
BioMed CentralBMC Cell Biology

ss
Open AcceResearch article
Pim-1 kinase phosphorylates RUNX family transcription factors and 
enhances their activity
Teija LT Aho1,2, Jouko Sandholm1, Katriina J Peltola1,2, Yoshiaki Ito3 and 
Päivi J Koskinen*1

Address: 1Turku Centre for Biotechnology, University of Turku/Åbo Akademi University, Tykistökatu 6 B, 20520 Turku, Finland, 2Turku Graduate 
School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland and 3Institute of Molecular and Cell Biology, 61 
Biopolis Drive, Singapore 138673, Singapore

Email: Teija LT Aho - teija.aho@utu.fi; Jouko Sandholm - jouko.sandholm@btk.fi; Katriina J Peltola - katriina.peltola@iki.fi; 
Yoshiaki Ito - itoy@imcb.a-star.edu.sg; Päivi J Koskinen* - paivi.koskinen@btk.fi

* Corresponding author    

Abstract
Background: The pim family genes encode oncogenic serine/threonine kinases which in
hematopoietic cells have been implicated in cytokine-dependent signaling as well as in
lymphomagenesis, especially in cooperation with other oncogenes such as myc, bcl-2 or Runx family
genes. The Runx genes encode α-subunits of heterodimeric transcription factors which regulate cell
proliferation and differentiation in various tissues during development and which can become
leukemogenic upon aberrant expression.

Results: Here we have identified novel protein-protein interactions between the Pim-1 kinase and
the RUNX family transcription factors. Using the yeast two-hybrid system, we were able to show
that the C-terminal part of human RUNX3 associates with Pim-1. This result was confirmed in cell
culture, where full-length murine Runx1 and Runx3 both coprecipitated and colocalized with Pim-
1. Furthermore, catalytically active Pim-1 kinase was able to phosphorylate Runx1 and Runx3
proteins and enhance the transactivation activity of Runx1 in a dose-dependent fashion.

Conclusion: Altogether, our results suggest that mammalian RUNX family transcription factors
are novel binding partners and substrates for the Pim-1 kinase, which may be able to regulate their
activities during normal hematopoiesis as well as in leukemogenesis.

Background
The pim-1 proto-oncogene was first identified as a com-
mon proviral insertion site associated with murine leuke-
miavirus-induced lymphomagenesis, and its oncogenic
activity was verified with transgenic mice overexpressing
pim-1 in the lymphoid compartment [1]. These mice show
a low incidence of spontaneous T-cell lymphomas, the
development of which can be accelerated by activation of
cooperating oncogenes, such as myc family genes, bcl-2 or

Runx2 [1-3]. Two additional, functionally redundant pim
family members have been identified with partially over-
lapping expression patterns. The murine pim-1 gene
encodes 44 and 34 kD isoforms of a serine/threonine-spe-
cific kinase [4], whose expression in hematopoietic cells
can be induced by a variety of cytokines, such as inter-
leukins 2, 3, 6 and interferon-α [5-7]. We and others have
shown that Pim-1 is involved in cytokine-dependent sign-
aling via its ability to regulate activities of the NFATc [8]
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and c-Myb [9] transcription factors, the Epstein-Barr virus
nuclear antigen-2 [10] and the SOCS family suppressors
of cytokine signaling [11,12]. Pim kinases also enhance
hematopoietic cell survival and participate in regulation
of the cell cycle [13].

