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1 Introduction

The problem of formulating an action for interacting covariant open superstring field theory

has a long history, starting with Witten’s cubic action [1]. This cubic theory has two short

comings: one problem is the presence of singularities in the Neveu-Schwarz (NS) sector due

to collisions of picture changing operators. Another issue is that the kinetic term (more

precisely the inner product) is degenerate in the Ramond (R) sector. The first problem

can be remedied by smearing out the picture changing operator [2] (see also [3] for earlier

work in this direction). This results in a consistent (although non-polynomial) BV-action

for the NS sector of open superstring field theory on the small Hilbert space. On the

other hand, an action for the NS sector in the large Hilbert space has been formulated

long time ago by Berkovits [4, 5]. This theory is attractive due its simple form and is well

suited for explicit calculations (e.g. [6]) but its BV-quantization is less clear. However,

recently it has been shown that Berkovits’ theory is related to the BV-action on the small

Hilbert space by a field redefinition [7, 8]. This shows that the former does indeed realize

a decomposition of the supermoduli space. Furthermore, it was shown in [9] that the non-

polynomial BV-action [2] (and thus the Berkovits action) does reproduce the perturbative

tree-level S-matrix to all orders.

For the combined theory of NS- and R- sectors consistent (i.e. gauge invariant) field

equations have been formulated in [10] and shown to produce the correct tree-level S-

matrix elements [9] but, due to the lack of cyclicity, of the multi-string vertices these field

equations cannot derive from an action. Furthermore, the above-mentioned issue with the

kinetic term in the Ramond (R) sector was not addressed in [10]. On the other hand,

in [11] and [12] the degeneracy of the Ramond kinetic term was avoided with the help of a

suitable restriction of the Ramond Hilbert space. Indeed, it was noticed [13] in the early

days of string field theory that Witten’s theory propagates only a subset of constrained

string fields [14]–[19]. This was subsequently related to the presence of an extra gauge

symmetry (not generated by the BRST charge) that can be fixed to remove all fields that

do not satisfy the constraint [20] (see also [21]).

A gauge invariant action for the interacting theory was recently proposed in [12] (see

also [22]) with smeared picture changing operators and Ramond fields in the restricted

Hilbert space. The above problem with cyclicity of the vertices was avoided by taking
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the the NS field to live in the large Hilbert space akin to the Berkovits formulation. On

another front, in [11] a geometric approach, based on the decomposition of the supermoduli

space was outlined, which is formulated in the small Hilbert space with a constrained

Ramond sector. Furthermore, in [23] another geometric construction was proposed where

the restriction on the Ramond fields is substituted by the introduction of auxiliary fields.1

The purpose of this note is twofold. First we clarify the relation between the re-

stricted and unrestricted Ramond Hilbert spaces. In particular, we show explicitly that

the restrictions used in [12] and [11] are the same and furthermore that the cohomology

of the restricted Hilbert space is the same as that of the unrestricted space. The latter

result was previously obtained in [24].2 In the second part we propose a modification of

the construction [10] for the R-NS vertices which is cyclic in the small, restricted Hilbert

space. Provided the picture changing operators used in [11, 12] can be defined in a way

that is compatible with the interaction vertices, our construction immediately gives a clas-

sical action for the open superstring in the small, restricted Hilbert space. More generally,

the vertices can be regarded as an algebraic construction of the interaction vertices of the

auxiliary field construction of [23]. Then, invoking the results of [9] one concludes that the

resulting action reproduces the correct tree-level S-matrix.

2 Restricted Hilbert space

Let us start with the restricted Ramond Hilbert space spanned by vectors of the

form [12]–[21]

ψ = φ1|↓〉+ γ0φ2|↓〉 − (−1)|φ1|G0φ2|↑〉 , (2.1)

where | ↓〉 = b0| ↑〉, |φ| denotes the Grassman parity of φ, γ0 is the zero mode of the

commuting superconformal ghost and G0 the (matter plus ghost) supercharge with the

γ0b0 contribution subtracted. More concretely, we decompose the BRST charge Q as

Q = c0L0 + b0M + γ0G0 + β0K − γ2
0b0 + Q̃ (2.2)

where L0,M,G0,K, Q̃ have no dependence on the ghost zero modes (see e.g. [21] for details).

