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ABSTRACT

Capsaicin in chili peppers bestows the sensation of
spiciness. Since the discovery of its receptor, transient
receptor potential vanilloid 1 (TRPV1) ion channel, how
capsaicin activates this channel has been under
extensive investigation using a variety of experimental
techniques including mutagenesis, patch-clamp
recording, crystallography, cryo-electron microscopy,
computational docking and molecular dynamic simu-
lation. A framework of how capsaicin binds and acti-
vates TRPV1 has started to merge: capsaicin binds to a
pocket formed by the channel’s transmembrane seg-
ments, where it takes a “tail-up, head-down” configu-
ration. Binding is mediated by both hydrogen bonds
and van der Waals interactions. Upon binding, cap-
saicin stabilizes the open state of TRPV1 by “pull-and-
contact” with the S4-S5 linker. Understanding the
ligand-host interaction will greatly facilitate pharma-
ceutical efforts to develop novel analgesics targeting
TRPV1.

KEYWORDS capsaicin, TRPV1, ligand gating, cryo-EM,
computation, spiciness

INTRODUCTION

Many people over the world enjoy spiciness in foods.
Indeed, spicy hot pot is a signature dish in southwest China
and chili peppers are essential ingredients in Mexican cui-
sine. Many health benefits are believed to originate from chili
pepper consumption (Szallasi and Blumberg, 1999). How-
ever, we humans are the only species that deliberately seeks
spicy foods (Nilius and Appendino, 2013), while most ani-
mals are repelled by the irritating sensation. Plants of the
genus Capsicum, family Solanaceae such as chili peppers
are the most common source of spiciness, as their fruits

contain a group of pungent molecules named capsaicinoids.
Among the capsaicinoids, capsaicin ((E)-N-[(4-Hydroxy-3-
methoxyphenyl)methyl]-8-methylnon-6-enamide) is the most
abundant in quantity, though not much spicier than other
capsaicinoids such as dihydrocapsaicin, homocapsaicin and
homodihydrocapsaicin based on the Scoville scale (Scoville,
1912). Capsaicin was first isolated from paprika and cay-
enne in the late 19th century (Thresh, 1876), with its chemical
structure reported in 1923 (Nelson and Dawson, 1923).
Similar to other capsaicinoids, capsaicin contains a vanillyl
group (which we refer to as the Head), an amide group (the
Neck) and a fatty acid chain (the Tail) (Fig. 1A).

To elicit the spicy sensation, capsaicin has long been
known to excite nociceptive neurons by increasing their
membrane permeability to cations (Bevan and Szolcsanyi,
1990; Oh et al., 1996). Based on structure-activity relation-
ship studies of capsaicin and its derivatives (Szolcsanyi and
Jancso-Gabor, 1975; Szolcsanyi and Jancso-Gabor, 1976),
as well as the dose-dependent and saturable nature of
capsaicin activation (Szallasi, 1994), the existence of a
capsaicin receptor has been predicted in the 1990s. Indeed,
such a receptor for capsaicin was cloned from rat dorsal root
ganglia in 1997 (Caterina et al., 1997). This receptor was
originally known as vanilloid receptor 1 (VR1), and later
formally named as transient receptor potential vanilloid 1
(TRPV1) (Montell et al., 2002). TRPV1 is a tetrameric
channel with both N and C termini of each subunit located
intracellularly (Fig. 1B) (Caterina et al., 1997). Though the
capsaicin receptor is known to function as TRPV1 homote-
tramer, different subunits within the TRP family are able to
form heteromeric channels (Cheng et al., 2007, 2010; Fis-
cher et al., 2014), with the heteromeric channels exhibiting
distinct functional properties as compared to the homomeric
channels (Cheng et al., 2012). The transmembrane core
region of TRPV1, containing six transmembrane helices per
subunit (S1 to S6), exhibits the same topology and many
structural features as voltage-gated potassium channels
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(Zheng and Ma, 2014). TRPV1 is a non-selective cation
channel; when it is activated by capsaicin, sodium and cal-
cium ions flowing through TRPV1 into the cell to depolarize
nociceptive neurons, leading to action potential firing and
finally the sensation of spiciness (Caterina et al., 1997).

