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Abstract

Background: The color of crop leaves is closely correlated with nitrogen (N) status and can be quantified easily
with a digital still color camera and image processing software. The establishment of the relationship between
image color indices and N status under natural light is important for crop monitoring and N diagnosis in the field.
In our study, a digital still color camera was used to take pictures of the canopies of 6 rice (Oryza sativa L.) cultivars
with N treatments ranging from 0 to 315 kg N ha−1 in the field under sunny and overcast conditions in 2010 and
2011, respectively.

Results: Significant correlations were observed between SPAD readings, leaf N concentration (LNC) and 13 image
color indices calculated from digital camera images using three color models: RGB, widely used additive color
model; HSV, a cylindrical-coordinate similar to the human perception of colors; and the L*a*b* system of the International
Commission on Illumination. Among these color indices, the index b*, which represents the visual perception of
yellow-blue chroma, has the closest linear relationship with SPAD reading and LNC. However, the relationships
between LNC and color indices were affected by the developmental phase. Linear regression models were used
to predict LNC and SPAD from color indices and phasic development. After that, the models were validated with
independent data. Generally, acceptable performance and prediction were found between the color index b*,
SPAD reading and LNC with different cultivars and sampling dates under different natural light conditions.

Conclusions: Our study showed that digital color image analysis could be a simple method of assessing rice N
status under natural light conditions for different cultivars and different developmental stages.
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Background
Nitrogen (N) is one of the most important nutrients
essential for the growth of crops, and is a major com-
ponent of chlorophyll and protein which are closely
associated with leaf color, crop growth status and yield
[1]. Insufficient N supply leads to smaller leaves, lower
chlorophyll content and less biomass production, and con-
sequently, reduced grain yield and quality [2,3]. Conversely,
excessive N application can lead to the environmental
problems of water and atmospheric pollution [4]. Hence,
measuring crop N status timely is critical for increasing N
use efficiency and environmental quality [5,6].
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The spectral reflectance of crop leaf or canopy is known
to be correlated with N status [7,8]. The instruments for
measuring spectral reflectance are the chlorophyll meter
[9-11], multi-spectral sensor [12], hyper-spectral sensor
[7,8] and commercial digital camera [13-15], are used in
precision agriculture for growth monitoring, nitrogen
diagnosis and site-specific crop management. The SPAD
meter (SPAD-502, Minolta Camera Co., Osaka, Japan),
measures leaf chlorophyll content nondestructively, has
potential for improving N use efficiency without affecting
grain yield in real-time nitrogen management (RTNM) ex-
periments [9,11]. A disadvantage of the SPAD-502 for
assessing crop N status is its small sampling area (6 mm2).
In addition, the measurements are subject to operator
bias so a large number of repetitions are needed to obtain
reliable results [16,17], and SPAD meter experiences
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difficulties in distinguishing chlorophyll levels when
crops are near or above the optimum N supply [10,18].
In contrast, satellite or airborne-mounted hyperspec-
tral sensors can obtain spectral information in a larger
sampling area and record more spectral bands [7,8,12].
The high cost of images, infrequent satellite overpasses
and risk of images being obscured by clouds limit the
application of these platforms for commercial use [19].
The proximal sensors GreenSeeker® (NTech Industries
Inc., USA) and Yara N-sensor (Yara International ASA,
Germany) which measure red and near infra-red (NIR)
reflectance, overcome some of the limitations of satellite
or airborne sensors [20], but their accuracy is influenced
by background soil interference [8].
Alternatively, images from digital still color cameras,

which record spectral information of visible bands, have
a low cost but very high image resolution (consumer
cameras in 2014 record up to 40 megapixels per image).
At a sensor height of about 1 meter above the canopy,
high-spatial-resolution images separate crops from back-
ground soil or other interferences, which is important
for accurate diagnosis of N status when the vegetation
fraction was low [13,21]. Moreover, images from digital
still cameras contain a large amount of information
about the crop structure and leaf color, such as leaf
orientation, plant height, biomass accumulation and leaf
senescence [22-24], and these parameters are easy to
obtain [13,25] with existing software, such as MatLab®
(MathWorks Inc.), the free-ware package ImageJ [26].
Previous studies showed that canopy cover estimated
from the images was not only highly correlated with leaf
area index (LAI), aboveground biomass and N accumu-
lation [13,27], but was also stable in varying environ-
mental conditions [28,29]. In addition to canopy cover,
color digital images provide spectral information in the
visible bands which are closely related to the leaf N
concentration (LNC) and SPAD readings [17]. Hunt et al.
[30] found that the triangular greenness index (TGI),
which was derived from red, green and blue bands of a
digital still color camera, was sensitive to leaf chlorophyll
content of a whole canopy.
The color-related indices from digital still cameras can

