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Abstract

In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion
dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying
the initiation and progression of the neoplastic process has been recently described by different research groups as a
new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal
energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an
aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/
↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps
and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their
death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is
the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH
and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, acti-
vation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and po-
tent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the
better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological con-
text, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported.
Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
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Rationale
Proton transport and its inhibition as an approach to
cancer etiopathogenesis and treatment
The pathological regulation of hydrogen ion dynamics in
cancer cells and tissues leads to a reversed hydrogen ion
gradient in these cells (↑pHi/↓pHe). This results in a very
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acidic extracellular microenvironment specific to all ma-
lignant tumors [1-5]. Thus, malignant cells have an
acid–base balance that is completely different to that ob-
served in normal tissues and that increases with increasing
neoplastic state: an extracellular acid microenvironment
(pHe) linked to a ‘malignant’ alkaline intracellular pH
(pHi) [4]. Indeed, tumor cells have alkaline pHi values of
7.12-7.7 vs 6.99-7.05 in normal cells while producing
acidic pHe values of 6.2-6.9 vs 7.3-7.4 in normal cells
(Table 1) [4,6,7]. This specific and pathological reversal of
the pH gradient in cancer cells and tissues compared to
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Table 1 pHi and pHe in normal and cancer cells:
apoptosis and antiapoptosis

Normal cells Cancer cells

(pHi < pHe) (pHi > pHe)

(“proton gradient reversal”)

Intracellular pH (pHi) 6.99-7.05 7.12-7.7

(Pathological antiapoptosis)

Extracellular/

interstitial pH (pHe) 7.35-7.45 6.2-6.9

pHi <6-6.5 (Therapeutic apoptosis)

For further details, see text and refs. [4,40].
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normal tissues (“proton reversal”) is now considered to be
one of the main characteristics defining tumor cells that
completely alters their thermodynamic balance and mo-
lecular energetics, regardless of their pathology and genetic
origins. The induction and/or maintenance of intracellular
alkalinization and its subsequent extracellular/interstitial
acidosis on intratumoral dynamics have been repeatedly
implicated as playing an essential, direct and pivotal role
both in cell transformation and growth as well as in the ac-
tive progression and maintenance of the neoplastic process
[8-10]. Moreover, this intracellular alkalosis represents a
common final pathway in cell transformation through the
stimulation of the Na+/H+ transporter by a myriad of car-
cinogens of the most varied origins and natures [8-19].
Such a wide array of carcinogens induce cell transform-
ation and an increase in cell pH [14,17-24].

Factors that increase cell pH and/or stimulate NHE activity
as mediators of high pHi-mediated carcinogenicity

Virus (HPV E5, human polioma virus)
Oncogenes and viral proteins (v-mos, Ha-Ras, HPV16 E7)
Gen products (Bcl-2)
p53 deficiency
Chemicals carcinogens (arsenic salts, etc.)
Chronic hypoxia and HIF
Hormones (insulin, somatostatin, growth
hormone, glucocorticoids)
Growth factors (IGF-1, HGH, PDGF, VEGF, EGF, IL-1,
IL-8, TGF-β, G-CSF,
Angiotensin II, PGE2, diferric transferrin, bombesin)

Such an elevated pHi was very early on implicated as a
crucial factor and target in neoplastic transformation in
response to the overexpression of certain proton trans-
porters as well as the ras and v-mos oncogenes [25,26].
It was observed that oncogene-dependent transformation
resulted in an elevated pHi, increased NHE1 activity and
increased glycolysis, although it was not clear from those
early experiments if the driving factor was the stimulated
NHE1, an elevation of pHi or the increased glycolysis itself.
This question was resolved in a study utilizing the inducible
expression of an oncogene (HPV16 E7) to dissect the time-
dependence of the appearance of the three above-men-
tioned factors [10]. This study demonstrated that the first
step in oncogene-dependent transformation of normal cells
is the activation of the NHE1 with the subsequent cytosolic
alkalinization followed by an increase in glycolysis. Further-
more, it was demonstrated that this alkalinization was the
driver of a series of transformation hallmarks such as in-
creased growth rate, substrate-independent growth, growth
factor independence and tumor growth [4,18,27,28].
Altogether, these data demonstrate that oncogenes utilize
NHE1-induced cellular alkalinization to produce the
unique cancer specific pH regulation with the resulting pH-
related hallmark phenotypes characteristic of cancer cells.
NHE1, by controlling pHi and preventing cell acidification
plays a key role in cell survival/proliferation and tumour
growth. Even from an epidemiological perspective, it was
recently shown that low concentrations of arsenic salts in
drinking water induce a carcinogenic effect directly related
to the onset of different human tumors and that this effect
is mediated by the stimulation of NHE1 and the resulting
increase in cytosolic pH. These authors concluded that the
increase in cell pH is an important pathogenetic mediator
of the carcinogenic effects of arsenic salts [14], as has been
reported in other parallel studies by different groups of re-
searchers [4,8-10,13,25,28]. This is in line with previous re-
views reporting a cause-effect relationship of a high
microenvironmental pH and/or NHE stimulation with both
pH-directly and pH-indirectly carcinogenesis, with the ef-
fects of a high pH reproducing most of the characteristics
and metabolic behaviour of cancer cells [11].
Importantly, these complex dynamics of pH-metabolism

engage the cell in a vicious cycle from very early on: the
oncogene-driven alkalinization increases glycolysis and
proliferation which, by generating a need for a high energy
consumption, creates a high proton production that acti-
vates various proton efflux transport systems resulting
in a further alkalinisation of the cell. This even further re-
duces oxidative phosporylation (OXPHOS) and increases
glycolysis. This “chain-reaction” of deep-seated and dy-
namically disregulated H+ energetics creates a “perfect
storm for cancer progression” [2]. Finally, to our know-
ledge the pathological alkaline pHi of tumor cells and tis-
sues have never been described in any other type of cell or
disease other than malignancy [29,30]. This adds further
weight to the paradigm concerning the specificity and se-
lectivity of these H+-mediated, deep-seated energetic ab-
normalities regarding the advantageous thermodynamics
of the malignant process.
Indeed, this “basic” and specific abnormality of the re-

