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Abstract A biomarker is an analyte indicating the presence
of a biological process linked to the clinical manifestations
and outcome of a particular disease. In the case of
lysosomal storage disorders (LSDs), primary and secondary
accumulating metabolites or proteins specifically secreted
by storage cells are good candidates for biomarkers.
Clinical applications of biomarkers are found in improved
diagnosis, monitoring disease progression, and assessing
therapeutic correction. These are illustrated by reviewing
the discovery and use of biomarkers for Gaucher disease
and Fabry disease. In addition, recently developed chemical
tools allowing specific visualization of enzymatically active
lysosomal glucocerebrosidase are described. Such probes,
coined inhibodies, offer entirely new possibilities for more
sophisticated molecular diagnosis, enzyme replacement
therapy monitoring, and fundamental research.

Introduction

Lysosomal storage disorders Continuous recycling of their
macromolecular constituents is essential for the functional
integrity of long-lived cells. This molecular rejuvenation
depends not only on permanent biosynthesis but also on
permanent degradation of macromolecules. To handle the
potential risky turnover of macromolecular constituents,
hydrolytic processes are largely contained in specific acid
subcellular compartments named lysosomes (lysein=cleave,
somos=body) by their discoverer Christian de Duve (de
Duve et al. 1955). Henri G. Hers ( 1963)first realized that
deficiency of a particular lysosomal enzyme (acid alpha-
glucosidase) was the cause of glycogen storage disease type
2, also called Pompe disease. This discovery led to the
concept of lysosomal storage disorders (LSDs), of which
more than 70 have now been described. The birth prevalence
of individual LSDs is thought to vary between 1 in 20,000–
100,000 live births. Collectively, the entire group of LSDs
affects at least 1 in 5,000–10,000 live births (Meikle et al.
1999; Poorthuis et al. 1999). Lysosomal storage disorders
may present with a broad range of phenotypes, with variable
age of onset, symptom severity, and degree of central
nervous system (CNS) involvement. Many LSDs manifest
as a spectrum encompassing more severe (infantile) and
milder (juvenile and adult) forms. Infantile forms often
display CNS involvement and are therefore called neuro-
nopathic, in contrast to the non-neuronopathic subtypes. For
instance, in Gaucher disease (beta-glucocerebrosidase defi-
ciency), the most severe phenotype presents with severe
neurological involvement and death soon after birth, whereas
at the other end of the phenotypic spectrum, patients are
found in whom diagnosis is made in late adulthood based on
minimal visceral symptoms (Aerts et al. 1993).

Communicated by: Ed Wraith

Competing interests: None.

Presented at: the Annual Symposium of the SSIEM, Istanbul, Turkey,
31 August - 3 September 2010.

J. M. F. G. Aerts (*) :W. W. Kallemeijn :W. Wegdam :
M. Joao Ferraz :M. J. van Breemen :N. Dekker :G. Kramer :
B. J. Poorthuis : J. E. M. Groener : J. Cox-Brinkman :
S. M. Rombach :C. E. M. Hollak :G. E. Linthorst :R. G. Boot
Sphinx-Amsterdam Lysosome Center, Departments of Medical
Biochemistry and Internal Medicine, Academic Medical Centre,
University of Amsterdam,
Meibergdreef 15,
1105 AZ Amsterdam, The Netherlands
e-mail: j.m.aerts@amc.uva.nl

M. D. Witte :H. Gold :G. A. van der Marel :H. S. Overkleeft
Department of Bio-organic Synthesis,
Leiden Institute for Chemistry, Leiden University,
Leiden, The Netherlands

J Inherit Metab Dis (2011) 34:605–619
DOI 10.1007/s10545-011-9308-6

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81732753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LSD therapy In recent decades, remarkable progress has
been made in LSD treatment. The general principle of
treatment is lowering the excessive amount of stored
substrate, which can be achieved either by enhanced
substrate degradation or by reduced substrate production.
Enhanced substrate degradation can be achieved by two
different approaches. First, hematopoietic cell transplanta-
tion (HCT) with cells from unaffected individuals can
deliver the missing enzyme to the deficient cells of the
recipient. HCT has been used in an attempt to treat
numerous different LSDs, but to now, it has only been
proven effective in a small number of disorders (see
Boelens et al. 2010 for a review). The second approach to
enhance substrate degradation is by direct intravenous
delivery of the deficient enzyme, which may partly restore
the deficient enzymatic capacity. This concept, named
enzyme replacement therapy (ERT), is based on the
principle that lysosomal proteins can reach the subcellular
lysosomes via endocytosis mediated by lectins on the
plasma membrane, such as the mannose 6-phosphate
receptor and the mannose receptor. Gaucher disease was
the first LSD for which this type of treatment became
available. The first enzyme preparation used to treat non-
neuronopathic type 1 Gaucher disease consisted of
placenta-derived glucocerebrosidase with modified,
mannose-terminated glycans, allowing more selective up-
take by tissue macrophages that are the prominent storage
cells in Gaucher disease (Barton et al. 1991; Hollak et al.
1995; Bijsterbosch et al. 1996). This product was later
replaced by recombinant enzyme (Cerezyme; Genzyme),
which proved to be very successful in treating the visceral
and bone complications of Gaucher disease (de Fost et al.
2007; Pastores et al. 2004). Very recently, an alternative
recombinant enzyme preparation (Velaglucerase alfa;
Shire), produced in human cells, was registered for ERT
of type 1 Gaucher disease (Aerts et al. 2010). An exciting
new development forms the production of recombinant
glucocerebrosidase by Protalix in plant cells (Aviezer et al.
2009). The plant-derived recombinant enzyme preparation
(named taliglucerase alfa) is hoped to be comparatively
effective and increase the choice between treatment
modalities (Aviezer et al. 2009). A third and more recent
development, also aimed at enhancing substrate degrada-
tion, is the use of small compounds that act as chaperones
for mutant enzymes (see Smid et al. 2010 for a recent
review). Whereas the above-mentioned therapeutic
approaches are based on stimulating the breakdown of the
accumulated substrate, an alternative strategy is aimed at
decreasing the amount of substrate by partially inhibiting its
synthesis. This approach, requiring well-tolerated and
specific enzymatic inhibitors, is named substrate reduction
therapy (SRT). The most well-known and studied com-
pound that acts by SRT is a glucosylceramide synthase