diagnose crop N status [17,30,31]. Previous studies on
the analysis of leaf color were mostly undertaken in
controlled light conditions [17,32-34]. This approach
could reduce the impact of light on the image color, and
easily obtain a reliable relationship between N status and
leaf color indices. However, the results derived from the
controlled light cannot be completely applied to natural
light because of the variable light conditions [15,35,36].
Besides, there are still many uncertainties in the use of
digital still cameras for N diagnosis under natural light
conditions, and further validation is necessary to ensure
the application in the field.
In this study, experiments with different N application
rates were carried out in the field under sunny and over-
cast conditions (1) to analyze the relationship between
chlorophyll content, LNC and canopy color related indices
in different cultivars and stage of phasic development, (2)
to establish the possible models for the diagnosis of crop
N status using image color indices, and (3) to validate the
applicability of the models under different natural light
conditions.

Results and discussion
Correlation of color related indices and crop nitrogen
status
Correlations between two rice N parameters (leaf N
concentration and SPAD reading) and 13 image-color
related indices (Eq. 1–10) were calculated with individual
and pooled cultivars in 2011. Similar results were obtained
from the three rice cultivars, i.e., Liangyoupeijiu, Nanjing45
and Nanjing46. Therefore, only correlation coefficients
from the Liangyoupeijiu dataset (n = 72) and the pooled
dataset (n = 240) were displayed in Table 1. SPAD read-
ings showed significant correlations with each color
index except g in both datasets. Among these color
indices, L*, b*, R, G, B, r and INT were negatively corre-
lated with SPAD readings, while the other indices were
positively correlated with SPAD readings. Most of the
color indices were closely correlated with LNC, how-
ever, the magnitude and direction of the correlation
coefficients were not consistent with those between
color indices and SPAD readings. Overall, the indices
derived from the CIE L*a*b* color model had relatively
higher correlation coefficients with SPAD readings and
LNC. In this color model, the index b* represents the
visual perception of yellow-blue chroma which is similar
with the leaf color variation, and it has been used in many
other studies for image color analysis [37,38]. Therefore,
we select index b* as a representative for further analysis.

Relationships between SPAD, LNC and the color index b*

Regression analyses were performed between SPAD
readings, LNC and the color index b* using the 2011
dataset. Positive linear relationships were observed be-
tween LNC and SPAD readings, with the same trends in
different sampling dates and cultivars (Figure 1). The
determination coefficient (R2) in different sampling dates
varied from 0.61 to 0.88 along with the root mean
square error (RMSE) from 1.81 to 2.64 g kg−1. The LNC
decreased with the rice development, while the max-
imum SPAD values increased with rice growth. Smaller
RMSE was obtained in jointing and booting stages than in
vegetative and tillering stages. Similarly, Xue et al. [39]
reported that the ratio index of NIR/green (R810/R560)
reached the best accuracy with LNC at jointing stage.
When data were pooled across the sampling dates, there



Table 1 Correlation coefficients between SPAD readings, leaf nitrogen concentration (LNC, g kg−1) and image color
related indices (digital number from three color models: RGB, HSV and CIE L*a*b*)

SPAD LNC L* a* b* b*/a* H R G B r g b INT VIGreen

SPAD 1.00 0.21 −0.67** 0.78** −0.90** 0.76** 0.83** −0.68** −0.67** −0.48** −0.76** 0.01 0.41** −0.63** 0.66**

LNC 0.32** 1.00 0.48** −0.26* −0.06 0.35** 0.13 0.47** 0.48** 0.63** −0.37** −0.68** 0.65** 0.52** −0.28*

L* −0.62** 0.35** 1.00 −0.83** 0.73** −0.43** −0.63** 1.00** 1.00** 0.96** 0.38** −0.64** 0.21 1.00** −0.90**

a* 0.61** −0.04 −0.70** 1.00 −0.86** 0.50** 0.69** −0.82** −0.84** −0.69** −0.52** 0.18 0.17 −0.80** 0.62**

b* −0.73** −0.35** 0.54** −0.72** 1.00 −0.86** −0.95** 0.74** 0.73** 0.51** 0.87** 0.04 −0.51** 0.68** −0.73**

b*/a* 0.60** 0.48** −0.29** 0.36** −0.91** 1.00 0.96** −0.45** −0.43** −0.18 −0.99** −0.26* 0.72** −0.37** 0.63**

