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1 Introduction

The AdS/CFT correspondence [1–4] has provided the physics community with an unique

perspective in the attempt to understand the various phases of strongly coupled quantum

field theory, and together with the probe-brane extension thereof [5–7], it has been provid-

ing the theoretical playground that renders possible toy-model building for a wide domain

of interests, ranging from the quark-gluon plasma [8, 9], unitary Fermi gas [10, 11], to

high-Tc superconductor [12, 13].

Of special relevance to this work are the various deformations associated with a probe-

brane embedding submanifold. Such considerations are crucial in the construction of the

Saki-Sugimoto D4/D8 model [14], dual to the holographic QCD, and also fruitful in iden-

tifying various phases of the strongly coupled quantum field theory dual to the D3/D7

model [5]. Nevertheless, in the aforementioned D4/D8 and D3/D7 systems, the probe-

brane embedding submanifold actually spans the whole four-dimensional external space-

time of the field theory, rendering possible only the deformation associated with the internal

space. This of course is due to the feature of the physical system under study, where the

quark sector roams freely together with the gluon sector. However, the idea of deformation

of submanifolds, and possible interesting physical systems, are both admissible to more

general consideration: for instance in the D3/D5 system, where the probe-brane system

describes the defect sector confined into a two-dimensional plane, a nontrivial deformation

of the submanifold for both the external and internal embedding is possible.

Inspired by such a possibility, in this article we investigate a similar but simpler ques-

tion: we instead analysis the possible phases realizable by minimal submanifolds asymptotic

to AdS4 × S2 in AdS5 × S5. Due to the lack of contribution from the Wess-Zumino term,

this toy model cannot describe the D3/D5 system, but we find it nonetheless realizes an
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interesting novel phase: by stacking two such toy-defects parallel, we show that, even when

the two toy-defect contents are in general different in their UV parameters, hence holo-

graphic dual to a toy double-heterostructure, there exists an asymmetrically connected

submanifold solution for this toy model, a coupled phase in the field theory side. We also

find that such an asymmetric configuration is thermodynamically favorable upon some

mild detuning of UV data, and there is a first-order transition from this asymmetrically

coupled phases to the more mundane decoupled phase, with the increase of the difference

of their UV parameters.

The organization of the paper is as follows: in section 2 we first review the notion of

the D7 and D5 embeddings in AdS5 × S5, which also provides the mathematical setting.

We also introduce the notion of single-sheeted, also later called decoupled phase, for the

rest of the work. After that we present the calculation subtleties associated with the

construction of the asymmetric joint-sheeted, also called nontrivial coupled phase. In

section 3 we present the numerical results, showing a first-order transition between these

two aforementioned phases.

2 Methods

In this section, we introduce the notion used by Graham and Karch [15] for setting up our

convention. They consider submanifolds asymptotic to AdSk+1 × Sl inside AdSn+1 × Sm.

Specialized to the D3/D5 embedding, k = 3, l = 2, n = 4,m = 5, this probe brane system

is holographic dual to two localized defects [5, 7], with quark content of massive N = 2

Nf -favor hypermultiplets in the fundamental representation, inserted into the background

of N = 4 U(Nc) super-Yang-Mills gauge field theory, in the Nc ≫ 1, large ’t Hooft coupling

limit. The two defects are separated by ∆x in the common transverse direction, and each

sector is characterized by its own quark mass mL or mR in the UV Lagrangian. We will

construct the phase diagram by tuning the dimensionless ratios, mL∆x and mR∆x.

2.1 Submanifold extension: mathematical settings

The mathematical setting of this article is as the following: considering the background

spacetime being a product manifold X × K, where X is a n + 1 dimensional asymptoti-

cally hyperbolic manifold with n dimensional boundary thereof, M ≡ ∂X, and K is a m

dimensional compact manifold. The metric of X ×K is parametrized using the standard

Fefferman-Graham form [16]:

g = g+ + gK =
dr2 + ḡr

r2
+ gK , (2.1)

with boundary M located at rmin = 0, hereafter referred as the UV end. The minimal

submanifold is denoted as Z ⊂ X ×K, with boundary ∂Z = N × S ⊂ M ×K. We can

parametrize M as (xα, uα
′

), K as (sA, tA
′

), such that: 1) The boundary of the submanifold

N × S is given by uα
′

→ 0, tA
′

→ 0, and 2) t and u variables are “orthogonal” to the

boundary, as in the following sense:

ḡα,α′ |r=0,u=0 = gAA′ |t=0 = 0. (2.2)

– 2 –
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In this article, we focus on submanifolds asymptotic to AdSk+1 × Sl, embedding into

AdSn+1 × Sm. We will choose to embed Sl into Sm as follows:

ds2Sm = dθ2 + cos2 θdΩ2
l + sin2 θdΩ2

m−l−1, (2.3)

with Sl sitting at the equator parametrized by the θ embedding function. This ansatz

corresponds to the simplest symmetry-breaking pattern associated with the dual defect

field theory.

Given the above parametrization, let us first consider the single-sheeted (later also

called decoupled) phase of the minimal submanifold. In this phase, the minimal subman-

ifold is not only asymptotic to AdSk+1 × Sl, but when it extends into the bulk, the only

change is the internal sphere radius, controlled by the θ embedding function, being endowed

with nontrivial radial dependence, θ = θ(r). All external-space embeddings are constant,

hence no “bending” of the probe external location occurs along the radial direction. In

fact, notice that radial dependence is actually the most generally allowed dependence if we

insist on preserving the defect-translational invariance, as well as Sl and Sm−l−1 isometries

for the dual field theory. With the standard Poincaré patch for AdSn+1 and static gauge

for AdSl+1, the area of the submanifold is then given by:

S =

∫

dr
cosl θ

rk+1

√

1 + α2r2(θ′)2, (2.4)

where α is a generalization introduced to account for the possible difference between

the curvature radii of internal compact space Sm and the external AdSk+1 space, α ≡

(RSm/RAdSk+1
). α = 1 in AdS5 × S5, the standard near-throat limit of supergravity back-

ground generated by from the D3 brane. Given that the D3/D5 system is our primary

concern, hereafter we commit ourselves to the α = 1 case. Also we have set RAdSk+1
to 1.

The usual variational method yields the equation of motion for θ(r) as:

θ′′ = −l

(

1

r2
+ (θ′)2

)

tan θ +

(

−1 + k

r

)

θ′ + kr(θ′)3. (2.5)

Let’s first consider the special case of the D3/D7 system, where the D7 probe brane is

asymptotic to AdS5 × S3 (k = 4, l = 3): this submanifold is completely filling the external

space of the background spacetime, and we can easily check that we then have an one-

parameter family of embeddings, θ = arcsin(mr), with m being the free parameter. θ

is the so-called slipping mode in the literature. The same solution also holds for the

D3/D5 system, with the probe brane embedding submanifold asymptotic to AdS4 × S2

(k = 3, l = 2). Such a simple analytical result is connected with the supersymmetry of the

probe brane system [17]. In more general systems, however, one can only observe that θ

being zero is still a solution, which extends into the one-parameter family of solutions by

turning on the slipping mode with the initial slope, θ(r) = mr +O(r2). But one will need

to numerically integrate out the equation to complete the profile.

However, we are naturally more interested in configurations with the external em-

bedding being nontrivial, specifically the joint-sheeted configuration, corresponding to two

defect stacked parallel to each other, with the submanifolds bending towards each other
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and eventually smoothly joined in the radial direction. An example of this connected

configuration is the Wilson line used by Maldacena [18] to compute the quark-antiquark

force: near the boundary the submanifold is asymptotic to AdS2 times a point. How-

ever, deep inside the bulk, the submanifold is connected into a U-shaped configuration.

Therefore, in this article, we parametrize such a connected submanifold as being the union

of two different branches, ∂Z = (N1 × S1)
⋃

(N2 × S2), with each branch chosen to be

Ni × Si = Rk × Sl. As mentioned before, to preserve the dual field theory symmetries

associated with the symmetries of both the defect space and the transverse space, only

radial dependence is admissible for the embedding functions. For simplicity, instead of the

simple internal global symmetry breaking pattern chosen by eq. (2.3), we will also restrict

ourselves by only turning on one nontrivial external embedding function, hereafter named

x(r). Still working in the standard Poincaré patch for AdSn+1 and static gauge for AdSl+1,

the area of the submanifold is modified as:

S =

∫

dr
coslθ

rk+1

√

1 + (x′)2 + r2(θ′)2, (2.6)

with the equations of motion given by:

x′′ =
(1 + k)

r
(x′)3 + x′

(

1 + k

r
+ kr(θ′)2

)

;

θ′′ =− l

(

1 + (x′)2

r2
+ (θ′)2

)

tan θ +
−1 + k + (1 + k)(x′)2

r
θ′ + kr(θ′)3. (2.7)

However, unlike the previous single-sheeted phase, these equations admit no analytical

solution at least to us, and hence we are forced to resort to numerical methods for computing

the profile.