Then, using that {Q̃,G0} = 0 and G2
0 = L0 it is not hard to see that

Qψ =
(
M(G0φ2) +K(φ2) + Q̃(φ1)

)
|↓〉+ γ0

(
G0(φ1) + Q̃(φ2)

)
|↓〉

+ (−1)|φ1|G0

(
G0(φ1) + Q̃(φ2)

)
|↑〉 . (2.3)

According to [21], φ2 can be gauged away completely.3 The closedness condition reduces to

Q̃φ1 = G0φ1 = 0 , (2.4)

with a residual gauge freedom

δλφ1 = Q̃λ , G0λ = 0 . (2.5)

1In fact, the proposals [11] and [23] were worked out for the closed type II superstring but the idea is

easily adapted to the open string.
2We would like to thank Y. Okawa for pointing out this reference to us.
3Notice however, that there are some subtleties when G0φ2 = 0.

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
6
4

Let us now compare this with the cohomology of the unrestricted Ramond sector.

Because the cohomology of Q is known to be isomorphic to the relative cohomology H•rel(Q)

calculated on on the subspace defined by b0ψ = β0ψ = 0 [24, 25] we consider this case.

A generic vector in this subspace is given by ψ = φ | ↓〉 with φ independent of γ0 and c0.

Then, Qψ = 0 reduces to

Q̃φ = G0φ = 0 , (2.6)

with the same residual gauge freedom as above. Thus the cohomology of the restricted Ra-

mond sector (2.1) agrees with that of the unrestricted Ramond Hilbert space as previously

shown in [24].

Next, we compare the restriction (2.1) with the approach of [11]. The constraint,

originally formulated in [26], arose from the need to have a right-inverse Y0 for the picture-

changing operator

X0 = (G0 − 2γ0b0)δ(β0) + b0δ
′(β0). (2.7)

This operator acts on picture (−3
2) states and existence of Y0 implies that X0 cannot have

a cokernel.4 This leads to the condition on picture (−1
2) states ψ,

β2
0ψ = 0 (2.8)

with general solution,

ψ = φ
(0)
1 |↓〉+ γ0φ

(1)
1 |↓〉+ φ

(0)
2 |↑〉+ γ0φ

(1)
2 |↑〉 (2.9)

where φ
(j)
i are independent of γ0 and c0. Now requiring that the condition (2.8) is preserved

by Q implies that φ
(1)
2 = 0 and φ

(0)
2 = −(−1)|φ

(1)
1 |G0φ

(1)
1 and thus (2.8) and (2.1) define the

same invariant subspace. Finally we note that X0 is indeed no cokernel, i.e. every vector in

this subspace can be written as ψ = X0ψ̃, where ψ̃ is an arbitrary string field with picture

−3
2 . This follows from the identities [26]

δ(γ0) = |0,−3

2
〉〈0,−3

2
| (2.10)

δ(β0) = |0,−1

2
〉〈0,−1

2
|, (2.11)

δ′(β0) = −|0,−1

2
〉〈1,−1

2
|+ |1,−1

2
〉〈0,−1

2
| (2.12)

where the index −1
2 resp. −3

2 denotes the picture and |n,−1
2〉 = γn0 |0,−1

2〉. Then, for

ψ̃ = φ1|↓〉+ φ2|↑〉 with φi =
∞∑
n=0

βn0 φ
(n)
i δ(γ0) we find

X0ψ̃ =
(
G0(φ

(0)
1 )− (−1)|φ2|φ

(1)
2

)
|↓〉 − (−1)|φ2|γ0φ

(0)
2 |↓〉+G0φ

(0)
2 |↑〉 (2.13)

where we have used that δ(γ0)δ(β0) = |0,−3
2〉〈0,−

1
2 |. We then see that X0ψ̃ is indeed of

the form (2.1) with

φ1 = G0(φ
(0)
1 )− (−1)|φ2|φ

(1)
2 and φ2 = (−1)|φ2|φ

(0)
2 . (2.14)

4Note that there is no well-established algebraic characterization of the picture (− 1
2
) states in terms of

the modes of β and γ. For (2.7), one possible choice is to require that β
nk
k |ψ〉 = γ

ml
l |ψ〉 = 0 for l > 0 and

k ≥ 0 and natural numbers nk and ml. This is not a problem for free string field theory but becomes an

issue in the presence of interaction vertices which generically do not preserve this definition.
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3 Open superstring field theory in the restricted Hilbert space