lationship between the intracellular and the extracellular
proton dynamics (“proton gradient reversal”) represents
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a phenomenon that is increasingly considered to be one of
the most differential hallmarks of cancer [4,5]. This severe
abnormality in cell physiology has led to the formation of a
unifying thermodynamic view of malignancy, a comprehen-
sive new paradigm able to encompass an enormous and
scattered bulk of information in the main areas of research
that embraces many different and so far poorly intercon-
nected cancer fields. These range from etiopathogenesis,
cancer cell metabolism, multiple drug resistance (MDR),
neovascularization and the metastatic process to selective
apoptosis, cancer chemotherapy, cancer epidemiology and
even the, so far poorly understood, phenomenon of the
spontaneous regression of cancer [27,31,32]. Further, the in-
creased diffusion of the proton ions along concentration
gradients from tumors into adjacent normal tissues creates
a pericellular and peritumoral acidic microenvironment in-
volved in driving destruction of the surrounding normal
limitrophic tissue, invasion and metastasis. Both the acidic
pHe and the constitutively active NHE1 play a key role in
driving protease-mediated digestion and remodelling of the
ECM and the turning on of invasive phenotypes of the cell,
scavenging normal tissue and increasing motility through
the formation of invasive structures such as leading-edge
pseudopodia and invadopodia [4,6,33-35] (Figure 1). Fur-
thermore, focal cell to cell adhesions are particularly located
at the cell front where NHE1 is concentrated. These sites
Figure 1 Model of localization and role of NHE1 in invadopodia. The i
the ECM that are responsible for ECM degradation and are known as invadop
and their activity further increased through the CD44 (activated by its ligand
receptors are connected to the cytoskeleton (blue circles) through the protein
Plasminogen Activator and the matrix metalloproteinases MMP-2 and MMP-9
membrane and participates together with Cathepsin B in the processing of in
invadopodia, leading to the localized production of protons. These protons a
through integrin binding and further stimulated by CD44 and EGFR. NHE1 wi
membrane protrusion and proteolysis. As a proton transporter, NHE1 promotes
space where NHE1 proton secreting activity and proteases act in concert to deg
of the invadopodia cytosol results in a phosphorylation of cortactin with the su
the invadopodia cytoskeleton and invadopodia protrusion. Secondly, NHE1 also
through its binding to the actin anchoring protein, ezrin, which, reciprocally is r
ECM and growth factor receptor activation. PIS: PeriInvadopodia Space; ECM: Ex
feature a remarkably alkaline cytosolic and an acidic peri-
cellular pH and thus a much steeper proton gradient across
the plasma membrane compared to the rest of the cell [36].
Most recently it has also been advanced that that deregula-
tion of NHE1 activity is a major factor leading to metastasis
in human breast cancer [37]. Altogether, this clearly indi-
cates that therapeutic targeting of the main proton trans-
porters that are selectively overexpressed in cancer cells
could be highly specific for malignancy, and is likely to
open new pathways towards the development of more ef-
fective and less toxic chemotherapeutic measures for all
solid malignant tumors and leukaemias [5,38-40].

The pH of cancer cells and the Warburg Effect: a
synthetic explanation
Even from the time of Warburg´s death in 1970 the idea
that the shift to glycolytic metabolism relative to OXPHOS
under aerobic conditions could be explained by an in-
crease in the intracellular pH, has been increasingly gain-
ing weight with the passing of time [8,28,41-44]. Nagata
et al., have recently reached a synthetic conclusion: that
the Warburg effect may be simply, and perhaps fully ex-
plained by the elevation of pHi in cancer cells [44]. These
groups have also shown that malignant alkalinisation
drives the initial activation of aerobic glycolysis (first ap-
pearance of the Warburg Effect) [44,45]. In the presence
nsert is a magnification of the F-actin-enriched cellular protrusions into
odia. Invadopodia formation is activated by integrin binding to the ECM
Hyaluronan) and EGFR receptors located in the membrane. The integrin
s Talin and Vinculin. The proteases cathepsin B, D and L, Urokinase
are released extracellularly while the MT1-MMP is localized within the
active pro-MMP-2 into active MMP-2. Glycolytic enzymes are enriched in
re secreted via an active NHE1 that is recruited to the invadopodia
th its two functions (scaffolding protein and ion exchanger) leads to
invasion through its control of the acidification of the peri-invadopodial
rade the ECM during invasion. Further, the NHE1-dependent alkalinization
bsequent release of cofilin which promotes actin polymerization, growth of
promotes invadopodial formation via its interaction with the cytoskeleton
esponsible for the localization of NHE1 to the invadopodia in response to
traCellular Matrix. Please see text for discussion and references.



Table 2 Similarities of effects of a high pH - Low [H+] or
(Alkalosis) and low pO2 (Hypoxia) on cellular
biochemistry and metabolism

Hypoxia Alkalosis

Glycolysis ↑ ↑

Phosphofructokinase ↑ ↑

Pyruvate production ↑ ↑

Lactate production ↑ ↑

(Anaerobic glycolysis) (Aerobic
glycolysis)

ATP production ↓ ↓

Mitochondrial oxidation ↓ ↓

Transforming/oncogenic
effect

+ +

(Goldblatt-Warburg
effect)

(The Warburg
effect)

↑ Stimulation; ↓ Inhibition.
For further details, see text and reference [11].
Note: Reprinted from Critical Reviews Oncogenesis, vol. 6. Harguindey S, Pedraz
JL, Garcia Canero R, Perez de Diego J, Cragoe EJ, Jr. Hydrogen ion dependent
oncogenesis and parallel new avenues to cancer prevention and treatment using
a H(+)-mediated unifying approach: pH-related and pH-unrelated mechanisms,
p. 6, ©1995, with the permission from Begell House, Inc.
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of adequate oxygen levels, the intracellular pH plays a
key role in determining the way cancer cells obtain en-
ergy: an alkaline pHi driving aerobic glycolysis and an
acidic pH driving oxidative phosphorylation [28]. An ex-
planation for this phenomenon derives from the fact
that both the processes of OXPHOS and glycolysis are
exquisitely but oppositely pH sensitive and a rapid shift
of cell metabolic patterns follows either acidification or
alkalinisation. On the one hand, it has been known for de-
cades that an alkaline pHi even slightly above steady-state
levels stimulates the activity of key glycolytic enzymes
such as phosphofructokinase (PFK-1) and inhibits gluco-
neogenesis [8,41,42,46,47]. Indeed, in cancer cells a high
pHi situation can increase the allosteric regulation of PFK-
1 more than 100-fold [2,8]. This also has important diag-
nostic consequences. We know that the selectivity of PET
technology is based upon the degree of tumor glycolysis.
Tumoral glycolysis is to a great extent dependent on pHi,
increasing with cellular alkalinity and decreasing with
intracellular acidification. This feature opens a diagnostic
potential for the development of new radiological method-
ologies based on the determination of the intracellular
acid–base status. Thus, measurements of the pHi in ma-
lignant tumors, and even premalignant conditions, could
become a better diagnostic tool than PET technology in
determining the presence of a tumor, and could also de-
tect higher than normal pHi areas (> 7.2/7.3) where malig-
nancy is most likely to develop and eventually manifest
itself [35,48-51]. Finally, hypoxia (low pO2) or alkalosis
(high pHi or low intracellular H+-concentration) show
similar effects on cell intermediary metabolism as well as
a parallel transforming potential [11]. Indeed, the trans-
forming effects of a high pHi are known as “para-hypoxia”
and the carcinogenic effects of hypoxia as the “Warburg-
Goldblatt effect”, after Goldblatt induced malignant trans-
formation of cells kept in relatively low O2, non-killing
conditions during Warburg´s time (Table 2) [11,52]. In-
deed, it can now be considered that the high pHi of tumor
cells, the Warburg effect and the steady-state cancer cell
proton reversal may very well represent one and the same
phenomenon observed from different perspectives, at dif-
ferent historical times and through less outreaching and
integral perspectives.