inhibitor, N-butyldeoxynojirimycin (miglustat), which ca-
talyses the first step in the glucosylceramide biosynthetic
pathway (Platt et al. 2001; Aerts et al. 2006). Miglustat has
been extensively studied for its use in Gaucher disease type
1and is registered for patients with mild to moderate Gaucher
disease type 1 who are unable or unwilling to receive ERT
(Cox et al. 2000, 2003). The long-term experience with
miglustat treatment in type 1 Gaucher patients is satisfactory
(Elstein et al. 2004; Heitner et al. 2002; Elstein et al. 2007),
and anecdotal reports suggest that combination SRT and
ERT may be beneficial for some type 3 neuronopathic
Gaucher patients (Cox-Brinkman et al. 2008). The develop-
ment of an alternative small-molecule compound for oral
substrate reduction therapy, eliglustat tartrate, by Genzyme is
also exciting (McEachern et al. 2007). The compound seems
to be safe and well tolerated (Lukina et al. 2010b), and a
2-year follow-up of a phase II trial indicated major improve-
ments in hematological, visceral, and skeletal manifestations
in adult patients with type 1 Gaucher disease on a par with
ERT (Lukina et al. 2010a). Moreover, as ERT is not able to
prevent or treat neurological abnormalities in severely
affected patients because the enzymes are unable to pass
the blood–brain barrier (Schiffmann et al. 1997), such
compounds could provide a much needed treatment option
for these patients. Another approach being studied for
treating CNS disease is direct introduction of the deficient
enzyme into the brain (Lonser et al. 2005; Begley 2004;
Dickson et al. 2007). Alternative strategies to deliver
modified enzymes from the circulation across the blood–
brain barrier are also being investigated (Begley 2004;
Urayama et al. 2007). The preclinical therapeutic approach
remains gene therapy. Numerous hurdles, such as transient
expression of transgenes, immunological responses, and
tumor induction, have so far discouraged the clinical
application of gene therapy. However, as in recent years
enormous progress has been made with respect to efficacy
and safety of viral vectors, with encouraging results in
application in animal models for LSDs, there is still great
hope for application of gene therapy (Fig. 1).

Monitoring disease manifestations and therapeutic inter-
vention Accurate quantitative monitoring of disease mani-
festations as well as of the therapeutic efficacy of any type
of treatment is crucial for clinical management of patients
with LSDs. Disease onset and progression can be moni-
tored by clinical, radiological, and laboratory assessments.
Clinical assessments obviously differ among the various
LSDs, as illustrated below for Gaucher disease and Fabry
disease. In practice, clinical therapeutic efficacy is often
difficult to assess, as organ involvement can sometimes not
be quantitatively assessed and is highly variable among
patients. Moreover, some symptoms have an irreversible
nature, such as advanced renal failure in Fabry disease or
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bone infarctions in Gaucher disease. Increasingly, disease-
specific biochemical abnormalities are used to monitor
disease progression and treatment efficacy for LSDs.

Biomarkers

Biomarkers are generally defined as chemical entities,
ranging from simple metabolites to complex proteins,
which indicate the presence of a biological process linked
to the clinical manifestations and outcome of a particular
disease. The value of biomarkers is appreciated by most
clinicians and biomedical researchers as well as the
authorities. In a recent report on biomarkers, the European
Medicines Agency (EMA) states that: “Biomarkers play an
increasingly important role in the development of new
drugs. It is expected that they will help increase the rate of
success of new developments and to expedite the develop-
ment of drugs. Also, biomarkers are key in the shift away
from the ‘one size fits all’ to ‘the right drug at the right dose
in the right patient’ approach. Hence, biomarkers play an
important role for scientists and industry in drug develop-
ment and for regulators in the approval process” (EMA
2006). To date, biomarkers are already widely used in the
clinical management of some conditions. An obvious
example is the measurement of blood glucose and/or
glycosylated hemoglobin in diabetic individuals. Candidate
biomarkers for LSDs can be divided into two categories.
The first group consists of molecules that accumulate in
tissues and body fluids directly due to the enzymatic defect.

The second group includes molecules produced by storage
cells in a specific LSD and can be measured either in
plasma, urine, or cerebrospinal fluid (CSF). Identifying and
applying such biomarkers for Gaucher disease and Fabry
disease are discussed, and their use is illustrated.

Gaucher disease

A prominent LSD is Gaucher disease (Beutler et al. 2001;
Aerts et al. 2003). Brady and co-workers first showed that
the primary defect in Gaucher disease is a marked
deficiency in activity of the lysosomal enzyme glucocere-
brosidase (Brady et al. 1966). Deficiencies in glucocere-
brosidase result in accumulation of its lipid substrate
glucosylceramide in the lysosomal compartment of macro-
phages throughout the body. Different phenotypes (types 1,
2, and 3) are generally recognized and are differentiated on
the basis of the presence or absence of neurological
symptoms. Whether a strict division in three different
phenotypes is still valid has been the subject of debate, as
there are an increasing number of reports on neurological
manifestations in patients with type 1 Gaucher disease.
However, the neurological signs and symptoms in type 1
Gaucher disease are of a totally different kind from and, in
the majority of cases, of much less severity than, the signs
and symptoms associated with types 2 and 3 disease
(Biegstraaten et al. 2008). It has also become apparent that
complete deficiencies in glucocerebrosidase activity occur,
resulting in major skin permeability abnormalities with
lethal consequences either prenatally or shortly after birth