H 0.61** 0.40** −0.39** 0.42** −0.91** 0.97** 1.00 −0.64** −0.63** −0.40** −0.95** −0.09 0.58** −0.58** 0.75**

R −0.63** 0.33** 1.00** −0.68** 0.56** −0.34** −0.44** 1.00 1.00** 0.96** 0.39** −0.64** 0.21 1.00** −0.92**

G −0.62** 0.35** 1.00** −0.71** 0.54** −0.29** −0.39** 1.00** 1.00 0.96** 0.38** −0.64** 0.21 1.00** −0.90**

B −0.37** 0.58** 0.91** −0.47** 0.15* 0.09 −0.03 0.90** 0.91** 1.00 0.12 −0.82** 0.48** 0.98** −0.83**

r −0.56** −0.54** 0.19** −0.35** 0.89** −0.99** −0.95** 0.24** 0.19** −0.20** 1.00 0.36** −0.79** 0.31** −0.56**

g 0.05 −0.66** −0.62** 0.03 0.31** −0.44** −0.34** −0.60** −0.61** −0.87** 0.56** 1.00 −0.86** −0.69** 0.58**

b 0.27** 0.69** 0.27** 0.17** −0.66** 0.79** 0.71** 0.23** 0.26** 0.63** −0.87** −0.90** 1.00 0.29* −0.08

INT −0.56** 0.42** 0.99** −0.64** 0.45** −0.20** −0.31** 0.99** 0.99** 0.95** 0.10 −0.70** 0.37** 1.00 −0.89**

VIGreen 0.67** −0.10 −0.85** 0.42** −0.65** 0.62** 0.68** −0.88** −0.85** −0.68** −0.51** 0.43** 0.02 −0.83** 1.00

Numbers in the upper diagonal were calculated with the Liangyoupeijiu (n = 72) dataset and numbers in the lower diagonal were calculated with the combined
data of Liangyoupeijiu, Nanjing45 and Nanjing46 in 2011 (n = 240).
**indicate the significance at P < 0.01, *indicate the significance at P < 0.05.

Figure 1 Relationships between leaf nitrogen concentration (LNC, g kg−1) and SPAD readings in vegetative (a), tillering (b), jointing (c),
booting (d) stages, and the pooled data of the four stages (e) in 2011.

Wang et al. Plant Methods 2014, 10:36 Page 3 of 11
http://www.plantmethods.com/content/10/1/36



Wang et al. Plant Methods 2014, 10:36 Page 4 of 11
http://www.plantmethods.com/content/10/1/36
was no significant trend observed between SPAD readings
and LNC (Figure 1e).
Significant negative linear relationships were seen be-

tween LNC and color index b*, with R2 ranging from 0.58
to 0.86 in the four developmental stages (Figure 2). The R2

between b* and LNC at booting stage (Figure 2d) was less
than that between SPAD readings and LNC. Same as the
relationship between SPAD readings and LNC, no signifi-
cant trend was observed between b* and LNC when data
pooled across the sampling dates (Figure 2e). In addition,
there were negative linear relationships between b* and
SPAD readings (Figure 3). The R2 in the vegetative stage
was lower than that in the other stages. There were obvious
differences among cultivars for the relationship between
b* and SPAD readings, especially the Liangyoupeijiu in
jointing and booting stages (Figure 3c and d) and the
Nanjing45 in vegetative stage (Figure 3a). In this case,
the regression analysis was carried out with individual
cultivars (Table 2). Overall, higher R2 were observed
from individual cultivars and sampling dates than that
from the pooled dataset (Table 2). However, the inter-
cepts and slopes of the linear relationship varied with
rice cultivars, these differences might be partly caused
by the different plant type among cultivars, with a loose
Figure 2 Relationships between leaf nitrogen concentration (LNC, g k
jointing (c), booting (d) stages, and the pooled data of the four stage
shape and large mean leaf angle in hybrid indica rice
(Liangyoupeijiu) [40,41] while tight shape and small
mean leaf angle in japonica rice (Nanjing45, Nanjing46).
The different plant type lead to different distribution of
reflectance [42,43] and finally caused different image-
derived indices.
In our experiments, image acquisition was carried out