Back to beginnings: a fatal historical error?
To understand the full significance of the most recent
observations and data we need to go back in time to the
beginnings of cancer biochemistry, and so, to the postu-
lated origin of cancer cells [53,54]. By doing so we realize
that a fundamental confusion in the entire field of meta-
bolic and biochemical cancer research was created from
its very beginning. Nowadays, it is clear that Otto Warburg
was wrong on the main point of his famous theory,
namely, on the levels of cancer cell pHi, and consequently
on its relationship to glycolysis. Indeed, Warburg believed
that the pH of cancer cells was acid because of their high
production rates of lactic acid [55-57]. Probably, the main
reason for overlooking the true pH/glycolysis relationship,
or at least for being given a secondary role at that time was
that, during the 60’s and 70’s, the necessary technology to
measure pHi was not available [58]. The situation started to
turn around just after Warburg’s death in 1970, when dif-
ferent reports began to emphasize that the pHi of cancer
cells was the opposite from what was generally thought
during Warburg’s life [18,41,43,58]. Thus, Warburg could
not have been aware that cellular alkalosis not only activates
glycolysis but at the same time hinders oxidative phosphor-
ylation and the entrance of pyruvate in the Krebs cycle
[42,59]. This allows a further insight into the reasons be-
hind decades of confusion and disagreements on his theory
of “the abnormal respiratory mechanisms of cancer cells”,
that he defended all his life [8,28,42,53,59-61]. It is also im-
portant to remember that at Warburg’s time there were not
techniques permitting the discrimination between the pH
of the cytosol and of the internal organelles. Today we are
able to show that within tumor cells the cytosol is alkaline
while the cytoplasmic vesicles are very acidic [62,63]. This
is possible thanks to proton pumps, on one side eliminating
protons outside the tumor cell when expressed on the
plasma membrane, while pumping them from the cytosol
to the internal lumen of the acidic vacuoles in order to
avoid internal acidification (reviewed in [64]).
Importantly, any consideration concerning the intimate

relationship of high pHi and glycolysis was fully missed
during the famous arguments between Warburg and
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Weinhouse published in Science in 1956 [61,62]. Indeed,
all those heated discussions could only beg the real issue
and could have been obviated if the true effect of pH on
anaerobic and aerobic glycolysis and oxidative phosphor-
ylation (“parahypoxia”) [11] could have been taken into
account. Probably, this is also the main reason behind
the fact that the search for the real cause underlying the
Warburg effect has created many disagreements over
the last decades [3,56,61,63-71]. All in all, it can now be
said that Warburg was right up to a certain point but
that his critics were also partially right. However, all of
them missed the main point. Aerobic glycolysis or dam-
aged respiration was not the primary cause of cancer, as
Warburg defended until his death. Indeed, the primary
cause of cancer appears to be, precisely, the main cause
of the aerobic glycolysis of tumors: a profound disrup-
tion of the homeostatic acid-balance of the cell mainly
represented by an abnormally high pHi mediated by an
extremely varied number of etiological factors of differ-
ent natures. In summary, cellular alkalosis represents a
common final pathway in cell transformation induced by
a myriad of different stimuli, from oncogenes to virus to
mitogens to growth factors and hormones to gene prod-
ucts [1,4,8-10,27]. Finally, some recent and otherwise
complete reviews dealing with Warburg’s contributions to
modern concepts in cancer metabolism, tumor glycolysis,
the initiation of cancer and oxidative phosphorylation
have not considered the tight cause-effect interrelation-
ships between pH and glycolysis, the Warburg effect and
cancer proton reversal [65,68,69,72,73].

Anticancer potential of NHE inhibitors. Background to
recent developments
The development and maintenance of this reversed pH
gradient is directly due to the ability of the tumor cells
to secrete protons (H+) [1,4,27,74]. This proton secretion
depends on the buffering capacity of the cell and is
driven by a series of membrane-bound proton trans-
porters (MBPT), mainly the Na+/H+ exchangers but also
carbonic anhydrases (CAs, mainly CA IX and XII), vacu-
olar H+-ATPases, the H+/Cl- symporter, the monocar-
boxylate transporter (MCT, mainly MCT1), also known
as the lactate-proton symporter, the Na+-dependent Cl-/
HCO3

- exchangers and ATP synthase [1,5,40,74-77], each
of them having its specific inhibitors (Figure 2). The hu-
man NHE (SLC9) family is comprised of nine A isoforms
(SLC9A1-9) with one established (NHE6) and one pos-
sible (NHE1) splice variant and five pseudogenes plus two
B isoforms (SLC9B1/2) and two C isoforms (SLC9C1/2)
[78]. (For a more detailed information about the SLC gene
tables, please visit: http://www.bioparadigms.org).
Among them, the most important, functionally active,

cancer-selective and better studied is the Na+/H+ exchanger
isoform one, NHE1 [79-81]. The NHE1 is specifically
involved in cellular acid–base balance and is the predomin-
ant isoform expressed in tumors, where it has been shown
that it contributes to cellular pH homeostasis, cell trans-
formation, proliferation, motility, migration, tumor growth,
invasion, activation of the metastatic process, resistance
to chemotherapy and probably also to the spontaneous
regression of cancer [4,31,37,82-84]. Conversely, decreasing
NHE1 expression or inhibiting NHE1 activity leads to
tumour cell growth arrest, inhibition of glycolysis, acidifi-
cation of the intracellular space and selective apoptosis
[29,38,45,82]. An elevated NHE1 activity is considered to
be the major factor in promoting tumor extracellular/inter-
stitial acidity from even the earliest pre-cancer stage of
oncogene-driven neoplastic transformation [25,26]. How-
ever, large studies of patient cohort samples demonstrating
that NHE1 is overexpressed in human tumors are lacking.
Also, some cancer cells can be NHE1 negative and main-
tain cytosolic alkalinisation through expression of other
MBPT [40,85]. Consequently, NHE1 inhibitors appear pre-
destined to be taken advantage of as a therapeutic target in
probably most types of human cancer [81,86-89]. For a de-
tailed review of the structure and biophysical characteristics
of NHE1, the regulation of the NHE1 activity and its role in
tumor cells pH homeostasis, please refer to recent publica-
tions [2-4,79,80,90].
Beyond studying in depth the evolution and progress