Fig. 1 Gaucher cell accumulat-
ing the glycosphingolipid
glucosylceramide and specifi-
cally secreting the biomarker
chitotriosidase that can be
detected in plasma. Example
of corrections in plasma
chitotriosidase in Gaucher
disease patients receiving
enzyme replacement therapy
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(Sidransky 2004). The most common Gaucher phenotype is
non-neuronopathic type 1 manifestation, with a highly
variable age of onset and severity. Even spontaneous
disease regression has been observed in some relatively
mildly affected type 1 Gaucher patients (Boomsma et al.
2010). Characteristic symptoms include splenomegaly with
anemia and thrombocytopenia, hepatomegaly, and bone
disease. Anemia may contribute to chronic fatigue. Throm-
bocytopenia and prolonged clotting times can lead to an
increased bleeding tendency. Atypical bone pain, patholog-
ical fractures, avascular necrosis, and extremely painful
bone crises may also have a great impact on quality of life.
Gammopathies and metabolic abnormalities such as insulin
resistance and lipoprotein abnormalities are encountered in
type 1 Gaucher patients (Langeveld et al. 2007, 2008b;
Wennekes et al. 2009; de Fost et al. 2009, 2008). Type 1
Gaucher disease is relatively common in all ethnic groups. It
is prevalent among Ashkenazi Jews, with a carrier frequency
as high as about 1 in 15 and an incidence of about 1 in
1,000. The most common mutation in the glucocerebrosidase
gene of Caucasians, including Ashkenazi Jews, encodes the
amino acid substitution N370S. The heteroallelic presence of
the N370S mutation is always associated with a non-
neuronopathic course (Ohashi et al. 1991; van Weely et al.
1993b). Some, but not all, homozygotes for the N370S
mutation develop significant clinical symptoms (Beutler et
al. 2001; Aerts et al. 2003). Twin studies and the poor
predictive power of genotype–phenotype investigations in
Gaucher disease have clearly pointed out that epigenetic
factors also play a key role in Gaucher disease manifestation
(Biegstraaten et al. 2010).

The diagnosis of Gaucher disease can be confirmed by
demonstration of reduced glucocerebrosidase activity in
lysates of various cell types and even urine samples using
the fluorogenic substrate 4-methylumbelliferyl beta-
glucoside (Aerts et al. 1985, 1986b). Fluorescent analogues
of the lipid glucosylceramide can be exploited to measure
glucocerebrosidase activity in cultured cells (Van Weely et
al. 1991). Highly specific monoclonal antibodies against
human glucocerebrosidase have been produced and can be
used in purification of the protein, Western blot analysis,
and microscopy techniques (Aerts et al. 1986a, 1988).
Although glucocerebrosidase is present in the lysosomes of
all cell types, patients with type 1 Gaucher disease only
store glucosylceramide in macrophages. It is believed that
the storage material stems from the breakdown of exoge-
nous lipids derived from the turnover of blood cells. The
glucosylceramide-loaded macrophages of Gaucher patients
show a characteristic morphology with a wrinkled-paper
appearance of their cytoplasm, which contains lysosomal
inclusion bodies; these cells are referred to as Gaucher
cells. In recent decades, it has become apparent that
Gaucher cells are not inert containers of storage material

but are viable, chronically activated macrophages that
contribute to the diverse clinical manifestations of Gaucher
disease. These mature, activated macrophages are sur-
rounded by newly formed, highly inflammatory macro-
phages in tissue lesions of patients with Gaucher disease
(Boven et al. 2004). Consistent with these observations,
patients with Gaucher disease show increased plasma levels
of several proinflammatory and anti-inflammatory cyto-
kines, chemokines, and hydrolases (Aerts and Hollak 1997;
Aerts et al. 2008a; Hollak et al. 1997b; Michelakakis et al.
1996; Hollak et al. 1997a; Møller et al. 2004). Factors
released by Gaucher cells and surrounding macrophages are
thought to play a crucial role in the development of
common abnormalities in Gaucher patients, such as
osteopenia, activation of coagulation, hypermetabolism,
gammopathies, multiple myeloma, and hypolipoproteine-
mias (Aerts and Hollak 1997).

Biomarkers of Gaucher cells Given the prominent role of
Gaucher cells in the pathophysiology of the disorder,
considerable attention has been focused on identifying
plasma markers for such macrophages. Abnormalities in
levels of tartrate-resistant acid phosphatase (TRAP),
angiotensin-converting enzyme (ACE), hexosaminidase,
and lysozyme in serum samples from Gaucher patients
had been documented for some time (Aerts and Hollak
1997). More recently, increased plasma levels of various
cathepsins, including cathepsin K, were reported in patients
with Gaucher disease (Moran et al. 2000; van Breemen et
al. 2008). All of these proteins are known to be produced
by macrophages; however, none of them appears to be a
specific marker for the pathological Gaucher cells, and their
levels in the serum of symptomatic patients with Gaucher
disease may overlap with those observed in healthy
individuals. Their use as biomarkers for Gaucher cells is,
therefore, restricted. The need for a very sensitive and
specific marker for Gaucher cells prompted a search for
such a parameter. This search led to the discovery of a
striking abnormality in the serum of symptomatic patients
with Gaucher disease.