RUNX family proteins (also known as AML, PEBP2α or
CBFα) [14] are DNA-binding α-subunits of heterodimeric
transcription factors that are essential for both cell prolif-
eration and differentiation during development [15].
Homozygous disruption of murine Runx2 results in com-
plete lack of bone formation, Runx1 knockout mice are
embryonally lethal due to failure of definitive hematopoi-
esis, and Runx3-deficient mice display abnormal develop-
ment of gastric epithelium and dorsal root ganglion as
well as defects in thymopoiesis. In addition, strict spatio-
temporal expression of all Runx family genes is critical for
normal hematopoiesis [16]. The RUNX proteins contain
an evolutionary conserved region, the Runt domain,
which has been named after their structural homologue in
Drosophila [17]. This region is required for DNA-binding
as well as for dimerization with the β-subunit. While three
mammalian genes encode α-subunits: RUNX1
(PEBP2αB), RUNX2 (PEBP2αA) and RUNX3 (PEBP2αC),
only one gene has been identified for the β-subunit
(PEBP2β/CBFβ). The β-subunit can enhance DNA-bind-
ing by the Runt domain but does not contact DNA itself
[15,18]. There is less sequence similarity between RUNX
family members outside the Runt domain, except for the
highly conserved five amino acid C-terminus (VWRPY)
known to bind transcriptional repressors, but the C-termi-
nal regions are rich in proline, threonine and serine (PTS)
and contain domains involved in transcriptional activa-
tion or inhibition [19]. RUNX activity has recently been
shown to be regulated by several extracellular signaling
pathways resulting in post-translational modifications,
such as phosphorylation, acetylation and ubiquitination.
[20].

The involvement of RUNX genes in cancer was first dis-
covered as chromosomal translocations associated with
acute myeloid leukemia [21]. These translocations had
resulted in fusion proteins lacking the C-terminal transac-
tivation domains of RUNX1. Evidence for Runx1 function
as a tumor suppressor gene was obtained from knock-in
mice where a single Runx1-eto fusion allele caused a simi-
lar phenotype as observed for the Runx1 null mice
[22,23]. Human RUNX3 has also been shown to act as a
tumor suppressor in gastric carcinomas [24]. However,
recent retroviral tagging studies have indicated that any of
the three murine Runx genes can also operate as dominant
oncogenes that can co-operate with myc and pim family
genes in lymphomagenesis [3,25]. Human RUNX genes
have also been observed to be amplified in childhood
leukemias [26,27].

Here we show that the Pim-1 kinase can physically inter-
act with RUNX family transcription factors, colocalize
with them within nuclei and phosphorylate them in vitro.
Furthermore, the transactivation ability of Runx1 is poten-
tiated by Pim-1, suggesting a mechanism via which Pim-1
may regulate the activity of RUNX family transcription
factors during hematopoiesis as well as in leukemogene-
sis.

Results and discussion
Pim-1 interacts with RUNX family proteins
To search for putative Pim-1-interacting partners, we used
the yeast two-hybrid system as previously described
[9,28]. A kinase-deficient K67M mutant of Pim-1 fused to
the LexA DNA-binding domain was used as a bait to
screen a library of cDNA clones that had been isolated
from Epstein-Barr virus-transformed human lymphocytes
and fused to the VP16 activation domain. Out of the
approximately 6 × 106 yeast transformants tested, 220
clones were recovered that were able to activate two sepa-
rate reporter genes in a strictly Pim-1-dependent fashion.

Sequence analysis revealed that one of the strongly inter-
acting cDNA clones, designated B19, encoded amino
acids 264–404 of the human RUNX3 protein, including
its C-terminal transactivation and inhibition domains,
but lacking the most C-terminal end (see Figure 3B). To
test whether this fragment interacted also with the wild-
type Pim-1 protein, a mating assay was carried out using a
modified two-hybrid assay [29] with baits fused to the
GAL4 DNA-binding domain. Results from this assay indi-
cated that the VP16-B19 fusion protein interacts equally
well with both the wild-type and mutant GAL4-Pim-1
fusion proteins, but not with any control proteins tested,
such as lamin or the Src kinase, as judged by the ability of
the diploid yeast strains to grow on selective medium
lacking histidine (Figure 1A and data not shown). The bait
proteins did not activate the reporter genes on their own
in the absence of the B19 fragment, while all strains were
able to grow on non-selective medium containing histi-
dine (Figure 1A and data not shown). The physical inter-
action observed in vivo in yeast cells was also
biochemically confirmed in a GST pull-down assay, where
bacterially produced GST-B19 fusion protein was specifi-
cally able to associate with in vitro translated 35S-labeled
Pim-1 protein (data not shown).