of biochemical and metabolic cancer research, a major
purpose of this review is to consider the fact that the
new and selective NHE1 inhibitors show promise to be-
come potent anticancer agents in preclinical trials and,
eventually, in cancer patients. Amiloride was the first
NHE inhibitor developed and it was shown to decrease
vasoendothelial growth factor (VEGF) production and the
activity of urokinase-type plasminogen activator (μPA), me-
talloproteinases (MMP) and other proteases, all of which
aid in the activation of the metastatic process [89,91-94].
Amiloride alone was shown to achieve a complete in vivo
anti-metastatic effect in transplanted tumors in rats [95].
Indeed, there are occasional reports of long-term treatment
with amiloride in humans achieving remissions of cancer
after chemotherapy had failed to control disease progres-
sion [96]. Recent publications on the use of amiloride in
cancer therapy discussed the different studies where its use
had clear anti-neoplastic effects with few side-effects [97].
Long before this, the utilization of amiloride and its deriva-
tives were proposed as anticancer agents in bedside on-
cology [86]. This potassium-sparing diuretic, apart from
having a direct antitumoral, antimetastatic and antiangio-
genic effect [95,97,98], at least in part by inhibiting uPA
and VEGF, has been shown to be well tolerated and safe
when used in the chronic situation in pharmacological
dosages in humans, the main side-effect being occasionally
increased plasma K+ levels [96,99,100]. Since more select-
ive and powerful NHE inhibitors, like cariporide, are not

http://www.bioparadigms.org/
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available for human use, amiloride should still be part of
new protocols dealing with the concerted use of a cocktail
of proton transport inhibitors (PTIs) in different human
solid tumors [5,96,101].
For many years investigators have waited for more spe-

cific and potent NHE inhibitors to be developed and be
made available to the clinician [102]. In this vein, powerful
amiloride analogues, like ethylisopropylamiloride (EIPA),
have been studied in different settings regarding its antican-
cer potential [103-105]. Hexamethylamiloride (HMA) and
dimethylamiloride (DMA), were also introduced in basic
experimental research and provided additional evidence of
the validity of this approach. Striking results in different
kinds of leukemic cells were reported with the potent
NHE1 inhibitor HMA, which specifically decreases the pHi

well below the survival threshold leading to selective apop-
tosis in a variety of human leukemic cells [38]. This has led
to the consideration that inducing a low pHi-mediated
apoptosis as a cancer-specific therapeutic modality for all
cancer cells and tissues could be a new and original
approach to clinical therapeutics [27,39,44,76,106]. Regard-
ing NHE-related malignant angiogenesis, the activity of
a significant number of proangiogenic factors and onco-
genes has been shown to positively affect NHE1 expres-
sion while, on the contrary, a wide array of anti-angiogenic
drugs inhibit NHE1 [107,108]. In summary, a great deal of
evidence has been accumulating showing that the NHE
is an important, and possibly selective, anticancer target
[11,81,86,87,89,100]. The pharmacology and therapeutic
possibilities of the rest of the different proton transporters
besides NHE1 have been thoroughly reviewed recently and
will not be further dealt with here [4,75,81,83].

Cariporide’s anticancer potential
It has been demonstrated that treating various kinds of
cancer cells with selective and potent inhibitors of NHE1,
including cariporide, suppresses their invasive capability
[37,109-111].
Di Sario et al., have also shown that cariporide, through

its selective inhibition of NHE1 and subsequent decrease
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of intracellular pH reduces proliferation and induces apo-
ptosis in cholangiocarcinoma cells [112], leading these
authors to suggest the potential therapeutic value of car-
iporide against this human tumor. A recent review has
also focused on how to therapeutically target the NHE1-
mediated metabolic transformations of cancer cells with
cariporide [64]. However, translation to the oncology clinic
has yet to be realized because, unfortunately, the utilization
of this drug in cancer treatment has not been explored
[4,84] and there is scarce data on NHE1 upregulation in
tumour cells [40]. This is most important since the con-
certed utilization of less potent and specific inhibitors of
NHE1 and other proton transport inhibitors (PTIs) was re-
cently advanced as a new, selective and integrated antican-
cer strategy [5,101] (Figure 2).
The only non-amiloride based compounds with NHE1

inhibitory activity that have undergone clinical trials are
cariporide and eniporide, and, unfortunately, those trials
were not in the field of cancer but in a cardiological set-
ting and for ischaemic-reperfusion injury. An early study
on the effect of cariporide in 100 patients waiting to re-
ceive perfusion therapy via primary coronary angioplasty
within 6 hours of the onset of symptoms suggested that
reperfusion injury could be a target for NHE inhibitors
and these results led to further clinical trials to confirm
the therapeutic potential of NHE inhibitors [113]. Two
were with cariporide: The “Guard During Ischemia Against
Necrosis” (Guardian) [114,115] and “The Na+/H+ Exchan-
ger Inhibition to Prevent Coronary Events in Acute Car-
diac Conditions” (EXPEDITION) [116]. The “Guardian”
trial included a total of 11590 patients with unstable angina
or a myocardial infarction who received placebo or differ-
ent doses (30, 80 and 120 mg) of cariporide. There were an
early clinical benefit and elevated six month survival rate
in only a group of patients requiring urgent coronary by-
pass graft surgery and at a cariporide level of 120 mg.
There was also a trial utilizing eniporide: “The Evaluation
of the Safety and Cardioprotective Effects of Eniporide in
Myocardial Infarction” (ESCAMI) [117].
Despite the cardioprotective value of cariporide in re-

ducing myocardial infarcts in both the EXPEDITION
and in the earlier GUARDIAN trials, use of the drug was
associated in the EXPEDITION study with a significant in-
crease in the rate of mortality (from 1.5% to 2.2% at day 5)
due to an increase in cerebrovascular events [116,118].
The appearance of these adverse effects in the last trial can
probably be ascribed to the higher cumulating dose of car-
iporide administered in the EXPEDITION trial with re-
spect to the GUARDIAN trial [119].
Clearly, a clinically reasonable initial approach in an on-