The vertices of open superstring field theory can be written as

Cn(Ψ1, · · · ,Ψn) = ω(Ψ1,Mn−1(Ψ2, · · · ,Ψn−1)), (3.1)

where Ψ denotes a combined string field in the R- and NS-sector and Mn are string n-

products. These products were constructed through a gauge transformation of the free

theory defined by a hierarchy of gauge products on the large Hilbert space with each gauge

product obtained from lower order products by means of a contracting homotopy ξ for the

nilpotent operator η0, that enters in the bosonization of the superconformal ghost γ(z).

More precisely, we require the existence of an operator ξ such that [η0, ξ] = 1. Upon

changing ξ, the construction of [2] produces actions that are related by field redefinitions,

so that any choice for ξ is equally good. One additional condition on ξ is that the resulting

vertices should be non-singular. In [2] a class of such good homotopies built out of

ξ =

∮
dz

2πi
f(z)ξ(z) (3.2)

was proposed, where f(z) is required to be holomorphic in some annulus that contains the

unit circle and ξ(z) enters in the bosonization of superconfomal ghost, β(z) = ∂ξ(z)e−φ(z).

In [10] the homotopy for [η0, ·] was taken to be the same irrespective of whether the

string products defining the string products have zero or one Ramond input. To illustrate

this we consider the string product

M2 =
1

3
{X,m2}P<0>

2 +Xm2P
<1>
2 +m2P

<2>
2 (3.3)

where P<n>2 is the projector on n Ramond inputs among the two inputs of m2 and m2 = ∗
is Witten’s string product. The picture changing operator, X is related to ξ through the

graded commutator, X = [Q, ξ]. Finally, {X,m2} is the graded anti-commutator of X and

m2. For zero Ramond inputs M2 is cyclic with respect to the standard symplectic form by

construction since the combination {X,m2} sums over all possible insertions of a picture

changing operator (see [2] for details and notation). For vertices involving two Ramond

fields we have

ω(N,M2(R,R)) = ω(N,m2(R,R)) = ω(R,m2(R,N)) (3.4)

where N and R denote NS- and R- string fields respectively. At first sight it looks as if M2

were not cyclic since there is an X missing in front of m2 on the right hand side of (3.4).

However, we will see in the end that this is exactly what we need, because of subtleties in

defining a symplectic form on the R-string fields.

Next, let us consider the 4-vertex. First, we have from (3.3)

[M2,M2](R,R,R) = 2Xm2 ◦m2(R,R,R) = 0 (3.5)

due to associativity of the star product (m2 ◦ m2 = 0). Thus, to this order the A∞
consistency condition (or equivalently the BV-equation) allows us to set M3(R,R,R) = 0.
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For two Ramond inputs we have

1

2
[M2,M2](R,N,R) = m2 ◦Xm2(R,N,R) = −[Q, [m2, µ2]](R,N,R) ,

where

µ2 = ξm2P
<1>
2 +

1

3
{ξ,m2}P<0>

2 . (3.6)

Since the gauge products µn never have more than one Ramond input [10], the A∞ con-

sistency condition, 1
2 [M2,M2] + [Q,M3] = 0, then fixes M3 completely as

M3(R,N,R) = m3(R,N,R) , (3.7)

where m3 = [m2, µ2] and we have used associativity of m2. Associativity then also implies

that ηM3(R,N,R) = −η[m2, µ2](R,N,R) = 0 and thus M3 is in the small Hilbert space.

Similarly, for one Ramond input

1

2
[M2,M2](N,R,N) = Xm2 ◦Xm2(N,R,N) = −1

2
[Q, [Xm2P

<1>
2 , µ2P

<1>
2 ]](N,R,N)

= −1

2
[Q, [M2, µ2P

<1>
2 ](N,R,N) = −1

2
[Q, [M2, µ2]](N,R,N) . (3.8)

To continue we choose the homoptopy for η defining the gauge product µ3 as

µ3 =
1

4
{ξ,m3}P<0>

3 + ξm3P
<1>
3 . (3.9)