in the field under natural light near solar noon which
was the period with the most stable illumination at the
top of the atmosphere. This makes sure that the light in-
tensity is not changing too much during image acquisi-
tion in a single day. The results from Table 2 indicated
that reliable estimates of N status could be obtained
from images taken under natural light. Considering the
stability of N diagnosis in different locations and sam-
pling dates, individual sampling dates could not meet
the needs of crop monitoring and N diagnosis in various
environmental conditions. Therefore, regression analysis
was carried out with the pooled data of sampling dates.
There were large differences of light intensity among dif-
ferent sampling dates even under overcast days (Table 3,
PAR ranging from 145 to 692 μmol m−2 s−1 in 2011).
Interestingly, regression analysis did not show any evi-

dence that the relationship between SPAD and color index
g−1) and image color index b* in vegetative (a), tillering (b),
s (e) in 2011.



Figure 3 Relationships between SPAD readings and image color index b* in vegetative (a), tillering (b), jointing (c), booting (d) stages,
and the pooled data of the four stages (e) in 2011.

Wang et al. Plant Methods 2014, 10:36 Page 5 of 11
http://www.plantmethods.com/content/10/1/36
b* was affected by the varying light intensity (Figure 3e).
This might be attributed to the auto exposure controlled
by the digital camera which adjusted the exposure time to
make compensation for the amount of light reaching the
image sensor. However, there were no significant trends
between LNC and SPAD readings, or between LNC and
color index b* using data pooled across different sampling
dates (Figures 1e and 2e). Previous studies revealed that,
for rice and corn, the relationship between LNC and SPAD
readings could be improved simply by dividing the read-
ings with specific leaf weight (SLW= dry leaf weight/leaf
area) of the sampled leaves or introducing SLW as a
second independent variable in the multiple regression
Table 2 Statistics of the linear regression analysis between co
stages and cultivars in 2011

Vegetative Tille

Liangyoupeijiu R2 0.74** 0.6

RMSEa 0.87 1

Nanjing45 R2 0.42** 0.2

RMSE 1.61 1

Nanjing46 R2 0.83** 0.5

RMSE 0.94 1

All cultivars R2 0.31** 0.6

RMSE 1.94 1

Dependent variable: SPAD.
**indicate the significance at P < 0.01.
aRoot mean square error.
[44-46]. The reason is that SPAD readings vary with leaf
thickness which can be different in cultivars, developmen-
tal stages and environmental conditions [46,47], while the
LNC has a relatively consistent value. The uncertain rela-
tionship between LNC and color index b* (Figure 2e) may
also be caused by the difference of leaf thickness, because
the color index b* and SPAD readings both reveal the spec-
tral information of leaves, and their relationship keeps con-
sistent with the pooled data of different sampling dates
(Table 2 and Figure 3e). Nowadays, destructive sampling or
hyperspectral-reflectance [48] is required for the measure-
ment of SLW, however, including this defeats the purpose
of using a cheap and simple digital camera.
lor index b* and SPAD readings in different development

ring Jointing Booting All stages

2** 0.92** 0.86** 0.80**

.18 0.86 1.23 1.24

8** 0.90** 0.79** 0.60**

.41 0.64 0.91 1.60

2** 0.82** 0.83** 0.59**

.62 1.47 1.26 1.85

4** 0.65** 0.61** 0.53**

.66 1.87 2.59 2.23



Table 3 Rice cultivars, sampling dates (indicated as days after transplanting, DAT), photosynthetic active radiation
(PAR, μmol m−2 s−1) and the number of samples in the two experiments

