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Abstract 

Background:  The human ATP binding cassette transporters Breast Cancer Resistance Protein (BCRP) and Multidrug 
Resistance Protein 1 (P-gp) are co-expressed in many tissues and barriers, especially at the blood–brain barrier and at 
the hepatocyte canalicular membrane. Understanding their interplay in affecting the pharmacokinetics of drugs is of 
prime interest. In silico tools to predict inhibition and substrate profiles towards BCRP and P-gp might serve as early 
filters in the drug discovery and development process. However, to build such models, pharmacological data must be 
collected for both targets, which is a tedious task, often involving manual and poorly reproducible steps.

Results:  Compounds with inhibitory activity measured against BCRP and/or P-gp were retrieved by combining Open 
Data and manually curated data from literature using a KNIME workflow. After determination of compound overlap, 
machine learning approaches were used to establish multi-label classification models for BCRP/P-gp. Different ways 
of addressing multi-label problems are explored and compared: label-powerset, binary relevance and classifiers chain. 
Label-powerset revealed important molecular features for selective or polyspecific inhibitory activity. In our dataset, 
only two descriptors (the numbers of hydrophobic and aromatic atoms) were sufficient to separate selective BCRP 
inhibitors from selective P-gp inhibitors. Also, dual inhibitors share properties with both groups of selective inhibitors. 
Binary relevance and classifiers chain allow improving the predictivity of the models.

Conclusions:  The KNIME workflow proved a useful tool to merge data from diverse sources. It could be used for 
building multi-label datasets of any set of pharmacological targets for which there is data available either in the 
open domain or in-house. By applying various multi-label learning algorithms, important molecular features driving 
transporter selectivity could be retrieved. Finally, using the dataset with missing annotations, predictive models can 
be derived in cases where no accurate dense dataset is available (not enough data overlap or no well balanced class 
distribution).
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Background
Typically, collecting a dataset of pharmacological annota-
tions between compounds and a given target is a tedious 
task. Researchers must browse diverse Open Databases 

like ChEMBL [1] or PubChem [2], manually extract data 
from published papers and then take decisions on how 
to merge and combine the different data sources. When 
more than one target is involved, then the work becomes 
even harder.

Here, we present an automatic workflow that com-
bines pre-curated datasets (either in-house or literature-
retrieved and manually curated) with data in the Open 
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PHACTS Discovery Platform [3] on different targets. 
Data merging can be customized and priority can be 
given to the pre-curated data. There is no limit on the 
number of targets and sources from which data can be 
retrieved.

The workflow was applied to retrieve a two-target data-
set for BCRP and P-gp inhibition. P-gp and BCRP are 
two members of the superfamily of ABC-transporters. 
These transmembrane proteins hydrolyze ATP to fuel the 
export of their substrates out of the cells (for a review, see 
[4]). BCRP and P-gp are co-expressed at various barri-
ers throughout the human body, especially at the blood–
brain barrier and liver canalicular membrane. Both are 
known to play a role in multiple drug resistance (MDR), 
a syndrome by which cancer cells become resistant to a 
broad panel of cytotoxic compounds [5]. In addition, 
they play a major role in causing clinically relevant drug–
drug interactions (DDIs) by altering the pharmacoki-
netic profiles of many co-administered drugs [6]. At the 
blood–brain barrier, the transporters decrease the bio-
availability of their substrates in the brain, which can be a 
desired or unwanted property depending on the drug. In 
the hepatocytes, they help eliminating xenobiotics. Thus, 
inhibition of the two transporters could lead to increased 
xenobiotics concentration in the liver, which results in 
hepatotoxicity. For these reasons, models predicting the 
inhibition of the two transporters by small molecules are 
helpful to detect potential drug–drug interaction perpe-
trators. Both transporters have been extensively studied 
independently, and several machine learning models to 
predict BCRP or P-gp inhibition have been published and 
reviewed [7–9]. However, no attempt has been made so 
far to build a model for both transporters simultaneously 
in a multi-label approach. Such an approach appears suit-
able due to the diverse and partly overlapping inhibitor 
profiles of those promiscuous efflux pumps. Thus, by 
using the inherent information of these common inhibi-
tor profiles for multi-label classification modeling, one 
could shed light on the chemical preferences of each 
transporter and understand what renders a molecule a 
dual or a selective inhibitor of BCRP or P-gp.