Chitotriosidase Serum from such individuals showed a
1,000-fold increased capacity to degrade the fluorogenic
substrate 4-methylumbelliferyl chitotrioside (Hollak et al.
1994). The corresponding enzyme had hitherto not been
described and was named chitotriosidase. The chitotriosi-
dase protein was subsequently purified and its complemen-
tary DNA (cDNA) cloned (Renkema et al. 1995; Boot et al.
1995). Chitotriosidase was found to be the human analogue
of chitinases from lower organisms (Rao et al. 2005). The
enzyme hydrolyzes chitin, the natural polymer of beta-
1,4 N-acetylglucosamine, is a member of the large chitinase
protein family created by gene duplications (Bussink et al.
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2007). Besides chitotriosidase, the chitinase protein family
includes one other active enzyme—AMCase (Boot et al.
2001)—and several inactive lectins (Bussink et al. 2007;
Renkema et al. 1998). Chitotriosidase is specifically
expressed by phagocytes in humans, including macro-
phages and neutrophils (Renkema et al. 1997; van Eijk et
al. 2005). The enzyme is similar in structure to non-
vertebrate chitinases (Fusetti et al. 2002; Rao et al. 2003). It
has been shown to exert a fungistatic action of degradation
of the protective chitin layer at the hyphal tip of fungi (van
Eijk et al. 2005). In situ hybridization and histochemistry of
bone marrow aspirates and sections of spleens from patients
with Gaucher disease revealed that chitotriosidase is
massively produced by storage cells. This is also supported
by the close linear relationship between chitotriosidase and
glucosylceramide levels in different spleen sections from
patients with Gaucher disease (Bussink et al. 2006). In a
culture model of Gaucher cells, chitotriosidase accounts for
almost 10% of the total secreted protein. In sharp contrast,
common tissue macrophages do not produce chitotriosi-
dase. These observations help us to understand the very
specific, gross elevation of chitotriosidase levels in the
blood of patients with Gaucher disease. A relationship
between the total body burden of storage cells in patients
with Gaucher disease and their plasma chitotriosidase levels
has been noted. The plasma chitotriosidase level does not
reflect any one particular clinical symptom of Gaucher
disease, suggesting, rather, that it reflects the sum of
secreted enzyme by Gaucher cells in various body
locations. Plasma chitotriosidase levels can be determined
by monitoring hydrolysis of the fluorogenic substrate
4-methylumbelliferyl-chitobioside. However, the ability of
chitotriosidase to transglycosylate as well as hydrolyze this
substrate complicates the enzyme assay (Aguilera et al.
2003). Special care has to be taken to ensure that the enzyme
activity is truly proportional to the amount of chitotriosidase
protein. A far more convenient, sensitive, and accurate
detection is feasible by measuring the activity of chitotrio-
sidase toward the recently designed fluorogenic substrate
4-methylumbelliferyl-deoxy-chitotrioside (Aguilera et al.
2003; Schoonhoven et al. 2007). Interpretation of plasma
chitotriosidase levels is intrinsically complicated by the
common occurrence of a particular 24-base-pair duplication
in the chitotriosidase gene, preventing the formation of
chitotriosidase protein (Aguilera et al. 1998). In most ethnic
groups, about one in every three individuals carries this
abnormality, and about one in every 20 individuals,
including patients with Gaucher disease, is homozygous for
this trait (Aguilera et al. 1998). It has been established that
carriers of the 24-bp duplication show half the amount of
plasma chitotriosidase detected in individuals with the wild-
type chitotriosidase genotype (Aguilera et al. 1998). It is
therefore common to correct plasma chitotriosidase by a

factor of two when examining patients with Gaucher disease
who are carriers of the 24-bp duplication. Other poly-
morphisms have also been detected, of which the G102S
substitution is the most frequent (allele frequency of about
0.25). This polymorphism leads to an enzyme with a slightly
impaired catalytic activity toward the 4-methylumbelliferyl-
chitotrioside substrate compared with wild type. However,
G102S enzyme activity is normal when using 4-
methylumbelliferyl-deoxy-chitobioside as substrate (Bussink
et al. 2009). It should be mentioned that increased plasma
chitotriosidase activity is not unique for Gaucher patients.
Plasma chitotriosidase activity is increased, albeit much more
modestly, in several lysosomal and nonlysosomal diseases,
such as sarcoidosis, visceral Leishmaniasis, leprosy, arthritis,
multiple sclerosis, thalassemia, chronic obstructive pulmo-
nary disease (COPD), malaria, and atherosclerosis (Hollak et
al. 1994; Guo et al. 1995; Brinkman et al. 2005; vom Dahl et
al. 1999; Vedder et al. 2006a; Boot et al. 2010; Iyer et al.
2009; Boven et al. 2006; Boot et al. 1999; Labadaridis et al.
1998).

PARC/CCL18 The high frequency of chitotriosidase defi-
ciency prompted us to search for an alternative marker of
Gaucher cells. Using surface-enhanced laser distortion/
ionization time of flight (SELDI-TOF) mass spectrometric
analyses, we discovered massive overproduction and
secretion by Gaucher cells of the pulmonary and
activation-regulated chemokine (PARC/CCL18), of which
the messenger RNA (mRNA) was previously observed to
be up-regulated in the spleen of a patient with Gaucher
disease (Moran et al. 2000; Boot et al. 2004). This plasma
PARC/CCL18 cannot be reliably quantified using SELDI-
TOF, but reliable quantification is obtained by ELISA (van
Breemen et al. 2006). Plasma PARC/CCL18 levels are 10-
to 40-fold elevated in symptomatic Gaucher patients (Boot
et al. 2004; Deegan et al. 2005). Due to its basic nature and
small molecular mass, PARC/CCL18 levels in urine are
proportional to those in the circulation. Therefore, urinary
PARC/CCL18 excretion offers insight into the body burden
of Gaucher cells (Boot et al. 2006). Measurement of plasma
PARC/CCL18 has been found to yield an excellent
additional tool to monitor changes in body burden of
Gaucher cells. It is particularly useful for evaluating
patients that are chitotriosidase deficient (Cox et al. 2008).

MIP-1α and MIP-1β Van Breemen and co-workers
reported markedly elevated levels of the chemokines
macrophage inflammatory protein (MIP)-1α and MIP-1β
in plasma of symptomatic Gaucher patients (van Breemen
et al. 2007). Interestingly, with immunohistochemistry,
these proteins were found to be produced by surrounding
inflammatory spleen macrophages and not by mature
Gaucher cells (van Breemen et al. 2007). The different
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cellular source is also reflected in the observation that
plasma chitotriosidase and PARC/CCL18, both stemming
from Gaucher cells, respond comparably to ERT. However,
corrections in plasma MIP-1α and MIP-1β following ERT
are not proportional to those found with the true Gaucher-
cell biomarkers (van Breemen et al. 2009). A relationship
was observed between plasma MIP-1β and skeletal
disease: stable high plasma MIP-1β levels despite pro-
longed ERT were found to correlate with ongoing skeletal
disease (van Breemen et al. 2007). Clearly, rigorous
analysis of a large cohort of Gaucher patients is required
to establish the value of plasma MIP-1β (or MIP-1α) as
biomarker, especially its value as prognostic marker for
skeletal response to therapy.