Experiment Year Cultivar Vegetative Tillering Jointing Booting Number of samples

I 2010 Wuyunjing24 25a (937)b 36 (1536) 50 (1369) 64 (1532) 18

2011 Nanjing46 18 (145) 35 (692) 55 (203) 75 (296) 24

II 2010 Nanjing44 22 (1215) 35 (1058) 49 (1759) 63 (1477) 18

Yangjing48 22 (1449) 35 (1058) 49 (1759) 63 (1477) 18

2011 Nanjing45 16 (427) 29 (654) 51c (589) 57 (289) 18

Liangyoupeijiu 16 (427) 29 (654) 51 (589) 65 (621) 18
arepresents sampling dates (the days after transplanting, DAT).
brepresents the average PAR during the period of image acquisition.
cBecause of the continuous sunny days in the jointing stage for Nanjing45, sampling dates was delayed about a week.
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Model calibration and validation
Since developmental stages in rice affected the response
of N parameters to color indices, multiple linear regres-
sion analysis was carried out with the consideration of
days after transplanting (DAT) to estimate LNC and
SPAD (Table 4). The multiple linear models highly
improved the R2 of SPAD readings and b* with LNC
(Table 4, Figure 4a and b). The relationships between
SPAD readings and b* were less affected by the process
of development for all the cultivars (Table 2 and
Figure 3e). Therefore, the consideration of DAT in the
multiple linear regression did not improve the R2

effectively (Figure 4c). The slope of the regression lines
in Figure 4 was all less than 1, which indicated that pre-
dicted LNC or SPAD were generally smaller at the high
value area and bigger at the low value area, than the
observed ones. It was noteworthy that most of the pre-
dicted LNC in the vegetative stage (red symbols) were
underestimated in Figure 4a and b. This is mainly
because that the plants at this stage has higher concen-
tration of N but lower concentration of chlorophyll. In
this case, the lower concentration of chlorophyll would
Table 4 Statistics of the calibration and validation results for
SPAD with color index b*, SPAD and days after transplanting

Models α β

Calibration

Model 1 LNC = αSPAD + βDAT + γ 1.02 ± 0.07 −0.31 ± 0.01

Model 2 LNC = αb* + βDAT + γ −0.67 ± 0.06 −0.29 ± 0.01

Model 3 SPAD = αb* + βDAT + γ −0.60 ± 0.04 0.024 ± 0.007

Model 4 SPAD = αb* + γ −0.60 ± 0.04

Validation

Model 1

Model 2

Model 3

Model 4

The dataset in 2011 was used for model calibration and the dataset in 2010 used fo
aRoot mean square error.
bNormalized mean bias.
cause an underestimation of the LNC in the vegetative
stage.
Validations were performed on the four models in

Table 4 with all data obtained in 2010 under sunny days.
The images used in model calibration and validation were
taken under different weather conditions, the objective of
this combination was to evaluate whether the model was
robust under different light conditions. In general, good
performances on the predicted models were observed
for the estimation of LNC and SPAD (Figure 5). Model 1
showed the best performance on the prediction of LNC
with a normalized mean bias of 1.19% (Table 4 and
Figure 5a). Model 2, 3 and 4 showed relatively lower R2

and smaller negative bias. The model for the prediction
of LNC with color index b* (Figure 5b) was not se-
verely affected by the different light conditions in 2010
and 2011, compared to the prediction of LNC with
SPAD (Figure 5a). As with the calibration results, most
of the data in the vegetative stage were below the 1:1
line in models 1 and 2. In addition, the data in tillering
stage deviated from the 1:1 line in models 3 and 4,
which resulted in the low R2 (Figure 5). The similar R2
estimating leaf nitrogen concentration (LNC, g kg−1) and
(DAT)

γ RMSEa R2 NMBb

7.01 ± 2.95 3.07 g kg−1 0.78

69.27 ± 2.10 3.36 g kg−1 0.71

59.66 ± 1.14 1.62 0.55

60.70 ± 1.12 1.62 0.53

2.43 g kg−1 0.75 1.19%

2.59 g kg−1 0.62 −1.32%

2.01 0.46 −1.94%

1.89 0.47 −2.00%

r model validation.