To further examine the interaction between Pim-1 and
full-length RUNX transcription factors within living cells,
COS-7 cells were transiently transfected with vectors
expressing Pim-1 and either MYC-tagged Runx1, Runx3 or
FLAG-tagged Runx1. Two days later, cells were collected
and lysed, after which the cell lysates were subjected to
immunoprecipitation with anti-MYC or FLAG antibodies
followed by Western blotting with anti-Pim-1 antibody.
Page 2 of 9
(page number not for citation purposes)



BMC Cell Biology 2006, 7:21 http://www.biomedcentral.com/1471-2121/7/21

Page 3 of 9
(page number not for citation purposes)

Pim-1 interacts with RUNX family proteinsFigure 1
Pim-1 interacts with RUNX family proteins. (A) Yeast strains expressing the VP16 activation domain alone or fused with 
the B19 fragment of human RUNX3 were mated with strains expressing the GAL4 DNA-binding domain fused with the con-
trol protein lamin or either kinase-deficient (K67M) or wild-type (WT) Pim-1. The ability of two proteins to interact with each 
other was judged based on the capacity ot the corresponding diploid strains to grow on the selective medium lacking histidine. 
(B) COS-7 cells were transfected with pSV-pim-1, pAMC-Runx1 or pAMC-Runx3 plasmids as indicated in the figure. Parts of 
the cell lysates were subjected to immunoprecipitation with anti-Myc antibody followed by immunoblotting with anti-Pim-1 or 
anti-Myc antibodies. The expression of proteins in the lysates was verified by direct Western blotting with the same antibodies.
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This analysis revealed that Pim-1 can be coprecipitated
together with both Runx1 and Runx3 full-length proteins
(Figure 1B and data not shown).

Pim-1 colocalizes with Runx1 and Runx3 proteins in 
nucleus
To be able to investigate the intracellular distribution and
possible colocalization of Pim-1 and RUNX proteins,
COS-7 cells were transiently transfected with vectors
expressing Pim-1 fused to the enhanced cyan fluorescent
protein (ECFP) and either Runx1 or Runx3 fused to the
enhanced yellow fluorescent protein (EYFP). As expected
from previous studies with untagged proteins [30-32],
Pim-1 protein was found both in the nucleus and the cyto-
plasm of interphase cells, while Runx1 and Runx3 pro-
teins predominantly localized to the nuclei in a granular
expression pattern (Figure 2). More intriguingly, both
Runx1 and Runx3 colocalized with Pim-1 in the nuclei of
double-positive cells, as demonstrated by scattergram
analysis of merged fluorescent images from fixed as well
as from living cells (Figures 2B, 2C and data not shown).
Altogether, our immunoprecipitation and imaging results
indicated that Pim-1 can colocalize and physically interact
with Runx family proteins within the nuclear compart-
ment.

Pim-1 can phosphorylate Runx1 and Runx3 proteins in 
vitro
To find out whether human or murine RUNX proteins act
as substrates for the Pim-1 kinase, in vitro kinase assays
were carried out with bacterially expressed proteins fused
to the glutathione S-transferase (GST) protein. Wild-type
GST-Pim-1, but not the corresponding kinase-deficient
K67M mutant was able to phosphorylate itself, the C-ter-
minal interacting fragment of human RUNX3 as well as
the full-length murine Runx3 protein, but not the GST
moiety (Figure 3A and data not shown). Pim-1 phospho-
rylated also several C-terminal fragments of murine
Runx1 (Figure 3A). Since not all the Runx1 and Runx3
fragments overlapped with each other (Figure 3B), this
suggests that there are multiple target sites for Pim-1
within the RUNX proteins.