cology setting would be to minimize the systemic dose of
the drug in order to dissociate the adverse and probably
off-targets effects from the beneficial effects. Interestingly,
rats having a lifelong treatment with cariporide had a
greatly extended lifespan and this was interpreted as being
due to a reduced occurrence of cancer [120]. Finally, car-
iporide has been shown to be useful in overcoming multiple
drug resistance (MDR) and the activity of the metastatic
process [121]. Besides, it is orally bioavailable and by this
route of administration has been used but, unfortunately,
never to date as an anticancer drug [114-119,122-125].
Interestingly, hypoxia is part of the tumor metabolic
microenvironment and has been shown to activate NHE1
and consequent invasion [109,126,127]. Cariporide reduces
hypoxia-mediated tumor invasion of human tongue squa-
mous cell carcinoma by inhibiting NHE1 [128]. In this
study, the authors demonstrated that inhibition of NHE1
by cariporide (HOE642) suppressed the invasion and mi-
gration of Tca8113 cells under hypoxic conditions. In an-
other study pharmacological inhibition of p38 MAPK
(mitogen-activated protein kinase) also significantly sup-
pressed C/EBPα expression under hypoxia conditions after
NHE1 inhibition [110]. These results indicate the en-
hancement of hypoxia-induced K562 differentiation by
NHE1 inhibition, which may be due to up-regulation of
C/EBPα via p38 MAPK signalling pathway, which sug-
gests a possible therapeutic target of NHE1 under hyp-
oxia microenvironment in the treatment of leukaemic
diseases. Finally, this also suggests that NHE1 inhibitors
could be combined in clinical trials with antiangiogenics
[129,130] because tumor hypoxia and/or acidosis also
stimulates VEGF [131,132].
Indeed, in addition to VEGF release and, subsequently,

neoangiogenesis, being stimulated by hypoxia, upregula-
tion of VEGF has also been linked as being secondary to
acidic pHe [131,133]. Also, NHE1-dependent lowering in
pHi also reduces the release of VEGF from the tumor
cell so hindering motility and invasion [38,134]. Systemic
amiloride treatment also reduced experimentally-induced
neovascularization in an animal model; probably through
inhibition of NHE1 [135]. For more detailed information
please refer to the following review [107]. Importantly, the
potency of cariporide and some other NHE1 inhibitors is
related to the ionization state of the guanidine residues. In
this respect, the acidic extracellular pH of tumors (which
can be as low as 6.2) will render zoniporide (pKa = 7.2),
TY-12533 (pKa = 6.93) and, especially, cariporide (pKa =
6.28) positively charged. Therefore, the acidic tumor mi-
croenvironment could turn out to be an advantage in
terms of dose-dependent side-effects as these compounds
would be more efficient at inhibiting NHE1. Indeed, car-
iporide would be even more active at a very low pHe (ie.
IC50 = 22 nM vs 120 nM at pHe 6.2 and 6.7, respectively)
[136-138]. Finally, the development of new non-guanidine
derived NHE1 inhibitors could alleviate some of the detri-
mental side-effects found in the Expedition trial (see sec-
tion below on the new and potent non amiloride-derived
and non guanidine-derived compounds).
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The role of pH in multiple drug resistance (MDR)
Cariporide and other proton transport inhibitors in the
overcoming of MDR

pH, MDR and cancer A direct cause-effect relationship
among MDR and the elevation of pHi in cancer has been
recognized by different groups of researchers [83,139-141].
On the contrary, the failure of tumor cells to die following
chemotherapeutic treatment appears to be highly depen-
dent on their resistance to undergo intracellular acidifi-
cation, a situation that is apparently necessary as a prior
and early condition that allows cancer cells to engage in
a tumor-specific apoptotic process [38,44,45,106,112,142]
(Figure 3). Cancer cells are known to establish a dynamic
and well organized self-defensive anti-apoptotic strategy
(“the neostrategy of cancer cells and tissues”) [27] which
is mediated through different anti-acidifying mechanisms
such as hyperactivity of the group of membrane-bound
proton extrusion transporters, inactivation of Bcl-2, Bcl-xl
and/or a pH-dependent de-stabilization of p53 [12,13,139].
These concerted dynamic changes work as an anti-
chemotherapeutic shield involved in multiple drug resist-
ance (MDR) and in the development of newly resistant
subpopulations of tumor cells [1,143]. The final thera-
peutic aim is to target this selective acid–base disruption
of cancer cell metabolism based on the H+-dependent
thermodynamic advantages that malignant cells possess
Figure 3 Intracellular signaling factors and mechanisms targeting pH
integrated and homeostatic pH-related perspective can help to foretell pro-apo
potential antagonisms (MDR) in anticancer treatment. Abbreviations: ↑: Stimula
MDR: multiple drug resistance; GFs: growth factors; Cyt C: cytochrome C; NO: n
death receptor; JNK: Jun-terminal kinase; MAPK: mitogen-activated protein kina
(For further details, see text and refs. [5,29,30]. (Modified from refs. [5,29] by per
for their evolutionary survival as compared to their normal
counterparts in order to exploit such differences in select-
ive cancer therapeutics [144-146]. This can be achieved
with the concerted utilization of proton transport inhibi-
tors (PTIs) as primary treatment and also as an adjuvant
measure in overcoming MDR, increasing therapeutic spe-
cificity and effectiveness regardless of tumor type and ori-
gin [4,82,83]. Besides, drugs of the amiloride series and/or
other proton transport inhibitors (PTIs), apart from re-
versing cancer proton reversal also induce VEGF inhib-
ition, so behaving as antiangiogenic drugs [20,92,107,147].
Furthermore, various anticancer drugs including adria-
mycin, cisplatinum, paclitaxel and camptothecin do not
induce apoptosis under non-acidified intracellular con-
ditions [148-151]. Also, resistance to several anticancer
drugs such as camptothecin, vinblastine, adriamycin,
and etoposide, has been correlated with overexpression of
different proton transporters and/or intracellular alkalini-
zation [4,20,83,139,140]. Besides, it should be taken into
account that cytosolic acidification is a very early event in
the onset of malignant cell apoptosis [106,152]. These
MDR modifiers include verapamil, amiodarone, Bafilomy-
cin A1, cyclosporine A, tamoxifen, 4,4′-diisothio-cyanatos-
tilbene-2,2′-disulfonic acid (DIDS), nigericin, cariporide
and edelfosine [11].
This H+-based “basic” approach to MDR-related cancer

therapeutics may lead to more selectivity and less toxicity
i and the Na+/H+ exchanger in the apoptosis of cancer cells. This
ptotic and anti-apoptotic factors in order to find synergistic therapies and
tion; ↓: inhibition; SST: somatostatin; SHP1: protein tyrosine phosphatase;
itric oxide. TFWS: trophic factor withdrawal syndrome; αCD95 (Fas/Apo-1)
se; PTI: proton transport inhibitors; ICE: interleukin-1β-converting enzyme.
mission from Dove Medical Press, Ltd., and Anticancer Research).