2.2 The regularity constraint and the cascaded integration scheme

To solve the embedding equations eq. (2.7), the boundary conditions, required to generate

the joint-sheeted configurations, are given by requiring the connection of the two branches

inside the bulk space being smooth. This however renders x′(r)
∣

∣

r→rmax
divergent and

further denies us control over the boundary specification at rmax, the turning point of the

joint-sheet submanifold. Nevertheless, this seeming difficulty can be resolved by a closer

inspection of the regularity requirement: notice that the Lagrangian density is cyclic in the

x-parameter, hence conserving the conjugated momentum thereof,

Πx ≡
∂L

∂x′
=
coslθ

rk+1

x′
√

1 + (x′)2 + r2(θ′)2
. (2.8)

Therefore, we can express x′ in term of this integral of motion Πx,

x′ = ±

√

√

√

√

1 + r2(θ′)2
(

coslθ
Πxrk+1

)2

− 1
. (2.9)
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(a) x(r)symmetric.
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(b) θ(r)symmetric.

Figure 1. A typical result for a symmetrically connected configuration. Within the r-

parametrization, this coupled configuration is expressed by two separate but identical branches

joining smoothly at the turning point rmax, normalized to 1 in above. In figure 1(b), the dotted line

stands for the asymptotically decoupled configuration with the same UV parameter, the asymptotic

mass term masymptotics ≡ θ′(r)
∣

∣

r→0
. Notice we use the translational invariance to set x(rmax) = 0.

The regularity requirement therefore translates into the following two scenarios: first, we

have the denominator equal to zero, providing a condition relating all the parameters at

the IR end:
[

(

coslθ

Πxrk+1

)2

− 1

]

r→rmax−−−−−→ 0; (2.10)

Second, we have the numerator equal to infinity, signaling at the IR end sitting not only a

divergent x′(rmax) but also a divergent θ′(rmax) as well:

dθ

dr

r→rmax−−−−−→ ∞. (2.11)

One may expect the first scenario to be more relevant, given the smoother behavior of

θ(r)
∣

∣

r→rmax
. But further analysis, by expanding the submanifold in power series given

the regular behavior of θ(r) around rmax, reveals that the first scenario is actually too

restrictive. It constrains the two branches of the submanifold to be exactly the same,

ending with only symmetric joint-sheet configurations. Therefore, to include the most

general, asymmetric joint-sheeted configuration, the second scenario and hence singular

behavior of θ(r) around rmax will need to be considered.

To numerically generate the solution given by the second scenario for the boundary

conditions, we choose to work with both functions x(r) and θ(r), instead of completely

eliminating x(r) in terms of Πx, but adopt the following cascaded integration scheme to

obtain higher numerical control: first, around r ∼ rmax, we choose to parametrize the
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(a) x(r)asymmetric.
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(b) θ(r)asymmetric.

Figure 2. A typical result for an asymmetrically connected configuration. Within the r-

parametrization, this coupled configuration is expressed by two separate and different branches

joining smoothly at turning point rmax, normalized to 1 in above. In figure 2(b), the dotted

lines stand for the corresponding asymptotically decoupled configuration for each branch, with

different mass terms on the different side of the lobe. We can generate such graph within the

x-parametrization from the IR end, and cascade with the r-parametrization when approaching the

UV end. Notice we use the translational invarience to set x(rmax) = 0.

solution in terms of the x-variable, with the equations of motion given by:

r′′ = −
1 + k

r
(1 + (r′)2)− kr(θ′)2; (2.12)

θ′′ = −l

(

1 + (r′)2

r2
+ (θ′)2

)

tan θ − 2
r′

r
θ′. (2.13)