Pim-1 potentiates transcriptional activity of the RUNX1 
transcription factor
Phosphorylation by extracellular signal-regulated kinase
(ERK) has previously been shown to potentiate the trans-
activation ability of RUNX1 [33]. To investigate whether
phosphorylation of Runx1 by Pim-1 had similar conse-
quences, transient transactivation experiments were car-
ried out in Jurkat T cells using a previously established
luciferase reporter assay with which the functional
domains of Runx1 had been determined [19]. There the
luciferase gene is driven by the macrophage-colony stim-
ulating factor receptor (M-CSF-R) promoter containing

binding sites for RUNX, PU.1 and C/EBP transcription fac-
tors. In Jurkat T cells, the reporter is inactive in the absence
of ectopic expression of any RUNX family member and
their heterodimeric binding partner CBFβ, while Runx1
alone only slightly activates it. Also in our assays, ectopic
expression of Pim-1 was unable to stimulate luciferase
activity in the absence of Runx1 (data not shown). As
shown in Figure 4A, increasing amounts of wild-type Pim-
1 were able to enhance Runx1/Cbfβ-dependent transacti-
vation of the luciferase reporter in a statistically significant
and dose-dependent fashion, as also confirmed by analy-
sis of the steady-state levels of Pim-1 protein by Western
blotting. By contrast, the kinase-deficient K67M mutant of
Pim-1 did not have any major effects on Runx1 activity,
while the more extensive NT81 mutant lacking the N-ter-
minal 80 amino acids of Pim-1 even slightly inhibited it
(Figure 4B). We have previously shown that this mutant
can act in a dominant negative fashion to downregulate
the effects of the endogenously expressed wild-type Pim-1
protein e.g. on NFATc activity [8].

To examine whether the effects of Pim-1 were mediated
via the activation domain of Runx1 that Pim-1 was able to
phosphorylate, additional assays were carried out with a
GAL4-dependent luciferase reporter coexpressed with a
fusion protein where the yeast GAL4 DNA-binding
domain had been fused with the activation domain of
Runx1 (amino acids 262–371) containing two major
transactivation elements, TE1 and TE2 [[19], see Figure
3B]. Indeed, wild-type Pim-1 was able to increase luci-
ferase activity when coexpressed with the GAL4-Runx1
fusion protein, but not with the GAL4 DNA-binding
domain alone (Figure 4C). Since the kinase-deficient
mutants remained inactive in this assay (data not shown),
our results suggest that the effects of Pim-1 are dependent
on the presence of its phosphorylation target sites within
the activation domain of RUNX proteins.

Ser249 and Ser266 of RUNX1 have been shown to be tar-
geted by the extracellular signal-regulated kinase (ERK)
[33]. More recent studies have indicated that phosphor-
ylation by ERK affects not only activity, but also localiza-
tion and stability of RUNX1 [34]. Unphosphorylated
RUNX1 interacts with the transcriptional repressor
mSin3A and is associated with nuclear matrix. Phosphor-
ylation of RUNX1 by the ERK-dependent pathway releases
RUNX1 from mSin3A and nuclear matrix, and this is
accompanied with enhanced transcriptional activity.
However, since binding to mSin3A protects RUNX1 from
proteosome-mediated degradation, corepressor release
from RUNX1 may regulate its transcriptional activity in a
time-dependent fashion, and thereby prevent prolonged
RUNX1 activation in response to cytokines or growth fac-
tors. Since none of the amino acid sequences surrounding
ERK-phosphorylated or other C-terminal serine or threo-
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Pim-1 colocalizes with Runx-1 and Runx-3Figure 2
Pim-1 colocalizes with Runx-1 and Runx-3. The subcellular distribution of ECFP-Pim-1, EYFP-Runx1 and EYFP-Runx3 was 
analysed from transiently transfected COS-7 cells under confocal microscope. Shown are single- (A) or double-positive (B, C) 
cells expressing indicated fluorescent proteins. Colocalization of ECFP (first panel) and EYFP (second panel) fusion proteins in 
the circled nuclei was visualized by yellow colour in merged images (third panel) and was confirmed by scattergram plots 
(fourth panel), where the intensities of the CFP and YFP channels are on the X- and Y-axis, respectively. Bar represents 20 µm.
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nine residues in RUNX1 show obvious homology to the
reported Lys/Arg-rich Pim-1 consensus phosphorylation
site [35], the Pim-1 target sites as well as the putative
effects of the Pim-1 kinase on stability of RUNX proteins
remain to be identified.

