ 5 × 10−2 (N g)/(cells cm2) Maskarinec et al. (2009)

&Wrobel et al. (2002)

R 9.95 × 10−1 g/cm3 TW

ζ (0 − 9) × 102 cm6/(cells g day) TW

N 104 cells/cm3 Olsen et al. (1995)

M 0 cells/cm3 Olsen et al. (1995)

c 0 g/cm3 NC

ρ 10−1 g/cm3 Olsen et al. (1995)

Iw 2 × 10−1 − Koppenol et al. (2017b)

cw 10−8 g/cm3 Olsen et al. (1995)

The last column contains the references to the articles that were used for obtaining (estimates of) the values
for the parameters. If (the range of) the value for a parameter was estimated in this study, then this is indicated
by the abbreviation TW. If the value for a parameter is a necessary consequence of the values chosen for the
other parameters, then this is indicated by the abbreviation NC
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