Choosing the turning point to be at x0 = 0, the solution is uniquely determined by the

“IR” data: {r(x0) ≡ 1, r′(x0) ≡ 0, θ(x0), θ
′(x0)}, located at rmax. Therefore, the entire

solution family are indeed generated by 4 parameters: {θ(x0), θ
′(x0), r(x0), x0}, with the

later 2 generated from dilatation and translation symmetry. Given the equations are reg-

ular in terms of the x-variable, we perform the numerical integration to a predetermined

intermediate point away from the boundary. However, given the equations is singular in

terms of x-variable at the boundary, to approach the boundary with more numerical sta-

bility, we will then switch over to the r-parametrization before carrying out the integration

to the boundary. With such a cascaded scheme, we can numerically find the most general,

asymmetric connected configuration.
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2.3 Extraction scheme

The great virtue of the probe brane approximation is that various physical quantities of

interest can be obtained without re-solving the Einstein equation with the probe source,

as long as those quantities can be calculated using the free energy and thermodynami-

cal relations, as already explained in [19]. Therefore, to determine the phase diagram,

we can follow this tenet and simply compute the free energy using the on-shell action

for the given configuration, and determine which phase, single-sheeted (also called decou-

pled) or joint-sheeted (also called coupled), is thermodynamically favorable. However, the

boundary divergence of AdS space renders the first step rather laborious: the canonical

approach is to deploy the holographic renormalization [20], which carefully reconstructs

the diffeomorphism-invariant counterterms by examining the divergent structure associ-

ated with the tentative cut-off plane, dual of the UV regulator for field theories. However,

in this study, given that we eventually only focus on the difference of free energies between

the decoupled and coupled configurations, we will adopt the following extraction scheme

(also known as background subtraction): given any coupled configuration, we first con-

struct the dual disconnected configuration with the same UV parameter masymptotic. Then

the difference of these two configurations is, by construction, vanishing near the boundary,

since all coupled configurations are asymptotic to the decoupled solution in the UV region

(See figure 1–2).

The rationale behind our extraction scheme is that the to-be-constructed holographic

counterterms can only depend on the UV behaviors but not IR physics, which is already

present in the decoupled configuration once the only relevant information, mL or mR

is extracted. This scheme is also more in tune with the pre-Wilsonian renormalization

philosophy, “sweeping under the rug”, that no divergence should be present if every physical

prediction is expressed with physical quantities.

In practice, given we can only work with the numerically generated configuration,

there is a potential caveat associated with such an extraction scheme: the UV parameter

mL/R is located at the singular point of the equations of motion, and we only extract

this information numerically up to a small cut-off distance due to the inevitable numerical

instability. Such a seemingly simple numerical recipe can be subject to more elaborate

modification: one can construct the analytic solution expanded around the singular point,

and extract the parameters by fitting at a point away from boundary, with now more

numerical control. However, given the phase transition we find is of first order in nature,

and in the precision we are working on, the difference thus introduced is found to be

numerically negligible with no qualitative change of the conclusion.

3 Phase diagram

3.1 Symmetric coupled phase

We first restrict to the symmetric connected configurations only. Figure 4 shows the on-

shell area difference, which is also the free energy difference, between the symmetric coupled

– 7 –
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Figure 3. A typical extraction result of comparing the Lagrangian (submanifold volume density)

with r, the AdS radial direction: red(dashed) line, a typical coupled configuration; blue(dotted)

line, the dual decoupled configuration; black(thin) line, the difference between the previous two,

with the signed area being the free energy difference. One can observe the divergence term is indeed

subtracted out when approaching the boundary, and the difference is only due to the back reaction

inside the bulk. Notice in this specific case the decoupled configuration can extend deeper into the

bulk even after the coupled counterpart already terminates (rmax = 1 by normalization). The re-

verse situation also is possible, where the decoupled surface can terminate before the connected one.

and decoupled configurations as a function of the normalized mass term ξnormalized:

ξnormalized = m∆x, (3.1)

with

m = θ′(rmin)

∆x = x(rmin)
∣

∣

upper−branch
− x(rmin)

∣

∣

lower−branch
. (3.2)

For every value of ξnormalized we find two coupled solutions. At very low ξnormalized, one of

the symmetric coupled configuration is the thermodynamically favored phase, compared

with its decoupled counterpart(with negative free energy difference); as ξnormalized increases,

the area difference begins to shrink, and finally a first order phase transition is reached

when ξnormalized reach the value of 0.165, after which the decoupled dual becomes more

favorable ones; however, as ξnormalized keeps increasing and eventually above 0.315, the

coupled configuration disappears entirely, and only the decoupled phase exists as the only

allowed solution for the minimal submanifold.