Using the aforementioned data extraction workflow, 
a dataset with pharmacological annotations for BCRP 
and/or P-gp inhibition was obtained. The majority of 
compounds have a known annotation only for one of 
the two targets, while a small amount contains activity 
data for both. Building models with this type of data is 
referred to as “multi-label learning” [10]. Different ways 
to tackle such a problem have been reviewed in the field 
of machine learning [11, 12]. “Binary relevance” decom-
poses multi-label classification into multiple independent 
binary classifications (one per label), and joins the output 

predictions a posteriori. Another way to tackle the prob-
lem is “label-powerset”, which transforms all the occur-
rences of label combinations in the data into individual 
classes to obtain a multi-class problem. However, this 
method may get too complex for problems with many 
labels, since label combinations (hence the number of 
classes in the transformed multi-class problem) increase 
exponentially with the number of labels. In 2009, Read 
and colleagues [13] introduced “classifiers chain”, a modi-
fication of binary relevance that would take into account 
interactions between labels. The concept is still to build 
one model per label, but this time sequentially: first, one 
label is randomly chosen to build the first model. This 
model is used to make predictions on the whole dataset. 
These predictions are then added to the descriptor matrix 
to train the next model on another randomly picked 
label. The process goes on until all labels have been used 
to build a model.

In this work, we apply the three methods (label-pow-
erset, binary relevance and classifiers chain) to a large 
BCRP/P-gp inhibition dataset derived from various 
sources. First, the models built using label-powerset 
allow finding physicochemical molecular descriptors 
that best distinguish selective from dual inhibitors. Then, 
improved predictability is gained by using either classi-
fiers chain or binary relevance transformations. These 
methods seem most useful when little annotation over-
lap is present in the data and/or many targets are to be 
predicted.

Results and discussion
Data retrieval and analysis
In this paper, we are presenting a semi-automatic, fully 
flexible KNIME workflow [14] for data retrieval, merging, 
pre-processing, filtering, depiction and output. The most 
important steps are illustrated in Fig.  1. The workflow 
showed special usefulness for collating data from vari-
ous sources, including various protein targets as well as 
datasets generated under various conditions. In this use 
case, P-gp and BCRP data are retrieved from the Open 
PHACTS Discovery Platform [3] as well as from a pre-
curated literature dataset. From the Open PHACTS Dis-
covery Platform, 617 compounds annotated for BCRP 
inhibition (473 inhibitors, 144 non-inhibitors) as well as 
1890 compounds annotated for P-gp inhibition (1260 
inhibitors, 630 non-inhibitors) were initially retrieved. 
The pre-curated literature dataset contains 978 molecules 
annotated for BCRP inhibition (433 inhibitors, 545 non-
inhibitors) [15]. Taken together, the data collation started 
with 3485 measurements for BCRP and P-gp. By creating 
an overlap matrix via InChIKeys, 2280 unique molecules 
were retained. Next, removal of entries with ambiguous 
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activity labels and data cleaning led to the sparse data-
set of 2191 compounds: 1104 have an activity reported 
for BCRP (533 inhibitors, 571 non-inhibitors) and 1248 
have an activity reported for P-gp (847 inhibitors, 401 
non-inhibitors).

The dense dataset contains only those compounds of 
the sparse dataset where there are activity labels avail-
able for both BCRP and P-gp (161 compounds). A binary 
pharmacological heat map representation—retrieved 
directly from our KNIME workflow—of the dense data-
set for inhibitory activity against BCRP/P-gp is avail-
able as Additional file  1: Figure SI-1. Table  1 shows the 
exact amount of compounds in each of the four classes 
(see also “Methods” section for an exact definition of the 
four classes). Overall, the classes show a well balanced 
distribution. The class with the lowest number of repre-
sentatives (27) is the collection of compounds which are 
non-inhibitors towards both transporters.

Analyzing the 161-compound (dense) dataset by 
extracting their Bemis–Murcko frameworks [16] resulted 
in 97 unique scaffolds, which corresponds to an average 
of 1.6 molecules per distinct scaffold. In reality, 75 scaf-
folds have only one representative compound, and only 
six scaffolds have at least five representative compounds 
(Fig. 2).