Besides capsaicin, TRPV1 can be activated by many
physical and chemical stimuli such as noxious heat (Ca-
terina et al., 1997), low extracellular pH (Tominaga et al.,
1998), divalent cations such as Mg2+ and Ba2+ (Yang et al.,
2014; Cao et al., 2014; Ahern et al., 2005), as well as animal
toxins (Bohlen et al., 2010; Siemens et al., 2006; Yang et al.,
2015). These stimuli are allosterically coupled to the close-
to-open transition of TRPV1 (Matta and Ahern, 2007; Diaz-
Franulic et al., 2016; Zheng, 2013) so distinct activation
pathways exist for specific stimuli. For instance, proton and
peptide toxins bind to extracellular pore domain of the
channel, while capsaicin binds to its transmembrane
domains. Sensitivity to a wide spectrum of physical and
chemical inputs allows TRPV1 to serve as a polymodal

sensor for noxious stimuli (Zheng, 2013). Consistent with the
nociceptive role, TRPV1 knock-out mice exhibit impaired
sensation to thermal-mechanical acute pain (Caterina et al.,
2000).

While acting as a polymodal receptor, TRPV1 neverthe-
less shows exquisite sensitivity and selectivity for capsaicin.
The EC50 value of capsaicin activation is in sub-micromolar
range (Caterina et al., 1997; Yang et al., 2015), while the
maximum channel open probability attained at saturating
concentrations can reach close to unity (Yang et al., 2015;
Cui et al., 2012; Hui et al., 2003). Minor modifications of
capsaicin molecule can drastically reduce its potency, or
even turn it into an effective antagonist (Appendino et al.,
2003; Appendino et al., 2005). Interestingly, while being a
potent activator, capsaicin also exhibits high selectivity for
TRPV1 as it does not activate other homologous channels
within the TRPV family (Yang et al., 2016). Beyond this
family, capsaicin has been implied to inhibit signal trans-
ducer and activator of transcription 3 (Bhutani et al., 2007)
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Figure 1. Capsaicin and TRPV1. (A) Chemical structure of capsaicin. The vanillyl Head and hydrophobic Tail groups are shaded in

orange and blue, respectively. The atoms forming hydrogen bonds with TRPV1 are highlighted in red. (B) Schematic diagram

showing the topology of a TRPV1 subunit. Membrane is shaded in green. (C) High resolution structure of rat TRPV1 determined by

cryo-EM (atomic model: 3J5R in PDB; electron density map, 5777 in EMD). It is clear that capsaicin (electron density boxed by solid

line) binds to the transmembrane domains. Lipid membrane boundaries are indicated by cyan disks. (D) A zoom-in view of the

capsaicin binding pocket. Residue important for capsaicin activation identified by mutagenesis and functional studies are colored in

orange. The electron density of capsaicin is colored in red.
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and carbonic anhydrase 2 (Ye et al., 2015), though the
concentrations required for the inhibitory effects are at least
10 times higher than what is required for activating TRPV1.
Substantial work has been put into exploiting the potent and
selective TRPV1 activation by capsaicin for pharmaceutical
purposes (Szallasi and Blumberg, 1999; Lazar et al., 2009).
Understanding the mechanism of TRPV1 activation by
capsaicin is thus greatly needed to guide pharmaceutical
efforts. This review focuses on the rapid progress in this
area.