Then,

µ3(N,R,N) = ξm3(N,R,N) = ξm2 ◦ ξm2(N,R,N) . (3.10)

Using, associativity of m2 again we then find

M3(N,R,N) =
1

2
([M2, µ2] + [Q,µ3]) (N,R,N)

= M<1>
2 µ2(N,R,N) = Xm<1>

2 µ2(N,R,N) = Xm3P
<1>
3 (N,R,N)

(3.11)

which is in the small Hilbert space. More generally, for a generic permutation of the R-

and N inputs

M3P
<1>
3 = Xm<1>

2 µ2P
<1>
3 = Xm3P

<1>
3 (3.12)

holds. Thus, modulo the factor X that will be dealt with below, proving cyclicity of M3 is

reduced to show cyclicity of m3. Explicitly, we have

ω(N1,M3(R1, N2, R2))

= ω(N1,m3(R1, N2, R2)) (3.13)

= ωL(N1, ξ0m2(ξm2(R1, N2), R2)) + ωL(N1, ξ0m2(R1, ξm2(N2, R2))) ,

– 5 –
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where ωL is the symplectic form evaluated in the large Hilbert space and which reproduces

the symplectic form, ω, on the small Hilbert space upon insertion of the zero mode ξ0 [2].

Now, commuting ξ0 through to R1 and using cyclicity of m2 we get

ω(N1,M3(R1, N2, R2))

= ωL(ξm2(ξ0R1, N2),m2(R2, N1)) + ωL(ξ0R1,m2(ξm2(N2, R2), N1)) . (3.14)

Since ξ is BPZ-even we then have

ω(N1,M3(R1, N2, R2))

= ωL(m2(ξ0R1, N2), ξm2(R2, N1)) + ωL(ξ0R1,m2(ξm2(N2, R2), N1))

= ωL(ξ0R1,m2(N2, ξm2(R2, N1))) + ωL(ξ0R1,m2(ξm2(N2, R2), N1))

= ω(R1,m3(N2, R2, N1)) . (3.15)

Similarly, for two adjacent Ramond inputs,

ω(N1,M3(R1, R2, N2))

= ω(N1,m2(R1, µ2(R2, N2)))− ω(N1, µ2(m2(R1, R2), N2)) (3.16)

= −ωL(N1,m2(ξ0R1, µ2(N2, R2)))− ωL(N1, µ2(m2(ξ0R1, R2), N2)) .

Now, for the first term we use cyclicity of m2 while for the second we use cyclicity of µ2

for two R-inputs which gives

ω(N1,M3(R1, R2, N2)) = ωL(ξ0R1,m2(µ2(R2, N2), N1)) + ωL(m2(ξ0R1, R2), µ2(N2, N1))

= ωL(R1, ξ0m2(µ2(R2, N2), N1)) + ωL(R1, ξ0m2(R2, µ2(N2, N1)))

= ω(R1,m3(R2, N2, N1)) . (3.17)

Thus, m3 is cyclic with respect to the symplectic form ω(·, ·). In order to prove cyclicity to

arbitrary order we first recall the recursion relations defining the higher order products [10].

For zero or one Ramond input we have

M
<0/1>
n+2 =

1

n+ 1

n∑
k=0

[Mk+1, µn−k+2]P
<0/1>
n+2 , M1 = Q (3.18)

and for two Ramond inputs

M<2>
n+3 = mn+3P

<2>
n+3 =

1

n+ 1

n∑
k=0

[mk+2, µn−k+2]P<2>
n+3 (3.19)

where

mn+3 =
1

n+ 1

n∑
k=0

[mk+2, µn−k+2] (3.20)

with m2 = ∗. Finally, the gauge products µn are given by

µn+2 =
1

n+ 3
{ξ,mn+2}P<0>

n+2 + ξmn+2P
<1>
n+2 . (3.21)

– 6 –
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It is not hard to see (by induction) that vanishing of M3(R,R,R) implies that vanishing

of Mn+3(· · · , R, · · ·R, · · · , R, · · · ) for all n. Indeed, upon inspection of (3.20), subject

to the homotopy (3.21), it is apparent that such a term would have to be of the form

ξ
n∑
k=0

mn−k+2mk+2 which vanishes due to the A∞ condition [m,m] = 0. Furthermore, it

holds that

(n− 1)M<1>
n+1 = X

(
m<1>
n µ2 +m<1>

n−1µ3 + · · ·
)