Clinical applications of Gaucher-cell biomarkers Plasma
chitotriosidase measurement is commonly employed as a
first screen in the diagnosis of Gaucher disease. Increasing
plasma levels seem to reflect gradual accumulation of
storage cells in the patient’s body. In an attempt to assess
the utility of plasma chitotriosidase activity measurement as
a biomarker for treatment efficacy, Hollak and co-workers
investigated the relationship between enzyme activity and
clinical parameters (Hollak et al. 2001). In patients with
high clinical severity scores, chitotriosidase levels were
usually >20,000 nmol/ml/h and always >15,000 nmol/ml/h,
whereas patients with less severe disease tended to have
lower values. During enzyme supplementation therapy, the
mean decrease in 12 months was 32% (range 0–82%), and
78% of patients had a decrease of >15%. In six patients
with a decrease in chitotriosidase activity of <15%, the
clinical response to treatment was inferior to that of other
patients, with less reduction in organomegaly in four and
bone problems in two. In addition, chitotriosidase response
was related to disease severity; less reduction in plasma
activity was seen in more severely affected individuals. On
the basis of this investigation, it has been proposed that in
patients in whom the initiation of treatment is questionable
based solely on clinical parameters, a chitotriosidase
activity >15,000 nmol/ml/h may serve as an indicator of a
high Gaucher-cell burden and an indication for treatment
initiation (Hollak et al. 2001). A reduction in chitotriosidase
activity of <15% after 12 months of treatment, in
combination with an insufficient response of at least one
clinical parameter, should be a reason to consider dose
increase. Furthermore, a sustained increase in chitotriosi-
dase at any point during treatment should alert the
physician to the possibility of clinical deterioration and
the need for dose adjustment. A recent retrospective
analysis by Deegan and co-workers confirmed the value
of the use of plasma chitotriosidase in Gaucher disease
management and presented evidence for comparable use of
PARC/CCL18 (Deegan et al. 2005). In conclusion, next to

radiological monitoring of the bone marrow and skeleton
(Maas et al. 2002, 2003; Poll et al. 2002), measurement of
plasma levels of chitotriosidase and/or PARC/CCL18 offers
valuable information for clinical management of type 1
Gaucher patients.

Lipid biomarkers of Gaucher disease Increased plasma
concentrations of glucosylceramide, the primary storage
lipid, have been documented for Gaucher patients (Groener
et al. 2008; Erikson et al. 2006). Plasma glucosylceramide
is not used as a biomarker, as its increase generally is not
very pronounced. Moreover, the exact relation between
circulating glucosylceramide and storage cells in tissues is
far from clear. Interestingly, besides glucosylceramide, the
ganglioside GM3 is also elevated in Gaucher plasma
samples (Ghauharali-van der Vlugt et al. 2007). Increases
of GM3 have also been noted in spleens of Gaucher
patients. This secondary elevation of GM3 may not be
without consequences. Elevated glycosphingolipids such as
GM3 are thought to cause insulin resistance (Aerts et al.
2007). Indeed, a recent study revealed that Gaucher
patients are insulin resistant without overt hyperglycemia
(Langeveld et al. 2008a; Langeveld and Aerts 2009). Other
secondary lipid abnormalities in Gaucher patients have
been noted by thorough investigations by Fuller and co-
workers, such as elevated levels of phosphatidylglycerol
(Hein et al. 2007; Meikle et al. 2008). The diagnostic value
and possible physiological consequences warrant further
investigations.

Discovery of additional protein biomarkers for Gaucher
disease Ongoing attention is paid to the detection of useful
protein biomarkers for Gaucher disease by a thorough
survey of protein composition of bodily fluids, or cell and
tissue specimens of symptomatic Gaucher patients. The
latter approach has more recently become feasible due to
the availability of mass spectrometric techniques that allow
accurate analysis of proteins, even in complex mixtures
such as plasma and urine samples. Recently, label-free
liquid chromatography mass spectrometry (LC-MS) quan-
tification methods have been developed. These methods are
typically based on determining peak–area ratios of the same
peptides between different conditions. Using a label-free
LC-MS approach (so-called LC-MSE), a series of plasma
specimens from type 1 Gaucher patients prior to and after
therapy were studied (Vissers et al. 2007). Marked therapy-
induced differences were noted in the Gaucher disease
protein plasma profile. Comparison with the normal plasma
profile revealed that many protein abnormalities in symp-
tomatic patients were at least partially corrected by
successful therapy (Vissers et al. 2007). LC-MSE is used
by us to study the proteome of laser-capture-dissected
Gaucher cells from spleens of Gaucher patients.
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Fabry disease

Fabry disease is an X-linked LSD resulting from deficient
activity of the lysosomal hydrolase α-galactosidase A (EC
3.2.1.22) (Desnick and Ioannou 2001; Brady et al. 1967). In
male patients with severe forms of Fabry disease, there is
usually severely reduced or complete lack of enzymatic
activity. Relatively high residual enzyme activity is often
noted in patients with a milder variant of Fabry disease with
predominantly cardiac abnormalities, whereas there is little
or no kidney dysfunction and no painful acroparesthesia
(Desnick and Ioannou 2001). However, many female
heterozygotes also display symptoms despite considerable
amounts of circulating residual enzyme that varies due to
random X inactivation. This sharply contrasts with the
general lack of symptoms among carriers of another X-
linked lysosomal hydrolase deficiency, Hunter disease.
Deficiency of α-galactosidase A results in accumulation
of its glycosphingolipid substrates in lysosomes of endo-
thelial, perithelial, and smooth-muscle cells of the vascular
system, as well as renal epithelial cells, myocardial cells,
and cells of the autonomic nervous system. The accumu-
lating glycosphingolipids contain terminal α-galactosyl
moieties, such as globotriaosylceramide (Gb3; also known
as ceramide trihexoside: CTH); galabiosylceramide (Gb2);
and, to a lesser extent, blood group B, B1, and P1 antigens
(Desnick and Ioannou 2001). Two different recombinant α-
galactosidase A preparations are in use for treating Fabry
disease (Schiffmann et al. 2001; Eng et al. 2001). One
enzyme is produced by Chinese hamster ovary (CHO) cells
with classic recombinant technology (agalsidase β, Fabra-
zyme), and the other enzyme is produced by cultured
human skin fibroblasts with an activated promoter of the α-
gal A gene (agalsidase α, Replagal). Both recombinant
enzymes are quite comparable in properties and differ only
slightly in glycan composition (Blom et al. 2003). The two
enzyme preparations have independently been examined in
clinical investigations and are both registered in Europe for
treating Fabry patients. Although both enzyme therapies
were found to result in the desired clearance of globotriao-
sylceramide from the endothelium, the clinical effects are
not as robust as anticipated. In some patients, stabilization
of renal function and improvement in cardiac hypertrophy
occurs upon therapy, but a considerable number experi-
ences progressive complications (Vedder et al. 2007a).