EARLY MUTAGENESIS AND FUNCTIONAL STUDIES

Capsaicin activation of TRPV1 was first investigated by
making chimeras between capsaicin sensitive and insen-
sitive orthologs. Like rodent TRPV1, avian TRPV1 is also
activated by noxious temperature (Jordt and Julius, 2002).
However, as birds are able to ingest plants rich in cap-
saicin (which is beneficial to the plants as birds can help
disperse their seeds), their TRPV1 should be less sensi-
tive to capsaicin. Indeed, in 2002, the chicken TRPV1
was demonstrated to be insensitive to capsaicin up to
100 µmol/L (Jordt and Julius, 2002). When different
domains of rat and chicken TRPV1 were swapped, chi-
meras containing the transmembrane segments 2 to 4 of
rat TRPV1 and the rest of chicken TRPV1 exhibited sen-
sitivity to vanilloids like capsaicin and resiniferatoxin. This
observation suggested that the S2 to S4 segments are key
to capsaicin binding, while the remaining gating machinery
required for capsaicin activation is preserved in both
channels. Furthermore, point mutations S512Y and Y511A
at the intracellular end of S3 on rat TRPV1 were able to
eliminate capsaicin sensitivity, suggesting capsaicin may
bind to the vicinity of these residues (Jordt and Julius,
2002). Nonetheless, both S512 and Y511 are conserved
between rat and chicken TRPV1; therefore, these two
residues alone cannot explain the difference in capsaicin
sensitivity between rat and chicken TRPV1. This
chimera/mutation study illustrated the importance of
transmembrane segments in capsaicin activation, however,
many critical questions such as the location of capsaicin
binding site had not been completely answered.

Like chicken TRPV1, rabbit TRPV1 exhibits much
reduced capsaicin sensitivity (Gavva et al., 2004). A study
published in 2004 showed that, when the S3 to S4 segments
of rat TRPV1 were transferred to rabbit TRPV1, high cap-
saicin sensitivity can be transferred as well. More strikingly,
substantial increase in capsaicin sensitivity could also be
achieved when a single residue I550 on S4 of rabbit TRPV1
was mutated to its rat counterpart: a threonine (Gavva et al.,
2004). From these two early studies using chicken and rabbit
TRPV1, we have learnt that Y511, S512 and T550 are critical
residues for capsaicin activation. While it was speculated
that these residues may participate in capsaicin binding, a
definitive answer on how they exert their impact remains
elusive for another decade.

Single-channel recording has been a valuable technique
to study ligand-host interaction in ion channels (Zheng and
Trudeau, 2015), as it reveals the functional states and
microscopic transitions that are hidden from macroscopic
current recordings (Sakmann and Neher, 2009). For exam-
ple, the ligand binding and gating kinetics of acetylcholine
receptors have been well characterized with single-channel
recordings (Purohit et al., 2007; Grosman et al., 2000). This
technique has also been applied to study other ligand-gated
channels such as cyclic nucleotide-gating channels (Sun-
derman and Zagotta, 1999a, b), large-conductance calcium-
activated potassium channels (Piskorowski and Aldrich,
2002), and another TRP channel, transient receptor potential
melastatin 8 channel (Fernandez et al., 2011). Based on
single-channel recordings, a study published in 2003 sug-
gested that capsaicin binding stabilizes the channels at high
open probabilities (Hui et al., 2003). Together with mutage-
nesis tests, these early studies had laid a solid foundation to
understand how capsaicin activates TRPV1, while the
detailed structural basis of the ligand activation process was
not understood until the first high-resolution structures of
TRPV1 were resolved by cryo-EM.

EARLY STRUCTURAL STUDIES OF TRPV1

3D structures of an ion channel in the absence and presence
of ligands play a crucial role in the study of ligand gating
process. For instance, the crystal structure of the C terminus
in hyperpolarization-activated, cyclic nucleotide-modulated
(HCN) channel greatly contributed to understanding how its
ligands such as cAMP and cGMP bind and gate this channel
(Zagotta et al., 2003). As for TRPV1, due to technical diffi-
culties, for a long time the only available high-resolution
structure was limited to its N terminus Ankyrin-repeat like
domain (ARD) reported in 2007 (Lishko et al., 2007). ARD
binds ATP and modulates calcium-dependent channel
desensitization upon capsaicin activation. ARDs of the
homologous TRPV2 (Jin et al., 2006), TRPV3 (Shi et al.,
2013), TRPV4 (Inada et al., 2012) and TRPV6 (Phelps et al.,
2008) were also revolved by crystallography. In addition, a
short piece of the TRPV1 C terminus was resolved by
crystallography as an α-helix in the presence of calmodulin
(Lau et al., 2012). However, without a view of the whole
channel, the knowledge we learned from these structures
regarding capsaicin activation was very limited.