= (n− 1)Xmn+1P
<1>
n+1 . (3.22)

To show this identity we proceed by induction. We have from (3.18)

nM<1>
n+1 = [M<1>

n , µ<1>
2 ] + [M<1>

n−1 , µ
<1>
3 ] + · · ·+ [Q,µ<1>

n+1 ]

+M<1>
n µ<0>

2 +M<1>
n−1 µ

<0>
3 + · · ·

−µ<1>
2 M<0>

n − µ<1>
3 M<0>

n−1 + · · · . (3.23)

Now, we use [Q,µ<1>
p ] = Xm<1>

p − ξ[Q,m<1>
p ] together with the identity, [m,M ] = 0,

that is,

[Q,µ<1>
n+1 ] = Xm<1>

n+1 + ξ
(
[m<1>

n ,M<1>
2 ] + [m<1>

n−1 ,M
<1>
3 ] + · · ·

+ M<1>
2 m<0>

n +M<1>
3 m<0>

n−1 + · · ·
+ m<1>

n M<0>
2 +m<1>

n−1M
<0>
3 + · · ·

)
. (3.24)

Upon substitution of (3.24) into (3.23) and using (3.21) as well as [m,m] = 0 the

result follows.

Thanks to (3.19) and (3.22) the problem of proving cyclicity of Mn is again reduced

to show cyclicity of mn. To prove cyclicity of mn+3, n ≥ 1, one then proceeds exactly as

in (3.13)–(3.17) expressing mn+3 in terms of [mk+2, µn−k+2] and then using cyclicity of mq,

q ≤ n+ 2 as well as cyclicity of µp, p ≤ n+ 2 for p NS-inputs.

Let us now explain how these vertices lead to a gauge-invariant action for the open

superstring in the small Hilbert space. Following [23] we write

S =
1

2
ω(φ,Qφ)− 1

2
ω(ψ̃,XQψ̃) + ω(ψ̃, Qψ) (3.25)

+
1

3
ω(Ψ,M2(Ψ,Ψ)) +

1

4
ω(Ψ,M3(Ψ,Ψ,Ψ)) + · · ·

where, Ψ = φ+ψ and ψ̃ is an auxiliary Ramond string field with picture (−3
2). The higher

string products Mn are given by

Mn = MnP
<0> +mn(P<1> + P<2>) (3.26)

which differs from (3.3) by the ubiquitous factor X. To prove gauge invariance we use that

Mn is cyclic w.r.t. ω. The standard proof of gauge-invariance has to be modified as M is

not an A∞-algebra. However, M is an A∞-algebra and differs from M in that it contains

an additional X-insertion on Ramond outputs and contains no BRST operator Q. There

are three different types of gauge-transformations with odd parameters Λ, λ and λ̃ having

picture −1, −1
2 and −3

2 .

– 7 –
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Using antisymmetry of ω and cyclicity of Mn one arrives at the identities (n, k ≥ 2),

ω(Λ,Mn ◦Mk) = ω(Λ,Mn ◦Mk)

= ω(MnΛ, P
<0>
1 Mk +XP<1>

1 Mk) = ω(MnΛ,Mk), (3.27)

ω(Λ, QMk) = ω(QΛ,Mk) = ω(QΛ,Mk), (3.28)

ω(Λ,Mn ◦Q) = ω(MnΛ, Q). (3.29)

where Λ denotes the coderivation built from Λ as its 0-string map and we suppressed the

string field Ψ. Explicitly, (3.29) reads as

ω(Λ,Mn(QΨ, . . . ,Ψ) +Mn(Ψ, QΨ, . . . ,Ψ) + · · · )
= ω(Mn(Λ,Ψ, . . . ,Ψ) +Mn(Ψ,Λ, . . . ,Ψ) + . . . , QΨ).