Figure 4 Calibration of the four models in Table 4 for the estimation of leaf nitrogen concentration (LNC, g kg−1) and SPAD. Model 1
(a), LNC = αSPAD + βDAT + γ, model 2 (b), LNC = αb* + βDAT + γ, model 3 (c), SPAD = αb* + βDAT + γ, model 4 (d), SPAD = αb* + γ. Different
colors denote different developmental stages (red: vegetative, green: tillering, blue: jointing, purple: booting). Different symbols denote different
cultivars used for model calibration (○ Liangyoupeijiu, Δ Nanjing45, □ Nanjing46).
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and RMSE in Figure 5c and d indicated that the rela-
tionship between SPAD and color index b* was not
affected by the developmental stage.
In our study, the light conditions during image acqui-

sition were different between 2010 and 2011. Image
acquisition in 2011 was under overcast days with low
but stable diffused light. In contrast, images were taken
under sunny days in 2010 with strong and variable (PAR
ranging from 937 to 1759 μmol m−2 s−1) light (Table 3).
We can remove the effect of illumination change on
images when the change is over the whole image by nor-
malizing the image [49] or using a calibration panel [36].
However, there were many other differences caused by
the different light conditions. The strong illumination
in 2010 caused many white spots and shadows which
affected the image color (Additional file 1: Figure S1)
while this phenomenon was hardly seen in the images
taken in 2011. With the rice growth, the light status
within rice canopy (transmittance, reflectance, absorp-
tion) becoming more and more complex, the change of
illumination will cause different degrees of influence on
canopies that in different height (Additional file 2:
Figure S2). In this case, it is difficult to calibrate the
image color accurately. Sakamoto et al. [15] calibrated
image indices with the introduction of exposure value
(EV) and obtained reliable camera retrieved vegetation
indices (VIs). However, this method cannot apply to our
study for the calibration of canopy color because of the
different influence in one image.
Besides the light conditions, the prediction of crop N

status with leaf color may be affected by many other
environmental factors, such as developmental stage,
diseases and drought stress [50]. These factors may be
detectable from high-resolution canopy images [22,23].
Color indices analysis associated with these factors and
other image characteristics (e.g. canopy cover, plant shape,
leaf texture or even soil status), will provide more reliable
results to N diagnosis. Further studies will be devoted to
the exploration of image characteristics, leaf color correc-
tion and the calibration of the established model with
physiological parameters (e.g. SLW) in the evaluation of N
status under different environmental conditions.



Figure 5 Validation of the four models using the fitted parameters in Table 4 for the estimation of leaf nitrogen concentration (LNC, g
kg−1) and SPAD. Model 1 (a), LNC = αSPAD + βDAT + γ, model 2 (b), LNC = αb* + βDAT + γ, model 3 (c), SPAD = αb* + βDAT + γ, model 4 (d),
SPAD = αb* + γ. Different colors denote different developmental stages (red: vegetative, green: tillering, blue: jointing, purple: booting). Different
symbols denote different cultivars used for model validation (○ Nanjing44, Δ Wuyunjing24, □ Yangjing48).
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Conclusions
Image color indices calculated from RGB, HSV and
L*a*b* color models have significant correlations with
SPAD readings and leaf N concentration (LNC) of rice
leaves. Among these color indices, the index b*, which
represents the visual perception of yellow-blue chroma,
had the highest correlation coefficients with SPAD read-
ings and LNC. Regression analysis showed significant
linear relationships between index b* and N parameters.
However, the relationship between LNC and SPAD read-
ing, LNC and index b* were affected by the rice develop-
mental stage. This is mainly caused by the leaf thickness
which can be different in cultivars, developmental stages
and environmental conditions. In this case, linear regres-
sion models were established between color index b*,
LNC and SPAD readings by considering the develop-
mental process in rice. The multiple linear models im-
proved the R2 of SPAD readings and b* with LNC, yet
most of the predicted LNC in the vegetative stage were
underestimated because of the inconsistent relationship
between chlorophyll and N concentration. Validations
on the models showed good performance and acceptable
predicted precision with different cultivars and sampling
dates under different natural light conditions. These
results indicated that digital color image analysis could
be a simple method for assessing rice N status under
natural light conditions.