Numerous screening studies for Fabry disease have been
undertaken and are ongoing (Linthorst et al. 2010). Some
investigations rely on detection of abnormalities in the GLA
gene. A serious complication in this connection is the
difficulty of distinguishing whether some of the commonly
encountered abnormalities in the GLA gene are truly
disease-causing mutations or polymorphisms that are not
obligate disease causing (Froissart et al. 2003). Other

screening procedures are based on the demonstration of
reduced enzymatic activity in blood cells, plasma, or dried
blood spots. An associated limitation of such methods is the
inability to reliably detect female carriers and some
atypically affected male hemizygotes. As an alternative
screening method, it is contemplated by Hopwood and
colleagues to use quantification of α-Gal A protein with
specific antibodies in analogy to screening for other
lysosomal enzymopathies (Tan et al. 2008).

Fabry biomarkers Following the successful biomarker
discovery for Gaucher disease, attempts have been made
to identify comparable metabolite and protein biomarkers
for Fabry disease.

Lack of prominent plasma protein abnormalities In symp-
tomatic Fabry patients, abnormalities are encountered that
point to a low-grade inflammatory disorder (Schiffmann
2009). Indeed, increased circulating levels of C-reactive
protein (CRP) and the hydrolases myeloperoxidase, metal-
loproteinase 9, and chitotriosidase, have been reported for
symptomatic Fabry hemizygotes (Vedder et al. 2006a;
Kaneski et al. 2006; Shah et al. 2007). The abnormalities
in the hydrolases, all produced by phagocytes, are not very
striking and certainly not specific for Fabry disease. As
inflammation is not thought to be a major component of
Fabry disease, the value of the above-mentioned hydrolases
as biomarkers seems limited. Monitoring corrections
induced by therapy in the levels of abnormal hydrolases
may, however, be informative. For example, clear reduc-
tions were noted in elevated chitotriosidase in male Fabry
patients during enzyme therapy and relapses following the
induction of neutralizing antibodies against the therapeutic
enzyme (Vedder et al. 2006a). The prevalent concept is that
Fabry disease is a systemic vasculopathy due to Gb3
storage in endothelial cells. Considerable attention has
therefore been focused on identifying plasma protein
abnormalities reflecting endothelial activation. Known
plasma proteins reflecting endothelial activation have been
considered as candidate biomarkers for Fabry disease. This
has been further stimulated by various reports demonstrat-
ing disturbed vascular circulation and a prothrombotic state
in Fabry disease (Moore et al. 2007a). Laboratory inves-
tigations that have been performed to assess determinants
of coagulation or activation of the endothelium in Fabry
patients are not always in accordance. In a very recent,
thorough study conducted with a large cohort of Fabry
patients in the Academic Medical Center in Amsterdam,
only minimal abnormalities in indicators of coagulation,
fibrinolysis, and platelet and endothelial activation were
detected (Vedder et al. 2009). Next to targeted analysis of
plasma proteins already known to reflect endothelial
activation, the search for protein biomarkers of Fabry
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disease has been extended to analysis of the entire plasma
proteome. Moore and co-workers were the first to elegantly
investigate plasma of children with Fabry disease prior to
and after ERT using tryptic digestion of plasma protein and
differentially labelling peptides with stable isotopes, such
that consistent mass differences were introduced into
selected amino acid residues (Moore et al. 2007b). The
LC-MS analysis showed only modest therapy-induced
changes in a few proteins. Most importantly, it stimulated
the investigators to further analyze α−2-antiplasmin con-
centrations in Fabry patients using citrate-based plasma
specimens and a chromogenic method. The mean level of
α-2-antiplasmin in 34 Fabry patients aged 10–55 years was
85% vs. normal laboratory mean of 105; range 82–123%. A
systematic proteomics analysis of blood specimens from
Fabry patients conducted at the Academic Medical Center
in Amsterdam has not led to the discovery of prominent
abnormalities in plasma proteins in symptomatic Fabry
patients (Aerts and co-workers, manuscript in preparation).

Lipid abnormalities as potential Fabry biomarkers For a
long time, the primary accumulating globoside Gb3 has
been considered as a surrogate marker for Fabry disease.
Reduction of Gb3 in tissue biopsies has actually served as
the criterion for the registration of agalsidase beta. The
globoside Gb3 is not only elevated inside storage cells but
is also present in abnormally high concentrations in bodily
fluids, such as plasma and urine. It is very well documented
that in symptomatic Fabry hemizygotes both plasma and
urinary Gb3 are increased (Desnick and Ioannou 2001).
Intriguingly, in female carriers of Fabry disease, urinary
Gb3 is generally increased, but plasma Gb3 levels tend to
be in the normal range (Vedder et al. 2007c). Various
methods have meanwhile been developed for detecting
Gb3. Mass-spectrometry-based and high-performance
liquid chromatography (HPLC)-based procedures have
become available, allowing accurate quantification of the
globoside (Mills et al. 2004; Fauler et al. 2005; Fuller et al.
2005; Auray-Blais et al. 2007; Groener et al. 2007).
Demonstration of increased Gb3, either in plasma or urine,
is of great value for diagnostic purposes, particularly for
putative Fabry females carrying a GLA mutation with
unclear consequences. It has been reported that urinary
Gb3 levels correlate with the predicted severity of GLA
mutations (Auray-Blais et al. 2008).