Define the transformation δφ, δψ, δψ̃ as

δφ+ δψ̃ = QΛ +
∑
n≥2

MnΛ(eΨ), (3.30)

δψ = Xδψ̃. (3.31)

Summing over (3.27)–(3.29) we obtain zero on the left-hand side due to the A∞ relations,

while on the right-hand side we find,

0 = ω(δφ,Qφ) + ω(δψ̃,Qψ) +
∑
k≥2

ω((δφ+ δψ),Mk(Ψ,Ψ, . . . ,Ψ))

= δ

(
1

2
ω(φ,Qφ) + ω(ψ̃, Qψ) +

∑
k≥2

1

k + 1
ω(Ψ,Mk(Ψ,Ψ, . . . ,Ψ))

)
− ω(ψ̃, Qδψ)

= δS, (3.32)

where we used ω(ψ̃, Qδψ) = δ
(

1
2ω(ψ̃, QXψ̃)

)
in the last step. Consequently, the trans-

formations (3.30) and (3.31) are a bosonic gauge symmetry of the action. By replacing Λ

with λ̃ in (3.27)–(3.29) one verifies that the following transformation is a fermionic gauge

symmetry,

δφ+ δψ̃ = Qλ̃+
∑
n≥2

MnXλ̃(eΨ), (3.33)

δψ = Xδψ̃, (3.34)

where Xλ̃ denotes the coderivation with 0-string product Xλ.

In order to derive the gauge transformations corresponding to the parameter λ, let

us recall that Mn and mn(P<0> + P<1>) give two commuting A∞ structures [10]. To-

gether with cyclicity of mn(P<0> +P<1>) w.r.t. ω one can then deduce that the following

transformations are a gauge symmetry of S, by imitating the previous derivation,

δφ+ δψ̃ =
∑
n≥2

Mnλ(eΨ), (3.35)

δψ = Qλ+Xδψ̃. (3.36)

– 8 –
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Notice that all gauge transformations preserve the constraint ψ = Xψ̃ up to states of the

form Qλ with λ not expressible in the form λ = Xρ for some picture −3
2 state ρ.

Let us now comment on the applicability of our formalism to writing the proposal for

the superstring action [12] in the small Hilbert space. Assuming the constraint (2.8), we

can rewrite (3.25) without the need for the auxiliary field ψ̃ as

S =
1

2
ω(φ,Qφ) +

1

2
ω(ψ, Y Qψ) +

1

3
ω(Ψ,M2(Ψ,Ψ)) +

1

4
ω(Ψ,M3(Ψ,Ψ,Ψ)) + · · · (3.37)

where Y = c0δ
′(γ0) is the inverse picture changing operator in the restricted Hilbert space.

The gauge transformation of this action agrees with that of (3.25) up to the contribution

coming from the kinetic term that is

δS ∝ ω((X −X0)(m2(Ψ,Λ) +m2(Λ,Ψ) +m3(Ψ,Λ,Ψ + · · · )), Y Qψ) (3.38)

Formally this term can be removed by replacing X by X0 (as well as ξ by Θ(β0)) in the

definition of the higher string products Mn and the gauge products µn when applied to

states containing one or two Ramond states, e.g. instead of (3.3) we take

M2 =
1

3
{X,m2}P<0>

2 +X0m2P
<1>
2 +m2P

<2>
2 (3.39)

and instead of (3.6) we take

µ2 = Θ(β0)m2P
<1>
2 +

1

3
{ξ,m2}P<0>

2 . (3.40)

However, for this choice of homotopy to be well defined, one needs that the mns are

compatible with the particular realisation of the picture (−1
2) states in terms of the zero

modes β0 and γ0 described in section 2.

Acknowledgments

We would like to thank Ted Erler and Barton Zwiebach for helpful discussions. I.S. would

like to thank the Center for the Fundamental Laws of Nature at Harvard University for

hospitality during the initial stages of this work. This work was supported by the DFG

Transregional Collaborative Research Centre TRR 33 and the DFG cluster of excellence

“Origin and Structure of the Universe”.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B 276 (1986) 291

[INSPIRE].

[2] T. Erler, S. Konopka and I. Sachs, Resolving Witten’s superstring field theory, JHEP 04

(2014) 150 [arXiv:1312.2948] [INSPIRE].

– 9 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(86)90298-1
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B276,291"
http://dx.doi.org/10.1007/JHEP04(2014)150
http://dx.doi.org/10.1007/JHEP04(2014)150
http://arxiv.org/abs/1312.2948
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2948


J
H
E
P
0
4
(
2
0
1
6
)
1
6
4

[3] Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten

formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677]

[INSPIRE].
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