Figure 4 Impact of the changes in intracellular pH on
doxorubicin resistance in different cancer cells. Multidrug
resistance in cancer has been associated with the alkalization of the
cytosol due to overexpression of proton pumps at the level of the
cell membrane and/or expression of drug transporters. In this
context it is believed that weak base drugs are protonated and as a
result cannot cross the membrane bilayer, a feature that adds to the
efficiency of drug transporters. Albeit this model (drug protonation
and transporter) has been used over decades, the high pH of the
cytosol can drive drug resistance through a different mechanism.
The hypothesis made by us was that the change in cytosolic pH
makes the membrane less permeable to drugs due to hydrogen-lipid
interactions. To test this, a model of hydrogen-lipid interaction was
formulated and compared with experimental data. In the figure the
X-axis represents the positive increment in the cytosolic pH when cells
switch their state from being sensitive to resistant to drugs. The Y-axis
represents the ratio of the logarithm values of the concentration of
drugs to kill 50% drug resistant vs. sensitive cells. The blank dots
represent the experimental data. The black dots show the result
expected from the theoretical modelling. The straight line represents
the linear trend (best fit) from experimental data. Finally, the best fit
passes across all the dots modelled by the theory. For further details
see ref. [169].
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of other chemotherapeutic agents if used together with
the most potent and selective PTIs known to date, like
cariporide, Phx-3 or Compound 9 t [44,81,124]. Caripor-
ide also increases the effect of gemcitabine in human chol-
angiocarcinoma cells by inhibiting MDR [12]. Further
along this line, the inhibition of the NHE1 has been shown
to play a fundamental role in paclitaxel-induced apoptosis
of breast cancer cells and this is synergistically potentiated
by dimethyl amiloride (DMA) [121]. This is reasonable
since this counteracts the overexpression/ activation of
the NHE1 which appears to contribute to the onset and/
or maintenance of MDR [5,81-83]. Thus, cariporide, be-
cause of its powerful effect in inhibiting NHE1, can also
become a fundamental drug in overcoming MDR in hu-
man cancer therapy.

MDR, proton transport inhibitors (PTI), pH and P-
glycoprotein (P-gp) In the same vein, De Milito et al.
have shown that following PPI treatment of melanoma
cells with esomeprazole overcomes MDR and undergo
a significant decrease of proton gradient reversal, indu-
cing tumor cell death via rapid intracellular acidification
[153-155]. Also, the simultaneous inhibition of the NHE1
and H+-ATPase induces apoptosis through their concur-
rent effects on lowering pHi [147,156,157]. Finally, the re-
lationships of NHE1 inhibition to tumor hypoxia, growth
factors and antiangiogenic therapy have been extensively
reviewed [10,74,158] and will not be further dealt with in
this contribution. For detailed information on NHE/Anti-
NHE drug-relationships, please refer to the following ori-
ginal publication [107].
Why is pH reversal so important in MDR? The drug

handling and extrusion mechanisms mediated by P-gp
glycoprotein can no longer fully account for MDR in
cancer treatment [82,106,159,160]. Currently, a more
integrated mechanism to explain resistance to antican-
cer drugs can be based upon the modification of tumor
microenvironment through changes in the extracellular
and intracellular pH [159,161,162]. In this regard, MDR
cells exhibit a significantly high pHi that accounts, at least
in part, for the Pgp-mediated resistance [163] (Figure 4).
The fact that cells with an active MDR transporter show
such a degree of cytoplasmatic alkalinization has led some
authors to conclude that P-gp can be mainly considered
as a proton extrusion pump [159,161,162]. Further, P-gp
activity is stimulated by the interstitial acidification of
cancer tissues. Indeed, the therapeutic failure to induce
cytoplasmic acidification has been proposed as the main
underlying factor for MDR because it means resistance to
the induction of low pHi-mediated therapeutic apoptosis
in either normal, slightly alkaline and/or highly alkaline
cancer cells [12,27,152,164]. This cancer antiapototic situ-
ation can be secondary to the overexpression/hyperactivity
of proton transporters [76,156], the MDR-promoting effects
of the Bcl-2 family of proteins [12], a dysfunctional p53 or
the elevating cell pH effect of different growth factors
[17,19,22,23,165,166] (see above). Incidentally, an opposite
pHi situation that occurs in malignancy, namely, a spon-
taneously occurring low pHi-mediated pathological apop-
tosis appears to be important in the pathogenesis of
certain neurodegenerative diseases, like Alzheimer’s dis-
ease [29,30,167,168]. As we have previously considered,
this suggests that the pathogenesis of cancer and certain
neurodegenerative diseases can be at opposite ends of a
pH-related metabolic spectrum [29]. Thus, from the point
of view of apoptosis and antiapoptosis both situations are
“opposite pathological processes”.

MDR and the cell membrane It is well known that the
principal mechanism that regulates the entry of a drug
into a cell is the existence of pH gradients between the
extracellular environment and the intracellular compart-
ments [170-175]. The reason why the pH gradient across
the membrane is so important is related to its ability to
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ionize drug chemicals. While depending on the drugs,
be it weak acid or weak base, it is generally agreed that
ionized drugs - i.e. bearing a net positive charge due to
local pH conditions, will be less prone to cross the bi-
layer membrane than non-ionized drugs because of their
resulting ability to interact with other biological com-
pounds. Normal tissues have a neutral extracellular/
interstitial pH (pHe) whereas the intracellular pH (pHi)
is slightly acidic. This should allow weakly basic drugs to
enter passively into these cells. With weakly acid drugs it
seems that the alkalinization of the cytosol of cancer cells
can also impact on the lipid membrane by increasing the
compaction of lipids making the membrane less perme-
able to chemicals independently of their ionization (see
Figure 4) [82,161,173,176,177]. Since the increased inter-
stitial acidity represents an advantage for the tumor to de-
velop chemoresistance, using PTIs and/or PPIs will tend
to normalize or even reverse the highly abnormal pH gra-
dients in malignancy, leading to chemoresistance reversal.
These modifications of cancer H+ dynamics are associ-

ated with regression or delay of tumor growth and also
with enhanced response to chemotherapy [154,177-179].
It is suggested that the environmental conditions in tu-
mors may allow the development of new and relatively
specific therapies targeting the mechanisms regulating pHi

under external acid conditions. Doxorubicin, cyclophos-
phamide, 5-fluorouracil, vincristine, vinblastine, mitoxan-
trone, daunorubicin and chlorambucil are all clinically
useful drugs, which are ionisable and hence their distri-
bution will be affected by the microenvironmental pHe

[170,173-175,179]. In any case, protonation is not neces-
sarily detrimental to drug-target interaction if the target
displayed is extracellular (e.g. extracellular part of NHE1).
In addition, the detrimental aspect of pH on drug-target
interaction concerns weak bases only (e.g. doxorubicin).
Cariporide is a weak acid (pKa ~ 4.5) and therefore proton-
ation is beneficial as far as drug-target interaction is in-
volved [180], and doi https://www.ebi.ac.uk/chembldb/
index.php/compound/inspect/CHEMBL436559.