Materials and methods
General information of the experimental site
The experiment was laid out at Changshu Agricultural
Ecology Experiment Station, Changshu, Jiangsu, China
(31°33′N, 120°42′E). Located in the humid subtropical
climate zone, the station receives average annual solar
radiation of 4930 MJ m−2, sunshine of 1800 hours, pre-
cipitation of 1200 mm and cumulative temperature
above 10°C of 4933 degree-days (°C·d). The soil type for
the field experimental site is a gleyed paddy soil of the
Taihu Lake region, which contains total nitrogen (N) of
1.79 g kg−1, total phosphorus (P) of 0.93 g kg−1, total
potassium (K) of 18.7 g kg−1, organic matter of 30.8 g kg−1,
alkali-extractable N of 123 mg kg−1, Olsen-P of 13.1 mg kg−1,
plant available K of 121 mg kg−1 and pH of 7.4 (soil: water,
1:2) in the 0–15 cm soil layer.
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Experimental design
Two independent experiments with different N fertilization
gradients were implemented in our study. Experiment I
was a long-term site-specific rice-wheat rotation experi-
ment that started in 1997. The trial comprised six
fertilizer treatments represented as CK, N0, N1, N2, N3,
and N4 for N application of 0, 0, 180, 225, 270 and
315 kg N ha−1 in rice season, respectively. Each treat-
ment had four replicates which were arranged in a ran-
domized block design. The data used in this paper were
from the period May to November in 2010 and 2011
with cultivars Wuyunjing24 and Nanjing46, respect-
ively. Experiment II was carried out in paddy fields with
a rice-wheat rotation in 2010 and 2011. Six N applica-
tion rates with three replicates were designed in this
trial, which were represented as N0, N1, N2, N3, N4 and
N5 with N application of 0, 120, 180, 240, 270 and
300 kg N ha−1, respectively. The cultivars were Nanjing44
and Yangjing48 in 2010, and Nanjing45 and Liangyoupeijiu
in 2011. For both experiments, the N was split into
three applications, 40% as basal, 20% at tillering and
40% at booting. In addition, each plot received 90 kg K
ha−1 and 20 kg P ha−1 except the CK treatment in experi-
ment I. The applied K was split into 50% as basal and 50%
at booting, and all the P was applied as basal fertilizer.
Other crop managements were same as the local trad-
itional practices.

Sample collection and digital image acquisition
For measuring rice growth and nutrition parameters, the
above-ground part of rice plant was sampled about every
two weeks after transplanting until the booting stage. A
total of 4 sets of samples were collected in 2010 and
2011 (Table 3). The plant samples were separated into
leaves and stems (including sheaths), and dried at 105°C
for half an hour and then at 70°C until constant weight.
After that, the samples were weighed for dry weight and
analyzed for leaf N concentration (LNC) by the Kjeldahl
method [51]. Along with the plant sampling, a chloro-
phyll meter (SPAD-502, Minolta Camera Co., Osaka,
Japan) was used to obtain SPAD values on the four
youngest fully expanded leaves. Each blade was mea-
sured at three points: on the upper, middle and lower
thirds on either side of the midrib. Then, average SPAD
readings were calculated for each plot.
On the same day or following day of plant sampling,

images of the rice canopy were captured using a digital
still color camera (EOS 50D, Canon Inc.) with a reso-
lution of 15 mega pixels. The camera was mounted on a
tripod at the nadir position with a constant height of
1 m above the top of the rice canopy. Aperture priority
mode was selected, and the camera was set at aperture
of f/5.6, ISO of 100, white balance of 4,900 K, auto ex-
posure and auto-focus with the flash turned off. In 2010,
the pictures were taken at local time 12:00 – 13:00 in
sunny days, while in 2011, the pictures were taken at the
same time period but on overcast days. In the days of
picture taken (July and August), the deviation between
local time and solar noon was within 4 minutes. All the
pictures from the experiments were stored in CR2
(Canon raw image file) format. The photosynthetic ac-
tive radiation (PAR) and illuminance were recorded by
a portable light meter (GLZ-C, Top Instrument Co.,
Zhejiang, P. R. China) during the period of image
acquisition. Average PAR was calculated with each set
of pictures, and observed 937–1759 μmol photons m−2 s−1

and 145–692 μmol photons m−2 s−1 in 2010 and 2011,
respectively (Table 3).