Globotriaosylceramide (Gb3) The value of plasma or
urinary Gb3 as biomarker to monitor progression of Fabry
disease is questionable. In several investigations, plasma or
urinary Gb3 has been found to poorly reflect Fabry disease
manifestation and therapeutic outcome (Vedder et al.
2007c; Young et al. 2005; Whitfield et al. 2005; Bekri et
al. 2006). For example, many male Fabry patients lacking

endogenous α-galactosidase A develop neutralizing anti-
bodies during ERT (Linthorst et al. 2004). The occurrence
of such antibodies is accompanied by a relapse in elevated
plasma Gb3, but the clinical significance of this remains
unclear (Vedder et al. 2008). The poor predictive value of
plasma or urinary Gb3 levels for Fabry disease manifesta-
tion is not entirely surprising. Prominent Gb3 accumulation
has been noted in placental tissue of a Fabry hemizygote
(Popli et al. 1990; Vedder et al. 2006b), a finding
illustrating that onset of clinical complications occurs only
after several years of lipid deposition. Gb3 accumulation
apparently occurs in hemizygotes at or even before birth,
long before any clinical symptoms are prominent. The same
discrepancy between early storage of Gb3 and clinical
symptoms is also noted in Fabry mice generated by
disruption of the GLA gene (Ohshima et al. 1997). Plasma
Gb3 concentrations in some presymptomatic boys have
been found to exceed those in symptomatic adult hemi-
zygotes (Vedder et al. 2007c), The absence of infantile
manifestations in Fabry patients completely lacking α-
galactosidase A activity also indicates that Gb3 accumula-
tion does not cause immediately, and maybe even not
directly, signs of disease. An investigation by Barbey and
co-workers provided evidence for the presence of an
unidentified substance in plasma of symptomatic Fabry
disease patients that stimulates proliferation of vascular
smooth-muscle cells and cardiomyocytes in vitro (Barbey et
al. 2006a). It is conceivable that this substance is a
causative factor in the development of left ventricular
hypertrophy and increased intima media thickness in Fabry
patients (Boutouyrie et al. 2002; Barbey et al. 2006b;
Kalliokoski et al. 2006; Vedder et al. 2007b; Rombach et al.
2010b).

Globotriaosylsphingosine (lysoGb3) The puzzling findings
prompted us to re-examine Gb3 and its metabolites in
Fabry patients (Aerts et al. 2008b). During this investiga-
tion, it was discovered that plasma of Fabry patients
contains markedly increased concentrations of deacylated
globotriaosylceramide, globotriaosylsphingosine (here ab-
breviated as lysoGb3). The relative increase in plasma
concentrations of the cationic amphiphilic lysoGb3 spec-
tacularly exceeds that of Gb3 by more than an order of
magnitude. High nanomolar lysoGb3 concentrations occur
in plasma samples from symptomatic male Fabry patients.
Also in the case of symptomatic female Fabry patients,
clearly increased levels of lysoGb3 were detected, whereas
concomitantly, Gb3 concentrations were in the high–normal
range (Aerts et al. 2008b). Thus, measurement of plasma
lysoGb3 seems to offer a very useful diagnostic tool,
particularly in the case of female Fabry patients. Mean-
while, the findings for lysoGb3 in Fabry disease have been
confirmed by independent investigations (Togawa et al.
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2010b; Auray-Blais et al. 2010; Togawa et al. 2010a).
Using a more sensitive mass spectrometrical detection,
Auray-Blais and co-workers demonstrated the presence of
elevated lysoGb3 in urine samples of Fabry patients
(Auray-Blais et al. 2010). The relationship between plasma
lysoGb3 concentrations and Fabry disease manifestations
has been investigated (Rombach et al. 2010a). It is clear
that in Fabry hemizygotes, both in humans and mice,
plasma lysoGb3 is already increased at birth and conse-
quently does not correlate strictly with symptoms (Aerts et
al. 2008b; Rombach et al. 2010b). In the case of female
hemizygotes, lysoGb3 is low at birth and increases
gradually with age. Some degree of correlation of plasma
lysoGb3 levels and disease manifestation seems to exist for
female hemizygotes. Preliminary data indicate that high
plasma lysoGb3 correlates with increased risk for cerebro-
vascular disease in males (Rombach et al. 2010b). Of
interest, life-time exposure to plasma lysoGb3 is found to
correlate with disease severity in male as well as female
patients (Rombach et al. 2010b). These observations
suggest, but certainly do not prove, that lysoGb3 plays a
direct role in the pathogenesis of Fabry disease. A role as
pathogenic factor for lysoGb3 is suggested by the elegant
studies of Ortiz and co-workers (Sanchez-Niño et al. 2010).
They demonstrated that exposure of cultured glomerular
podocytes to lysoGb3 increased the expression of tumor
growth factor (TGF)-beta-1, extracellular matrix proteins
(fibronectin and type IV collagen), and CD74. It was
concluded from these findings that lysoGb3 may have a
role in glomerular injury in Fabry disease by promoting the
release of secondary mediators of glomerular injury
common to diabetic nephropathy (Sanchez-Niño et al.
2010). It has already been found that lysoGb3 at concen-
trations occurring in plasma of symptomatic Fabry patients
is able to induce proliferation of smooth-muscle cells in
vitro, possibly explaining the increased intima media
thickness in Fabry patients (Boutouyrie et al. 2002; Barbey
et al. 2006b; Kalliokoski et al. 2006; Vedder et al. 2007b;
Rombach et al. 2010a). The effect of ERT on plasma
lysoGb3 has recently been reported (van Breemen et al.
2011). Reassuringly, therapy was found to be followed by
reduced plasma lysoGb3 levels.