The structure of full-length TRPV1 by cryo-EM was first
reported in 2008 (Moiseenkova-Bell et al., 2008). However,
with a low resolution at 19 Å only the subunits arrangement,
as well as the relative orientation between transmembrane
and intracellular domains were clearly discernable. Around
the same time, TRPV4 (Shigematsu et al., 2010) and TRPC3
(Mio et al., 2007) structures were also studied with cryo-EM.
Again only 35 Å (TRPV4) and 15 Å (TRPC3) resolutions
were achieved. The low resolution of these structures, due to
technical difficulties faced by the cryo-EM method at that
time, limited insights that can be gained regarding the
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channel architecture themselves and, for TRPV1, the
mechanism of capsaicin activation.

As an alternative approach, TRPV1 structure was mod-
eled computationally. Using voltage-gated potassium
channel structures as homology templates, either the pore
domain (Ferrer-Montiel et al., 2004) or full-length TRPV1
(Fernandez-Ballester and Ferrer-Montiel, 2008) was mod-
eled. TRPV1 transmembrane domains were also modeled
using a voltage-gated sodium channel as the template
(Yang et al., 2013). As the sequence identities between
TRPV1 and the template channels (less than 20%) are
rather low, and there is a lack of experimental constraints
for model building, limited insights were gained from those
studies.

STRUCTURAL REVELATION OF CAPSAICIN
BINDING SITE

The breakthrough for TRPV1 structural biology occurred in
2013. With the development of direct-detection camera and
better algorisms dealing with sample movements and image
processing, TRPV1 channel structure in the closed state
was determined by cryo-EM at an astonishing resolution of
3.4 Å (Liao et al., 2013). At this resolution, not only the
secondary structures but also some of the residue side-
chains were clearly observed, which allowed the de novo
building of atomic model of TRPV1 (Fig. 1C). Furthermore,
two open states of TRPV1 were determined at atomic res-
olution with either capsaicin or resiniferatoxin/double knot
toxin (Cao et al., 2013). These cryo-EM structures
unequivocally pin-pointed the location of capsaicin-binding
pocket, which is formed by S3, S4 and S4-S5 linker within
the membrane (Fig. 1C and 1D). This is in close agreement
with mutagenesis and functional studies: residues Y511,
S512 and T550 identified in these studies locate right around
the pocket (Jordt and Julius, 2002; Gavva et al., 2004), and
dramatic perturbations to intracellular structures often leave
capsaicin activation undisturbed (Ma et al., 2016). More
interestingly, a small electron density was observed inside
the capsaicin-binding pocket in the capsaicin-bound struc-
ture. This provided so far the most direct evidence of the
location of bound capsaicin. Interestingly, in the closed (apo)
state of TRPV1, an electron density was also observed,
which was interpreted to indicate that this pocket may be
occupied by a lipid molecule in the absence of capsaicin.
Therefore, capsaicin may have to compete with such a lipid
molecule in order to bind and activate TRPV1. In addition, by
comparing the closed state and open state, a slight outward
movement of the S4-S5 linker, away from the central ion
conducting pore, was observed upon capsaicin binding.
Since the S4-S5 linker in voltage-gated channels couples
movements of the S4 voltage sensor to the S6 activation
gate (Lu et al., 2002; Yarov-Yarovoy et al., 2012), such a
movement of the S4-S5 linker in TRPV1 may underline how
capsaicin binding leads to channel opening.