Pim-1 may regulate hematopoietic cell fate together with 
RUNX proteins
Enforced expression of Runx2 and gfi-1 transcription fac-
tors in murine thymocytes has been shown to result in
delayed thymocyte development at the stage of β-selec-
tion where cells rearrange their T cell receptor β (TCRβ)
locus [36,37]. Interestingly, Pim-1 is able to promote mat-
uration of double negative (DN) thymocytes into double
positive (DP) thymocytes in Rag-deficient and TCRβ
enhancer-deleted mice, which are deficient in β-selection

Pim-1 potentiates transcriptional activity of Runx1Figure 4
Pim-1 potentiates transcriptional activity of Runx1. 
(A) Jurkat TAg-cells were transfected with 4 µg of pM-CSF-
R-Luc, 1 µg of pSV-β-gal, 4 µg of pEF-Runx1, 2 µg of pEF-
Cbfβ2, and indicated amounts of pLTR-pim-1. The steady-
state levels of Pim-1 protein were measured from the same 
cell lysates by Western blotting with anti-Pim-1 antibody and 
equal loading was verified with anti-β-actin antibody. (B) Jur-
kat TAg-cells were transfected with same reporter con-
structs as in Figure A together with wild-type or mutant pSV-
pim-1 constructs. (C) Jurkat TAg-cells were transfected with 
3 µg of pG5-Luc, 1 µg of pSV-β-gal, 3 µg of GAL4 fusion pro-
teins and 2 µg of pEF-Cbfβ2 together with indicated amounts 
of pLTR-pim-1. Shown are relative luciferase activities nor-
malized against β-galactosidase activities and statistically ana-
lysed by Student's t-test (*, p ≤ 0.05; **, p ≤ 0.01).

Pim-1 phosphorylates Runx proteins in vitroFigure 3
Pim-1 phosphorylates Runx proteins in vitro. (A) Bac-
terially produced GST fusion proteins expressing either full-
length (FL) or fragments of Runx1 or Runx3 were incubated 
with GST-Pim-1 in in vitro kinase assays. The phosphorylation 
products were separated on SDS-PAGE and visualized by 
autoradiography. GST alone (-) was used as a negative con-
trol. * indicates protein degradation products. (B) Schematic 
presentation of the functional domains of Runx1, including 
the Runt domain, an activation domain (AD) with two major 
transactivation elements (TE1 and TE2), a minor transactiva-
tion element (TE3), an inhibitory domain (ID) and the C-ter-
minal VWRPY sequence. Shown are also the fragments 
phosphorylated by Pim-1 in Runx1 or Runx3, which lacks the 
sequences corresponding to TE3 of Runx1.
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as are also mice overexpressing Gfi-1 [37-39]. In addition,
intact Runx1 protein is required for cell proliferation dur-
ing DN-to-DP transition [40]. Thus, strict spatio-temporal
expression of all these proteins is important for develop-
ment of DN thymocytes into more mature DP T cells and
further into functional mature single positive effector T
cells.