Image segmentation and color indices calculation
A raw image file contains minimally processed data from
the image sensor of a digital camera. This file saves
settings of white balance, color saturation, contrast and
sharpness in it, but defers the processing. Therefore,
all the modification made on a raw image file is non-
destructive.
The canopy images in CR2 format were adjusted for

white balance using the 18% gray card (R-27, Kodak) pic-
tures which were taken simultaneously with the canopy
images. Then, lens distortion correction was applied, and
exposure was set to +1 for all images. After that, images
were saved as joint photographic experts group (JPEG)
files for further processing. All the procedures above were
processed with Adobe Camera Raw (Adobe Systems Inc.).
Since the images contained the rice canopy and some

non-canopy elements, such as soil, water and plant resi-
dues, images were segmented into canopy portion and
non-canopy portion. A computer program was devel-
oped based on the G-R thresholding method [25,29]
using MatLab® (MathWorks Inc.) to extract the canopy
portion of the image. The G-R thresholding method was
proposed according to the difference of reflectance
spectrum between green vegetation and non-canopy ele-
ments in the visible band. There is a reflection peak for
green vegetation in the green band, whereas no apparent
change for soil or water albedo in the whole visible band.
Therefore, the value of green channel minus that of red
channel expands the difference between canopy and
non-canopy portion.
After the image segmentation, 13 color indices derived

from 3 color models were calculated. RGB model is the
most common color model for the representation of
digital images. A color in the RGB model is described by
indicating how much of each of the red, green, and blue
is included. The color is expressed as an RGB triplet (R,
G, B), with the representation for black of (0, 0, 0) and
for the brightest representable white of (255, 255, 255)
in an 8-bit image [52]. R, G and B are the mean values
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of the red, green and blue channels, and r, g and b are
the normalized RGB values, respectively. Intensity (INT)
is the average of R, G and B. VIGreen is a widely used
vegetation index [13]. These indices were calculated as
follows [27,29]:

r ¼ R= Rþ G þ Bð Þ ð1Þ
g ¼ G= Rþ G þ Bð Þ ð2Þ
b ¼ B= Rþ G þ Bð Þ ð3Þ
INT ¼ Rþ G þ Bð Þ=3 ð4Þ
VIGreen ¼ G−Rð Þ= G þ Rð Þ ð5Þ

In addition, the CIE L*a*b* and HSV color spaces were
also tested in this study. The L* coordinate in CIE L*a*b*

[53] closely matches human perception of lightness, a*

and b* dimensions represent the visual perception of
red-green and yellow-blue chroma, respectively. Both a*

and b* are independent with image lightness (L*), and
take on both negative and positive values (+a* reds, − a*

greens, + b* yellows, − b* blues). The three coordinates
of L*a*b* are computed from the tristimulus values X, Y
and Z as following equations [32,54]:

L� ¼ 116f Y=Ynð Þ−16 ð6Þ
a� ¼ 500 f X=Xnð Þ−f Y=Ynð Þ½ � ð7Þ
b� ¼ 200 f Y=Ynð Þ−f Z=Znð Þ½ � ð8Þ

f ωð Þ ¼ ω1=3
� � jω < 0:008856

7:787 ωð Þ þ 16=116 ω ≥ 0:008856j

(
ð9Þ

where Xn, Yn and Zn describe a specified white object-
color stimulus.
The HSV color space is represented as a cylindrical-

coordinate in which the angle around the central vertical
axis corresponds to hue (H). The calculation of H was
listed below [27,29]:

H ¼
60 � G−Bð Þ= max RGBð Þ−min RGBð Þ½ �f g;max RGBð Þ ¼ R

60 � 2þ B−Rð Þ= max RGBð Þ−min RGBð Þ½ �f gf g;max RGBð Þ ¼ G
60 � 4þ R−Gð Þ= max RGBð Þ−min RGBð Þ½ �f gf g;max RGBð Þ ¼ B

8<
:

ð10Þ
Pearson correlation and regression analyses were used

to detect the relationship between color indices and crop
N status. The significance of linear regressions was eval-
uated using Student’s t-test at 95% confidence levels.
Significance of ANOVAs was evaluated with the least
significant difference test (LSD) at 0.05 probability level.
Data analysis and figure production were done using the
R v3.0.3 software [55].
Correlation analysis, linear regression analysis and

model establishment between color indices and crop N
status were based on the data in 2011, and the data in
2010 were used for model validation.

Additional files

Additional file 1: Figure S1. Examples of the “white spots”, which are
over-exposed areas where the reflected light came into the camera
directly.

Additional file 2: Figure S2. Canopy images of Nanjing46 in different
developmental stages (a, vegetative; b, tillering; c, jointing; d, booting).
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