The success of cryo-EM study of TRPV1 structure has
marked a new era of structural biology for membrane pro-
teins. For TRP channels, structures of TRPV2 (Huynh et al.,
2016; Zubcevic et al., 2016) and TRPA1 (Paulsen et al.,
2015) were soon determined by cryo-EM at atomic resolu-
tions, while TRPV6 structure was resolved by crystallogra-
phy (Saotome et al., 2016). However, a high-resolution
structure does not solve all the problems. For instance,
though the capsaicin-bound open state of TRPV1 was
determined, the capsaicin molecule was registered within
the binding pocket as an electron density much smaller than
its chemical structure (Fig. 1D) (Cao et al., 2013), hence it
remained unclear how capsaicin is orientated. There was
also no information on how capsaicin interacts with channel
protein, as the resolution of this region is only about 4.5 Å.
Recently, with the lipid nanodisc technique TRPV1 structure
was determined at 2.9 Å (Gao et al., 2016). At this improved
resolution, the binding orientations of several TRPV1 mod-
ulators such as double-knot toxin and resiniferatoxin were
clearly defined. A few structured lipid molecules interacting
with the channel were also resolved. However, no capsaicin
bound state was resolved in that study. A likely interpretation
is that parts of the bound capsaicin and RTX retain sub-
stantial mobility, which makes it hard for structural investi-
gation alone to reveal the molecular details of ligand-channel
interaction. Therefore, cryo-EM structures are not the end of
story but rather a solid foundation for follow-up studies to
understand how capsaicin activates TRPV1.

HYBRID APPROACHES IN THE POST-STRUCTURAL
ERA

To understand the binding configuration of capsaicin and
interactions between capsaicin and TRPV1, a hybrid
approach that iteratively combines computational docking
and functional studies was developed in 2015 (Yang et al.,
2015). As the capsaicin-binding pocket has been well
defined by cryo-EM, capsaicin was first computationally
docked into this pocket. (To start the docking procedure,
capsaicin was put at the entrance of the binding pocket; it
robustly found an optimal position inside the binding pocket
with the large energy gain from affinity binding.) The chem-
ical environment inside the binding pocket is unique in that it
is within the cell membrane, where the energy functions
defining atomic interactions are distinct from those in an
aqueous environment. Therefore, the membrane energy
functions defined in the Rosetta software suite were used to
perform the docking (Yarov-Yarovoy et al., 2006; Barth et al.,
2007; Leaver-Fay et al., 2011). Indeed, without using mem-
brane-specific energy functions the docking procedure
would miss critical hydrogen bonding and therefore yield no
good convergence in predictions (Yang et al., 2015). In
contrast, with proper membrane energy functions the dock-
ing results converged very well, with the head and neck of
capsaicin overlapping nicely with the observed electron
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density of capsaicin. Capsaicin was predicted to take a “tail-
up, head-down” configuration within the binding pocket, with
its Tail being very flexible to adopt more than one fixed
conformations—explaining the lack of clear electron density
for the tail in cryo-EM data (Liao et al., 2013; Cao et al.,
2013) (Fig. 2A). Upon close scrutiny, such a binding con-
figuration was stabilized by two types of atomic interactions:
the van der Waal’s interactions and two hydrogen bonds
between its Neck and Head with T551 (T550 in rat and
human TRPV1) and E571 (E570 in rat and human TRPV1),
respectively (Fig. 2A).

To verify and refine computational predictions, thermody-
namic mutant cycle analysis was performed with a series of
capsaicin analogs and TRPV1 mutants. This approach has
been successfully applied to study interactions between
peptide toxin and voltage-gated potassium channels (Ran-
ganathan et al., 1996), as well as between small molecule
chemical cAMP and CNG channel (Sunderman and Zagotta,
1999). Briefly, if one part of capsaicin specifically interactswith
a residue on the channel, breaking this specific interaction by
altering this part of capsaicin or by mutating the interacting

residue should have equivalent effects (non-additive). On the
other hand, if there is no direct interaction, these changes
should have additive effects (Fig. 2B). Specific interaction is
assumed only when the calculated coupling energy, kT·ln(Ω),
is larger than 1.5 kT (Ranganathan et al., 1996; Schreiber and
Fersht, 1995). Indeed, coupling energy values larger than the
threshold were only observed between capsaicin Neck and
T551, as well as between Head and E571. Moreover, using a
series of capsaicin analogs with a progressively shortened
Tail, it was shown that the Tail makes a substantial contribution
to binding by providing non-specific van der Waals’ interac-
tions with the channel. Therefore, docking results were fully
supported by functional studies.