Both pim and Runx family genes can cooperate with myc
family genes in tumor formation [1,25], which correlates
well with the observation that both Runx1 and Runx3 were
found among the genes that could substitute for pim-1
and pim-2 in retroviral tagging experiments [41]. How-
ever, pim-1 and Runx2 have also been shown to cooperate
with each other [3], suggesting that these genes are not
completely redundant in their oncogenic effects and that
RUNX family transcription factors may function both in
parallel as well as downstream of Pim kinase-modulated
pathways.

Conclusion
Our data indicate that the Pim-1 serine/threonine kinase
is able to physically interact with the RUNX family tran-
scription factors, colocalize with them within nuclei and
phosphorylate them in vitro. Moreover, the transcriptional
activity of at least Runx1, but most likely also of other
RUNX family members is potentiated by Pim-1. These
results have revealed a previously unrecognized signaling
cascade involving Pim-1 kinase and the RUNX family of
transcription factors that may control differentiation and
transformation of hematopoietic cells.

Methods
Plasmids
Eukaryotic pLTR-pim-1, pSV-pim-1, pECFP-pim-1 and
prokaryotic GST-Pim-1 fusion vectors expressing the wild-
type murine protein or the kinase-deficient K67M or
NT81 mutants have been described previously [8,30] as
also all yeast vectors used [9], pEF-BOS, pEF-Runx1, pEF-
Runx3, pEF-Cbfβ2 and GAL4-Runx1 fusion constructs and
the prokaryotic GST fusion vectors expressing murine
Runx proteins and their deletion derivatives [19,24]. Two
additional deletion derivatives Runx1(179–292) and
Runx1(179–320) were made by digesting GST-
Runx1(179–343) vector with Sal I or Sph I restriction
enzymes, respectively. GST-B19 was prepared from the
yeast VP16-B19 fusion vector expressing amino acids
264–404 of human RUNX3. MYC-tagged Runx1 and -
Runx3 as well as FLAG-tagged Runx1 expression vectors
were prepared by PCR from pEF-Runx1 and pEF-Runx3
plasmids and cloned into pAMC [42], kindly provided by
Dr. Tomi Mäkelä, (Biomedicum Helsinki, Finland), or
pFLAG-CMV-2 (Kodak) vectors, respectively. Runx pro-
teins fused to the enhanced yellow fluorescent protein
were subcloned into the pEYFP-C1 vector from Clontech.

M-CSF-R-Luc reporter plasmid was kindly provided by Dr.
Dong Er-Zhang (Harvard Medical School, Boston, MA),
while GAL4-luciferase (G5-Luc) and pSV-β-galactosidase
(pSV-β-gal) reporter plasmids were from Promega.

Cell culture
Jurkat T cell derivatives, JTAg cells expressing the SV40 T-
antigen [43] were maintained in Roswell Park Medical
Institute (RPMI) medium (Sigma-Aldrich) supplemented
with 10 % fetal bovine serum, 100 µg/ml streptomycin,
and 100 units/ml penicillin, while Dulbecco's modified
Eagle's medium (DMEM) (Sigma-Aldrich) with equal
supplements was used to grow COS-7 cells.

Yeast two-hybrid assays
Yeast two-hybrid assays were carried out essentially as pre-
viously described [9,28]. Briefly, the K67M mutant of
Pim-1 fused with the LexA DNA-binding domain was
used as a bait to screen a library kindly provided by
Stephen Elledge (Baylor College of Medicine, Houston,
Texas). The library contained cDNA clones isolated from
Epstein-Barr virus-transformed human peripheral blood
lymphocytes and fused to the VP16 activation domain.
The yeast transformants expressing Pim-1-interacting pro-
tein fragments were double-selected for their abilities to
grow on histidine-deficient plates containing 25 mM 3-
aminotriazole and to produce β-galactosidase. To further
verify double-positive interactions, mating assays were
carried out using a modified yeast two-hybrid assay [29]
with baits fused with the GAL4 DNA-binding domain.
Nucleotide sequences for the positive clones were deter-
mined using an Applied Biosystems automated sequenc-
ing apparatus.