A closer inspection of scaffolds a, c and d reveals that 
the single structural difference is the position of the 
amide substituent on the quinoline ring system. There-
fore, scaffold clusters a, c, and d were merged into one 
cluster, now containing 17 compounds. As seen from the 
pharmacological heat map representations in Fig.  2B, 
there is a certain trend for preferred activity against 
BCRP within this cluster. In scaffolds e and f, the bind-
ing preference is even more pronounced (see Fig.  2B): 
cluster e seems to be rather P-gp selective, while cluster 
f shows a rather BCRP selective pharmacological profile. 

Fig. 1  Depiction of the data collection workflow

Table 1  Number of compounds belonging to each class of the BCRP/P-gp multi-class dataset

Class Number of compounds Inhibitors of P-gp Inhibitors of BCRP Description

0 27 No No Non-inhibitors

1 48 Yes No P-gp-selective inhibitors

2 39 No Yes BCRP-selective inhibitors

3 47 yes Yes Dual inhibitors
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Exceptions to these homogeneous pharmacological pro-
files towards BCRP/P-gp in clusters e and f could give 
clues about structure–activity relationships and selectiv-
ity switches. In some cases, however, the activity was on 
the border of the 10 µM cutoff set for separating active 
from inactive (12 µM for compound ChEMBL73930 and 
19  µM for compound ChEMBL258456), and could also 
point to incoherencies between different assay setups, 
for example. Apart from the enriched scaffold clusters, 
which comprise 46 compounds in total, the dense dataset 
can be considered as structurally diverse with respect to 
scaffold variety.

The sparse dataset contains 2191 compounds, with 
997 unique Bemis–Murcko scaffolds, which corresponds 
to an average of 2.2 molecules per distinct scaffold. On 
a closer look, over 650 scaffolds have only one repre-
sentative compound, 91 scaffolds have at least five rep-
resentative compounds and only 13 scaffolds have more 
than 20 representative compounds (these highly repre-
sented scaffolds are plotted in Additional file  1: Figure 
SI-2 including an overview of the class repartition among 
the scaffolds). This, again, underpins the datasets struc-
tural diversity. To compare the chemical space of the 
two datasets under study, the molecules were encoded 

Fig. 2  Analysis of the scaffolds present in at least five compounds of the dense dataset. A On top left distribution of compounds sharing the 
scaffolds. Down depiction of the six scaffolds (a–f). B Binary heat map representations of inhibitory activities for BCRP and P-gp of the compounds 
sharing scaffolds a, c and d (left heat map), scaffold e (middle heat map) or f (right heat map): red bars inhibitors; blue bars non-inhibitors; abscissae: 
targets; ordinates: compounds annotated with ChEMBL compound IDs
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into MACCS fingerprints and a principle components 
analysis (PCA) was performed on the sparse dataset. The 
dense dataset was projected using the transformation 
obtained with the sparse dataset, and the first two princi-
pal components were used to depict the data (Fig. 3). The 
result shows good overlap of the two projections, giving 
us the idea that the chemical spaces of the two datasets 
are not fundamentally different. The same approach was 
additionally performed with ECFP-like fingerprints and 
the figure is available as Additional file 1: Figure SI-3.

Four‑class classification: categorizing at once
The dense dataset retrieved in this study is not large (161 
unique compounds), but, as opposed to other multi-label 
classification approaches that consider an absence of bio-
logical annotation as a negative [17], we here focus on a 
dataset for which each inhibition and absence of inhibi-
tion has been measured in an in vitro assay. This is a cru-
cial point, especially for targets such as the promiscuous 
ABC-transporters: one cannot simply assume that a lack 
of data means an absence of activity for that compound 
on that target. The presence of annotated data for both 
BCRP inhibition and P-gp inhibition was encoded into 
four classes using the label-powerset method (see “Meth-
ods” section). Having only two labels (BCRP and P-gp) is 
an advantage for this technique as the number of classes 
derived from such transformation is 2|L| (where |L| is the 
number of labels in the initial dataset).

In a first instance, we were interested in predicting all 
of the four classes at once. The multi-class classifier thus 
learns to distinguish inhibitors of BCRP from inhibi-
tors of both BCRP and P-gp and so on. It is a complex 
task that was tackled with different learning algorithms 
implemented in Weka. The first choice was a multilayer 

perceptron with four output nodes (one for each class), 
as no transformation is needed to treat multi-class 
problems. However, results were not promising and the 
computational time needed was higher than those for 
algorithms with similar accuracy (Table 2).