3.2 Asymmetric coupled phase

Using the cascade evolution scheme, we can also compute the phase diagram for the asym-

metric connected configuration. Figure 5 shows the phase diagram of the first order phase

transition for the minimal submanifold between the asymmetric coupled and decoupled

configurations as a function of two physical parameters:

ξi = mi(∆x), i ∈ {L,R}; (3.3)
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Figure 4. Indication of the first order phase transition of symmetrically coupled submanifold

as ξnormalized changes: the vertical axis shows the difference of surface area between the coupled

configuration and its decoupled counterpart; the horizontal axis is the characteristic label of the

connected surface defined in eq. (3.1).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.2

0.0

0.2

0.4

0.6

(a) Phase diagram for asymmetrically coupled

configuration.

0.0 0.2 0.4 0.6

-0.2

0.0

0.2

0.4

0.6

-0.05

0.00

0.05

(b) A snapshot of numerical scanning of the free

energy difference with constant θ′(rmax)-curves.

Figure 5. Indication of the first order phase transition of asymmetrically coupled submanifold as

ξL and ξR are varied: the vertical axis shows the difference of surface area between the coupled

configuration and its decoupled counterpart; the horizontal axis is the characteristic label of the

connected surface as characterized by ξL and ξR. Given the solution is enumerated with the IR data,

θ(rmax) and θ′(rmax), we perform the numerical scan by constructing the constant θ′(rmax)-curve

and slowly filling up the entire phase space, where in the red (heavy-shaded) region the coupled

phase dominates. Notice the upper corner is present due to our scanning procedure: the solution is

scanned by varying the IR data, but the phase diagram is labeled by the dimensionless parameters

back-constructed from UV properties of the obtained solution. This leads to the same upper lope

as in figure 4.

with

mi = θ′i(rmin)

∆xi =
∣

∣xi(rmin)
∣

∣, i ∈ {L,R}, (3.4)

where we use L and R to denote the different branch under study. Notice that due to the

reflection symmetry of the parameter space along the axes of both ξL = ξR and ξL = −ξR,
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we only need to scan the portion of figure 5. In figure 5(b), the partial scanning of the

free energy density difference is also shown, which explicitly demonstrates that the phase

transition is also of the first-order.

4 Conclusion and future research

In this article we investigate the submanifolds asymptotic to AdS4 × S2 embedded into

AdS5×S
5. We restrict to the largest unbroken residual symmetry. We find the asymmetric

joint-sheeted configuration, with both external embedding and internal embedding radially

deformed. These are dual to the coupled phase between two two-dimensional toy-defects

stacked parallel, with different UV parameters, hence realizing a toy double-heterostructure

with different UV data in the two layers. Solutions are shown completely parametrized by

the infrared geometric data, being the IR value and slope of the internal deformation, upon

which the entire profile is numerically constructed by the cascading integration scheme we

adopted in this paper. Aimed with the complete numerical solution, we map out the

phase diagram between this asymmetrically coupled phase and the competing mundane

decoupled phase, and we find that the coupled phase is dominating at zero temperature,

even when the UV parameters are mildly detuned, and with large enough difference the

system undergoes a first-order phase transition to the decoupled phase.

Notice that more general deformations of the submanifolds are possible, corresponding

to finer symmetry breaking pattern in the dual field theory side. Such details present

no challenge for profile construction using the cascading integration scheme. However the

corresponding phase diagram is computationally difficult to enumerate: for example, in the

cases of deforming two internal embedding functions, ie. θ = θ(r) and ψ = ψ(r), we find

that this solution can be constructed with 4 degrees of freedom, being their IR values and

slopes of the two internal coordinates. The phase diagram will be 4 dimensional, which

present itself an expensive numerical barrier. Tracing out this space to locate the transition

boundary and hence its transition nature will be left for future investigation.
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