Protein interaction assays
GST pull-down assays were carried out as previously
described [30] with bacterially produced GST-fusion pro-
teins and in vitro translated 35S-labeled Pim-1 protein. For
coprecipitation assays, COS-7 cells were transfected by
electroporation (220 V, 975 µF) with Gene Pulser II (Bio-
Rad). Two days later, cells were collected and lysed by one
freeze-thaw cycle into co-IP buffer (50 mM Tris-HCl, pH
7.5, 150 mM NaCl, 0.1 mM EDTA, 0.5 % NP-40, 20%
glycerol and 1:100 Protease Inhibitor mix (Sigma-
Aldrich)). 100 µg aliquots of protein were used to confirm
protein expression by Western blotting, whereas 500 µg
aliquots of protein were subjected to immunoprecipita-
tion with mouse monoclonal anti-MYC (Sigma-Aldrich)
or M2 anti-FLAG (Kodak) antibodies bound to protein G-
sepharose beads (Amersham Biosciences) for 2 hours or
overnight at 4°C. Precipitated proteins were washed 5–6
times with co-IP buffer, resolved on SDS-PAGE and trans-
fered onto PVDF membrane (Amersham Pharmacia Bio-
tech). To detect proteins by Western blotting, membranes
were incubated with mouse monoclonal anti-Pim-1
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(19F7; Santa Cruz Biotechnology), anti-MYC (Sigma-
Aldrich), M2 anti-FLAG (Kodak) or anti-β-actin (Sigma-
Aldrich) antibodies followed by HRP-linked anti-mouse
antibodies (Zymed), and the ECL+plus chemilumines-
cence reagents (Amersham Biosciences).

Cell imaging assays
COS-7 cells were transiently transfected with ECFP or
EYFP fusion vectors as described above and plated on cov-
erslips. Two days later, cells were fixed with 4% parafor-
maldehyde, after which confocal images were captured
with Zeiss LSM510 META confocal microscope. ECFP and
EYFP fusion proteins were excited with 405 nm and 514
nm laser lines and emissions were collected with BP 435–
485 and LP 560 filters, respectively. The optical thick-
nesses of the two channels were equalized prior to image
acquisition and colocalization was visualized with a scat-
tergram plot acquired with Zeiss LSM510 3.2 program.

In vitro kinase assays
In vitro kinase assays were carried out as previously
described [8]. Briefly, bacterially produced GST-fusion
proteins were mixed in kinase buffer (20 mM Pipes, pH
7.0, 5 mM MnCl2, 7 mM β-mercaptoethanol, 0.25 mM β-
glycerophosphate, 0.4 mM spermine, 10 µM rATP, 1:200
aprotinin (Sigma-Aldrich) supplemented with 10 µCi of
γ-32P-ATP (Amersham Biosciences) and incubated at
30°C for 30 minutes. Samples were separated on SDS-
PAGE and visualized by autoradiography.

Transactivation assays
5 × or 10 × 106 Jurkat TAg-cells were transfected by electro-
poration (250 V, 975 µF). Two days later, cells were col-
lected and analysed for luciferase activity using
Luminoskan Luminometer (Labsystems). The transfec-
tion efficiencies were normalized against β-galactosidase
activities. Shown in the figures are means and standard
deviations of representative examples of at least 3 inde-
pendent experiments with triplicate or quadruple sam-
ples.
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β-gal, β-galactosidase; DP, double positive; DN, double
negative; ECFP, enhanced cyan fluorescent protein; EYFP,
enhanced yellow fluorescent protein; ERK, extracellular
signal-regulated kinase; GST, Glutathione S-transferase;
HRP, horse-radish peroxidase; Luc, luciferase; M-CSF-R,
macrophage-colony stimulating factor receptor; PVDF,
polyvinylidene fluoride; TCR, T cell receptor
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