With the capsaicin binding configuration and detailed
atomic interactions established, the information was further
used as constraints to guide the next round of docking. By
docking capsaicin to the closed state, or to open states with
or without backbone movements, the sequential events
underlying capsaicin binding and activating TRPV1 started
to emerge. The Tail and Neck of capsaicin were observed to
contact the channel first, mediated by van der Waals

T551  

E571  

S6

S4-S5
linker

Pull

+

+
- -

--
H bond

CAP
S4

CAP

CAPCAP

E571

T551

WT : CAP 

EC50_1

Mutant : CAP 

EC50_2

WT : Analog 

EC50_3

Mutant : Analog

EC50_4

A B

C

Figure 2. Mechanism of TRPV1 activation by capsaicin. (A) Docking of capsaicin into its binding pocket on open-state TRPV1

structure (PDB ID: 3J5R). The Head, Neck and Tail of capsaicin are colored in red, blue and magenta, respectively. Two residues

making hydrogen bonds with capsaicin are highlighted in orange. Note that the amino acid numbering for mouse TRPV1 differs from

that for rat and human TRPV1 (Fig. 1) by one. (B) Diagram showing the principle of thermodynamic mutant cycle analysis.

(C) Cartoon summarizing capsaicin binding and activation of TRPV1.
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interaction and hydrogen bond, respectively. Later on, the
Head forms a hydrogen bond with E571 on the S4-S5 linker,
which stabilizes its outward movement and subsequent
opening of the S6 activation gate (Salazar et al., 2009)
(Fig. 2C). This “pull-and-contact” sequence of events during
capsaicin activation was also supported by interpolated
elastic network modeling, which has successfully predicted
the temporal sequence of events in ligand-gated ion chan-
nels (Zheng and Auerbach, 2011; Puljung et al., 2014; Tek-
pinar and Zheng, 2010). Building on the foundation of high-
resolution cryo-EM structures, the hybrid approach combin-
ing computation and functional studies has unveiled the
atomic details of capsaicin-TRPV1 interaction, as well as
established a framework for the structural mechanism of
ligand-induced channel activation.

A similar cryo-EM based hybrid approach was employed
in a study of capsaicin and resiniferatoxin (Elokely et al.,
2016). The molecules were first docked by the FRED algo-
rithm (McGann, 2012) of the OpenEye suite into the binding
pocket defined by TRPV1 cryo-EM structures, with the
constraints of experimentally derived electron density maps
of the two ligands. Important residues predicted from dock-
ing were tested by point mutations and patch-clamp
recordings. This study also found that the Head of capsaicin
points downward, while the Tail points upward. Interestingly,
this study suggested that, based on calculations from
SZMAP in the OpenEye suite, the hydrogen bonds between
the Neck/T550 and Head/E570 pairs were mediated by
water molecules. The docking of resiniferatoxin in this study
is in close agreement to the configuration determined later in
the TRPV1 cryo-EM structure with a higher resolution (2.9 Å)
in nanodiscs (Gao et al., 2016).

The two studies utilizing a hybrid approach of computation
and functional studies illustrated its power in the post-structure
era. They demonstrated that, when the protein structure and
the general location of ligand binding pocket are defined (by
cryo-EM or other structural biology approaches), modern
computational tools are able to accurately identify correct
binding configuration of the ligand. The reliability of docking
results can be further boosted when combined with functional
studies such as thermodynamic mutant cycle analysis, which
provide critical constrains for computation and validation.
Therefore, the hybrid of computation and functional studies is
expected to be the new standard approach to understand
ligand-channel interactions in the post-structure era.