Inhibodies: new, versatile tools for diagnosis,
monitoring therapeutic enzyme targeting
and fundamental research

A major limitation so far in evaluating LSDs has been the
lack of a technology that allows selective labeling of active
lysosomal hydrolases in vitro and in vivo. The availability
of such a method would allow more advanced diagnostic
tests and more sophisticated monitoring of tissue targeting

of therapeutic proteins, and would boost fundamental
research on lysosomal hydrolases. Recently we conceived
such a method for the lysosomal glucocerebrosidase based
on activity-based covalent labeling of the enzyme’s nucle-
ophile, glutamate 340, with fluorescent probes. The
catalytic mechanism of glucocerebrosidase, a retaining
beta-glucosidase, has been elucidated in detail (Liou and
Grabowski 2009; Rempel and Withers 2008). We employed
the fact that conduritol B-epoxide and cyclophellitol are
potent suicide inhibitors of glucocerebrosidase (van Es et
al. 1994; Atsumi et al. 1993). By coupling a fluorescent
boron-dipyrromethene (BODIPY) moiety via a triazole
linker to cyclophellitol, extremely potent fluorescent sui-
cide inhibitors for glucocerebrosidase were generated
(Witte et al. 2010). The probes are amphiphilic and easily
penetrate cells, allowing in vitro and in vivo labeling of
glucocerebrosidase in cells and whole organisms. The term
inhibody is coined for these types of probes, as they act as
suicide inhibitors and allow direct visualization of original-
ly active enzyme molecules with comparable methods as
used for specific antibodies. The detection power of the
developed inhibodies for glucocerebrosidase is amazing: as
little as a few attomoles of enzyme can be visualized on
slab gels by fluorescence scanning. The specificity of
glucocerebrosidase labeling with the inhibody probes is
also extraordinary high, even when tissues are analyzed
(Atsumi et al. 1993). It has been demonstrated that the
probes can be used for diagnostic purposes, allowing
visualization of active glucocerebrosidase in very few
cultured skin fibroblasts. The probes can also be employed
for fluorescence-activated cell-sorting analysis, fluores-
cence microscopy, and pulse-chase experiments (Atsumi
et al. 1993). It is envisioned that comparable specific probes
can be designed for other retaining lysosomal glycosidases
by adaptations in the sugar configuration.

An interesting potential application for inhibodies is to
be found in subtle labeling of therapeutic recombinant
protein and monitoring its tissue distribution following
intravenous administration. The use of a near-infrared
fluorophore to enable visualization of therapeutic glucocer-
ebrosidase in individual patients is appealing. A similar
approach was recently reported using a radio-tagged suicide
inhibitor, allowing visualization of administered labeled
glucocerebrosidase in mice using positron emission tomog-
raphy (Phenix et al. 2010).

Another area of application for the fluorescent inhibody
probes is laid in fundamental research. It now becomes
feasible to obtain information about the exact tissue
distribution of enzymatically active glucocerebrosidase.
Such information may render new insights into Gaucher
disease and help our understanding of why carriership for
the disorder constitutes a risk factor for parkinsonism
(Goker-Alpan et al. 2008). Glucocerebrosidase remains in
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many aspects an enigmatic enzyme. It is transported to
lysosomes independently of the mannose-6-phophate re-
ceptor system (Aerts et al. 1988; Rijnboutt et al. 1991a;
Rijnboutt et al. 1991b).. The membrane protein LIMP2 has
been shown to act as sorting receptor in certain cell types,
such as fibroblasts (Reczek et al. 2007). Other cell types,
including blood cells, apparently can employ an alternative
sorting receptor (Balreira et al. 2008). Analysis of LIMP2-
deficient mice and humans with the available inhibody
probes for glucocerebrosidase may be of great value in this
connection. A next challenge is designing comparable
probes that recognize and label several beta-glucosidases.
Besides glucocerebrosidase, humans contain other beta-
glucosidases, such as GBA2 (van Weely et al. 1993a; Boot
et al. 2007; Yildiz et al. 2006; Dekker et al. 2010) and
GBA3 [163] that might play a role in the pathogenesis of
Gaucher disease.

In summary, the search for biomarkers of Gaucher
disease have been extraordinary productive. Next to
elevations in circulating glucosylceramide and gangliosides
such as GM3 in Gaucher patients, striking abnormalities in
plasma concentrations of some proteins have been identi-
fied. For example, increases in chitotriosidase up to 10,000-
fold above normal have been identified in some Gaucher
patients. For some of these proteins, i.e., chitotriosidase and
PARC/CCL18, it has been demonstrated that they stem
from storage cells. The circulating levels of these proteins
offer insight into the total burden of storage cells in
Gaucher patients. Regular monitoring of chitotriosidase, or
PARC/CCL18 in chitotriosidase-deficient individuals, with
sensitive assays is widely applied in Gaucher clinics and
assists in clinical decision making.

The outcome of investigations on protein biomarkers for
Fabry disease has been comparatively disappointing.
Accurate methods have been developed to quantify the
primary storage lipid Gb3 in plasma and urine specimens.
However, it is generally felt that measurement of plasma
and urinary Gb3 is only useful for diagnostic purposes and
offers no sensitive tool to monitor Fabry disease progres-
sion. An exciting new development is the discovery of
elevated lysoGb3 in Fabry patients. Laboratory findings
suggest that lysoGb3 may even play a direct pathogenic
role. Systematic and solid investigations with large cohorts
of Fabry patients are necessary to reveal the true value of
lysoGb3 as biomarker. In any case, the demonstration of
increased plasma lysoGb3 in female heterozygotes offers an
important additional diagnostic tool.

The availability of fluorescent probes, so-called inhibodies,
which allow selective labeling ultrasensitive detection of
glucocerebrosidase offers new opportunities for diagnosis of
the disorder. In addition, the probes may be employed in the
future in monitoring tissue distribution of recombinant thera-
peutic protein in individual Gaucher patients. Finally, inhibo-

dies may boost fundamental research on glucocerebrosidase
and the pathogenesis of Gaucher disease and parkinsonism.

Biomarkers, biochemical abnormalities, and surrogate
markers of disease

In the case of lysosomal storage diseases, biochemical
abnormalities can be identified in blood and/or urine
samples as described above for Gaucher and Fabry disease.
Not all of these abnormalities should be called biomarkers.
Such terminology should be restricted to abnormalities that
are disease specific and are in the context of disease
manifestation, for example, circulating protein or metabo-
lite markers stemming from storage cells. Generally, these
biomarkers reflect not one particular symptom but rather
the total body burden of storage cells. Thus, such
biomarkers are not true surrogate markers of disease that
accurately reflect a particular symptom in one organ.
Although some of the available biomarkers, such as
chitotriosidase, may assist in clinical management, further
studies analyzing the correlation between long-term bio-
marker responses and objective clinical outcome parameters
following therapeutic interventions are still warranted.
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