As can be seen, the overall classification results are 
mediocre. This is probably due to the small amount of 
data available for training the classifier and the harsh way 
of computing the accuracy (the classifier has to predict 
properly not only two but four distinct classes). Accord-
ing to the confusion matrices (data not shown), it seems 
that the classifiers essentially fail to properly predict class 
3, often mistaken for a class 1 or class 2. The best model 
was obtained for the ECFP descriptor set, in the polyno-
mial support vector machine setting.

Three‑class classification: distinguishing between different 
types of transport inhibitors
Three-class classification would allow us to understand 
what differentiates the selective inhibitors of classes 1 
and 2 from the polyspecific inhibitors of class 3. Thus, the 
aim is not to reach a powerful model, but rather to inter-
pret the models and maybe get a clearer idea as to what 
makes an inhibitor selective or not. We therefore focused 
on a subset of 71 interpretable MOE descriptors and 
learning algorithms that lead to interpretable models. 
Only data labeled as classes 1, 2 or 3 was used for training 
the models.

Important features can be retrieved easily from the J48 
trees and from the Jrip rules. For the first three models 
(see Table 3), descriptors related to hydrophobicity (SlogP 
and a_hyd), the number of aromatic atoms (a_aro), the 
Van der Waals surface area of H bond acceptors (vsa_acc) 
and Balaban’s connectivity topological index (BalabanJ) 
were identified as important descriptors for distinguish-
ing the three classes. For the bagging models, the fea-
ture importances for each of the 50 trees were averaged 
(see “Methods”), and the most important descriptors 
extracted were similar to the ones from the J48 trees: 
SlogP, a_hyd, a_aro, as well as the number of donor and 
acceptor atoms (a_donacc), and the Wiener path (weiner-
Path; sum of the lengths of the shortest paths between all 
pairs of heavy atoms). Thus, in total we focused on seven 
different descriptors having been identified as important 
ones. The distribution of these important features was 
explored in order to understand in which direction they 
influence selectivity.

As exemplified in Fig.  4, showing the distribution of 
SlogP among classes 1, 2 and 3, inhibitors of BCRP only 
(green bars) tend to take either low or high values of 
SlogP, while inhibitors of P-gp only (red bars) tend to take 
medium values of SlogP. The dual inhibitors (blue bars) 
overlap with the class 1 inhibitors in the medium values 

Fig. 3  Projection of the dense dataset (yellow dots) over the PCA 
transformations obtained for the sparse dataset (black dots) using 
MACCS fingerprints
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of SlogP and the with class 2 inhibitors in the higher val-
ues of SlogP. The three Matthews Correlation Coefficient 
curves (MCC, lower panel) show that separating class 1 
(P-gp-selective inhibitors) from class 3 (dual inhibitors) is 
not possible using SlogP (rather flat profile of the contin-
uous line). On the contrary, separating class 1 from class 
2 is feasible with a threshold around SlogP =  3.5 (peak 
of the MCC discontinuous line at around 0.4). Finally, 
the best threshold to separate BCRP inhibitors from dual 
inhibitors is at SlogP = 3.5 (peak of the MCC dotted line 
at around −0.4). Of course, these thresholds are based 
only on one descriptor and would not produce an opti-
mal separation.

Identical plots were generated for the other descriptors 
retrieved by the 3-class classification model as critical 
for the separation of the three types of inhibitors and are 
available as Additional file  1: Figures SI-4 to SI-9. In all 
cases, the separation of the dual inhibitors from one of 
the two classes of selective inhibitors is not trivial. These 
findings go into the same direction as what was found for 
the 4-class classification models: predicting class 3 (the 
dual inhibitors) is a difficult task.

To further validate the usefulness of the seven descrip-
tors selected by the models altogether, we performed 
a three-dimensional embedding of the dense dataset 
(restricted to classes 1, 2 and 3) using ChesMapper [18] 
and the seven descriptors. The quality of the obtained 
embedding was very high (r2 = 0.97), which means that 
compounds with similar descriptor values would appear 
close together in space (Fig. 5) and that the seven descrip-
tors are meaningful in the context of our dataset. In addi-
tion, a separation of the three classes can be seen on the 
embedding (especially classes 1 and 2 in green and red, 
Fig. 5), which confirms the selected descriptors as helpful 
to distinguish the three types of inhibitors.