On the relationship of pHi, pHe and the NHE1 with
tumor immunity
Marches et al. elegantly showed the intimate link between
cancer biochemistry, molecular biology and immunity by
demonstrating that the anti-IgM-mediated induction of
cell death in human B lymphoma cells is dependent on
NHE1 inhibition and subsequent intracellular acidifica-
tion, up to a point unifying those fields under one wider
embracing unit [181]. In the same vein, it is accepted that
the acid component of the tumor microenvironment dir-
ectly impairs the function of the anti-tumoral immune
system, thus contributing to the known in vivo immuno-
suppression by hindering a “host versus graft (the grafted
malignant tumor)-like reaction”. Exposure to increasingly
acidic pHe has also been shown to reduce tumor cell-
induced cytolytic activity of lymphokine-activated killer
(LAK) cells [182,183], to play a role in down-regulating
cytolytic activity of tumor-infiltrating lymphocytes with
natural-killer (NK) phenotype [184] and to inhibit the
non-major histocompatibility complex (MHC)-restricted
cytotoxicity of immunocompetent effector cells [185-188].
Most recently, it has been proposed that tumour-secreted
lactic acid represents a major mechanism by which can-
cers can suppress the anti-cancer immune response [189].
This represents a further attempt to integrate different, so
far separated fields, into larger and more all-comprehensive
concepts [29], while at the same time introduces some fun-
damental MDR-related aspects of cancer immunity. It has
also been recently shown that the NHE1, but not other iso-
forms, is an important mechanism in extruding H+ and
regulating pHi in immune cells themselves, such as mono-
cytes and neutrophils, that need NHE1 to be activated to
maintain an optimal pHi for an effective immune defensive
role [190].
From a therapeutic point of view, it has been shown

that it is possible to alkalinize in vivo the interstitial
component of malignant tumors with sodium bicarbon-
ate or other different buffers [191] and that either acute
or chronic treatment of tumor-bearing mice with so-
dium bicarbonate or proton pump inhibitors results in
an increased antitumoral activity of different anti-tumor
drugs [1]. At the present time, preliminary preclinical and
clinical trials are being conducted in order to overcome
the anti-immune effects of the tumoral acid extracellular
component when used together with immune-stimulating
measures [191,192]. A recent clinical study performed in
companion animals with spontaneous tumors has shown a
clear chemosensitization through a combination of high
dosage proton pump inhibitors (PPIs) with different cyto-
toxic drugs and in tumors of different histology. This data
provides a clinical proof of concept that inhibition of ex-
tracellular tumor microenvironment acidification through
PPIs, PTIs and/or certain buffers may be considered a
pivotal new approach in integral anticancer strategies
[5,147,191-194]. This is a new and underdeveloped area
that needs further research in the future.

New and potent non amiloride-derived and non guanidine-
derived compounds (SL-591227, Phx-3, compound 9 t) as
promising anticancer drugs
While amiloride and some of its first synthesized derivatives
were non-selective and weak NHE inhibitors [195,196], an
additional series of NHE1 inhibitors whose structure is
independent of amiloride have been later developed. SL-
591227 was the first potent and NHE1 selective non-
guanidine inhibitor [105,113,197]. The group of Tomoda
developed two phenoxazine derivatives, Phx-1 and Phx-3
(for structures please see ref. [4]). Phx-3 is highly selective

https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL436559
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL436559
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for NHE1 inhibition and was shown to selectively stimulate
apoptosis in a variety of cancer cell lines while normal
lymphocytes were not affected [44,45]. Also, PHx-3 also
effectively reversed a subcutaneously injected adult T-
cell leukaemia tumor growth in animal studies without
noticeable toxicity (A. Tomoda, personal communication).
Otherwise, researchers at Bristol-Meyers synthesized a 5-
aryl-4-(4-(5-methyl-1H-imidazol-4-yl)piperididn-1-yl)pyr-
imidine analog (compound 9 t) that was reported to have
an excellent NHE1 inhibitory activity (IC50 = 0.0065 μM),
to be 500-fold more potent against NHE1 than cariporide
and to have much greater selectivity for NHE1 over NHE2
(1400-fold). Besides, compound 9 has a reported 52% oral
bioavailability, a plasma half-life of 1.5 hours in rats, low
side-effects in mice and may possess a significantly im-
proved safety profile over other NHE1 inhibitors [198].
Unfortunately, there have been no further publications
utilizing this compound in any anticancer attempt either
in vitro or in vivo.
On one hand, the development of the new non-

guanidine derived NHE1 inhibitors could alleviate some
of the detrimental effects of cariporide found in the EX-
PEDITION trial [116-118]. On the other hand, there are
many reasons to think that there can be a significant se-
lectivity of some of these NHE1 inhibitors in cancer (un-
tested so far, at least clinically). In spite that NHE1 is
ubiquitous and plays a fundamental role in pH house-
keeping and volume control, it is also well known that in
normal tissues the NHE1 is quiescent and is activated
only during acidosis or cell shrinkage. Therefore, block-
ing it will have very little effect on the normal tissues.
This should be an advantage to consider and exploit as
an important degree of specificity in the anticancer ef-
fect of NHE1inhibitors, as it has been known from cell
studies since the year 2000 [38,44].