VALIDATIONS OF THE FRAMEWORK
FOR CAPSAICIN-INDUCED TRPV1 ACTIVATION

Since the cloning of TRPV1 in 1997, nearly two decades of
active research has now established the atomic level
framework for how capsaicin binds and activates this chan-
nel. This framework will undoubtedly be subjected to further
tests. Computationally, molecular dynamic (MD) simulation
is a widely used technique to study ligand-host interactions.

The “tail-up, head-down” configuration of capsaicin was
observed in multiple MD simulations (Darre and Domene,
2015; Hanson et al., 2015; Ohbuchi et al., 2016). Moreover,
as the binding pocket locates within the membrane (Liao
et al., 2013; Cao et al., 2013), capsaicin has to interact with
lipid molecules first before entering the pocket. Such ligand-
lipid interaction was also studied by MD simulation (Hanson
et al., 2015), which showed that capsaicin flipped from the
extracellular to intracellular leaflet of the membrane in order
to access the binding pocket.

One of the best ways to validate a proposed mechanism
is to experimentally test predictions based on that mecha-
nism. Therefore, if the framework for how capsaicin acti-
vates TRPV1 is correct, one might be able to use it as
guidance to introduce sensitivity to capsaicin and other
vanilloids into ion channels insensitive to these molecules.
Two research groups have indeed independently achieved
this goal. Based on the current knowledge of capsaicin
activation, vanilloid sensitivity was successfully transferred
into TRPV2 channel (Yang et al., 2016; Zhang et al., 2016).
While TRPV2 is a close homolog of TRPV1, they share
only 43% sequence identity between the transmembrane
segments surrounding the capsaicin-binding pocket in
TRPV1 and the corresponding regions of TRPV2. Impres-
sively, only four point mutations at key residues were
needed to introduce a vanilloid-binding site into TRPV2
(Yang et al., 2016; Zhang et al., 2016). Furthermore, the
mutant TRPV2 channels were able to bind capsaicin and
resiniferatoxin with micromolar apparent affinity. This feat
lends a strong support for the current model of capsaicin
activation.

CONCLUSIONS AND OUTLOOK

Elucidation of the mechanistic framework for capsaicin-in-
duced TRPV1 activation is an exciting successful story of
modern biomedical research, a story of multidisciplinary
investigation driven by rapid technological advancements.
Yet, more work is needed in the future to fully understand
how capsaicin unlocks the activation machinery of TRPV1.
For instance, the kinetics of capsaicin partitioning into the
membrane and binding to its pocket on TRPV1 are still
poorly defined. Moreover, TRPV1 has been proposed to
have two gates, formed by the selectivity filter (the upper
gate) and S6 (the lower gate) (Liao et al., 2013; Cao et al.,
2013). If so, capsaicin and other TRPV1 activators have to
open both gates to initiate ion permeation. The sequential
events upon capsaicin binding that lead to channel activation
remain to be delineated.

Being a polymodal receptor of noxious stimuli such as
capsaicin, proton and high temperature, TRPV1 serves as
an important pain sensor (Tominaga et al., 1998; Tominaga
and Julius, 2000; Julius, 2013). Many small molecule inhi-
bitors of TRPV1 have been developed by pharmaceutical
companies as potential analgesics (Lazar et al., 2009; Moran
et al., 2011). However, most of them have failed in clinical
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trials due to severe side effects such as causing hyperther-
mia and altering heat sensation in experimental animals and
human patients (Carnevale and Rohacs, 2016). Therefore,
the knowledge we have gained on how capsaicin activates
this channel may lay the foundation for developing novel
analgesics targeting TRPV1 without adverse effects. For
instance, we have learnt that capsaicin binding induces
outward movements of S4-S5 linker (Yang et al., 2015; Liao
et al., 2013; Cao et al., 2013), but it induces little confor-
mational changes in the outer pore region as observed in
both cryo-EM structures (Liao et al., 2013; Cao et al., 2013)
and our FRET studies (Yang et al., 2010). In contrast, large
conformational changes occur during heat activation (Yang
et al., 2010). Such a difference in movements of the outer
pore region may be exploited to develop modality-specific
inhibitor of TRPV1 without adverse effects on body temper-
ature and heat sensation.
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