Towards a new and integral paradigm in human
cancer therapeutics
Present and future prospects
The utilization of different PTIs in cancer therapeutics
was originally suggested by the group of Pouysségur and
our group as a novel approach to the pH-related treat-
ment of malignant tumors because of its potential as a
more selective and less toxic approach to therapeutics
than conventional chemotherapy [5,71,129,199]. We con-
ducted a preliminary clinical trial with the concerted
utilization of several PTIs [5,101]. Pouysségur has also
proposed the use of PTIs as a valid approach to cancer
treatment, advancing that this ‘pH-targeted’ therapy, per-
haps combined with anti-angiogenesis in order to increase
hypoxia-mediated acidosis, will synergistically induce the
collapse and massive shrinkage of solid tumours [129].
Similarly, from the therapeutic point of view, reverting the
Warburg effect by selective intracellular acidification has
been advanced as a treatment of cancer [44]. Indeed, in
the light of the older and the more recent contributions
[4,28,44-46,59] it can now be concluded that counteract-
ing the Warburg effect and its aerobic glycolysis through
any therapeutic method directed to selectively induce
intracellular acidification in cancer cells and/or reverting
proton reversal now appears to represent one and the
same phenomenon.
In summary, the most potent and promising amiloride

and non-amiloride derivatives, such as cariporide, Phx-3
and compound 9 t, etc. [37,44,113,198] (see Figure 2)
need to be included in pre-clinical and clinical trials as
an important part of the anticancer armamentarium. That
these compounds have not yet reached translational oncol-
ogy becomes difficult to understand taking into account
the massive theoretical background, available preclinical
data as well as the results of the molecular, biochemical
and metabolic studies already available at the present time.
These anticancer compounds can be useful either as anti-
tumoral and chemotherapeutic agents on their own, in the
context of preventing and controlling the metastatic
process and in any attempts to reverse MDR.
The effects of a targeted therapy are not durable when

the therapy is designed to target a single biological mol-
ecule. This is because cellular pathways operate like webs
with multiple redundancies or alternate routes that may
be activated in response to the inhibition of a certain path-
way. For this reason, combination and concerted therapies
with PTIs will be often needed to effectively treat many
tumors screened for pertinent pathway dependence. Inci-
dentally, also in related fields like hyperthermia and radi-
ation, it has also been known for a number of years that
to keep the cytosolic pH at a certain level is fundamental
as a survival mechanism, where cellular acidification in-
creases the anticancer potential of both of these methods
[187,188], alone or in combination with NHE1 inhibitors.
The most potent NHE1 inhibitors could be considered
alone as chemotherapeutic agents since they are able to
induce intracellular acidification and/or a reverse of the
abnormal proton gradient of cancer cells and tissues. It
can be advanced that they show a great promise as a new
and selective approach to the treatment of a wide array of
different malignant tumors and even leukaemias and,
hopefully, they will help to overcome the present impasse
and flat progress in cancer treatment [101,200]. These
strategies have been recently discussed in a review [4] and
in a perspective [5] and introduce a real paradigm shift in
cancer treatment.

Conclusions

1) Cell acid–base balance is recognized to be the main
parameter to define cellular homeostasis, the life of
cells being possible only within a very narrow range



Harguindey et al. Journal of Translational Medicine 2013, 11:282 Page 12 of 17
http://www.translational-medicine.com/content/11/1/282
of pH (less that one unit). In that context, the pH of
normal cells and cancer cells deviate towards
opposite ends of a biological and metabolic
spectrum. This energetic abnormality represents the
largest difference among normal cellular physiology
and cancer pathophysiology.

2) From an etiological and ethiopathogenic perpective,
the hydrogen-related dynamics of malignancy have
become a new approach to cancer that is helping to
reach a better understanding of several, until now
disparaged areas of cancer research both at basic
and clinical levels, as well as of the intimate nature
of the malignant disease. This unifying thermodynamic
view permits an integration of different cancer fields,
ranging from cell transformation and metabolism, local
growth and invasion to neovascularisation and the acti-
vation and progression of the metastatic process (pH
centric paradigm).

3) From a therapeutic perspective, the primary aim of
this pH-based approach to cancer treatment is to
manipulate the selective forces controlling the
dysregulated pH dynamics of all cancer cells and
tissues in order to regress tumor growth, control
local invasion and deactivate the metastatic potential
of malignant tumors within the same integral
perspective and paradigm. All available evidence
seems to indicate that this would take place regardless
of pathological differences, tissue type or genetic
origin. This therapeutic approach would also provide
much less toxicity than present day treatments, prob-
ably more effective therapies than any other chemo-
therapy known to date and it has real possibilities to
become a successful strategy in treating human cancer
in general. A pathologically elevated pHi and its
associated proton reversal (a reversed pH gradient in
cancer cells and tissues (ΔpHi to ΔpHe, ↑pHi/↓pHe)
can be now considered a most specific cancer abnor-
mality and essential hallmark of all kinds of malignant
cells and tissues.

4) It can be concluded that aerobic glycolysis or
damaged respiration was not the primary cause of
cancer, as Warburg incorrectly defended until his
death. It now seems more likely that the primary
cause of cancer is, precisely, the main cause of the
aerobic glycolysis of tumors. And this is that the
abnormally high intracellular pH of cancer cells,
mediated by a myriad of etiological factors of many
different natures, can very well be the real cause of
cancer. Furthermore, this tendency towards cellular
alkalinity appears to be an specific and selective
characteristic of cancer since it has not been
described in any other disease.

5) This hydrogen ion-based perspective has also permit-
ted the better understanding of the Warburg effect,
which can now be simply explained by the effects of
the concerted action of proton transporters in in-
creasing intracellular pH and stimulating aerobic gly-
colysis. In this respect, Otto Warburg and his
contemporaries committed an important historical
error that has possibly misled several decades of meta-
bolic and biochemical cancer research. The main limi-
tation was probably imposed by the lack of available
intracellular pH measurements before the time of
Warburg’s death in 1970. The high pHi of tumor cells,
the Warburg effect and the proton reversal of cancer
cells and tissues are likely to represent one and the
same phenomenon defined in different ways.

6) Many different environmental and chemical
carcinogens have been shown to be cancer-inducing
agents because of their potential to stimulate NHE1
activity with the subsequent increase in intracellular
pH and decrease in microenvironmental pH. This
cancer-inducing mechanism opens an entire new
area in cancer epidemiology looking for generaliza-
tions both in detecting and controlling environmen-
tal carcinogens.

7) Any attempt to therapeutically induce a selective
intracellular acidification using proton transport
inhibitors (PTIs) in all cancer cells and tissues would
secondarily increase interstitial tumoral pH, thus
inhibiting the metastatic process, and represents a
rational and firmly based approach to cancer
treatment in all stages of development. Further, it
has the potential of being selectively exploited in the
treatment of many different malignant solid tumours.

8) Cariporide, other potent NHE1 inhibitors of the
amiloride series, as well as powerful and selective
NHE1 inhibitors of the non-amiloride series, like
Phx-3 and compound 9 t, have the potential of being
highly promising, minimally toxic and truly effective
anticancer agents in a wide array of malignant tu-
mours and leukaemias, hopefully representing a new
paradigm in cancer therapeutics.
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