Very recently, Egido and colleagues studied the rela-
tionship between the hydrophobicity, polarizability and 
charge with the capacity for a compound to be trans-
ported or to inhibit BCRP and/or P-gp by applying a 
semi-quantitative scoring scheme [19]. Using a calibrat-
ing set of 30 drugs, the ATPase activity of the two trans-
porters was measured as a function of the concentration 
of the drugs. Dual inhibitors (only three compounds out 
of the 30 drugs) were hydrophilic, highly amphiphilic 

Table 2  10-fold cross-validation results of selected classifiers built on the 4-class classification dataset

When no results are shown for the descriptor set ECFP, it is because the computational time and/or memory needed were too large. In italic letters, the model that 
gives the best cross-validation results

Algorithm Descriptor set Accuracy (%) Kappa AUC

MultilayerPerceptron, training time = 600 MOE2D 55.3 0.39 0.81

MultilayerPerceptron, training time = 600 MACCS 59.0 0.44 0.79

K nearest neighbours, k = 5 MOE2D 60.2 0.46 0.80

K nearest neighbours, k = 5 MACCS 57.1 0.41 0.78

K nearest neighbours, k = 5 ECFP 54.7 0.40 0.80

RotationForest, iterations = 50 MOE2D 60.9 0.47 0.85

RotationForest, iterations = 50 MACCS 62.7 0.50 0.84

SVM with polynomial kernel MOE2D 57.1 0.42 0.78

SVM with polynomial kernel MACCS 62.7 0.49 0.80

SVM with polynomial kernel ECFP 70.2 0.60 0.84

RandomForest, 200 trees MOE2D 60.9 0.47 0.85

RandomForest, 200 trees MACCS 60.9 0.47 0.86

RandomForest, 200 trees ECFP 67.1 0.55 0.88

Table 3  Average over ten ten-fold cross-validation runs for given models trained on the 3-class classification subset

Algorithm Embedded feature selection Accuracy (%) Kappa AUC

J48 tree Yes 61.6 0.42 0.73

J48 tree, min. 5 instances/leaf Yes 59.1 0.38 0.73

Jrip rules Yes 57.8 0.36 0.70

Bagging of J48 No 65.0 0.47 0.82

Bagging of J48 Yes 62.6 0.44 0.80
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and non-charged. Our dataset contains 47 dual inhibi-
tors, which are indeed non-charged. However, our set of 
dual inhibitors has, on average, a sum of atomic polariz-
abilities of 78.2 (descriptor “apol” in MOE), to compare 
with 76.9 for the other compounds (non-inhibitors and 
selective inhibitors). Also in case of the number of hydro-
phobic atoms (descriptor “a_hyd” in MOE), there is no 
significant difference between dual inhibitors (27.5) and 

other compounds (26.2). Thus, for our dataset the criteria 
mentioned above do not allow to separate dual inhibitors 
from other compounds.

Two‑class classification: exploring selectivity
Finally, we focused on the two sets of selective inhibitors: 
those that inhibit exclusively P-gp (class 1) and those that 
inhibit exclusively BCRP (class 2). A classification model 

Fig. 4  Distribution of SlogP among the three kinds of inhibitors. Inhibitors of P-gp only: red bars (class 1); inhibitors of BCRP only: green bars (class 
2); inhibitors of both P-gp and BCRP: blue bars (class 3). Top panel bar plot of the counts per binned value of SlogP. Middle panel proportions of each 
class in each bin, by putting each bin count to 100 %. Lower panel Matthews Correlation Coefficient (MCC) that would be obtained by splitting the 
data at each SlogP value. MCC values that peak above or below 0 show ideal thresholds to separate the data between classes. The colored dotted 
lines corresponds to the peaks of MCC and the corresponding SlogP values (between 3 and 4) for separating class 1 from 2 (red dotted lines) and 
class 2 from 3 (green dotted lines)

Fig. 5  View of the 3D embedding proposed by CheS-Mapper using the descriptors SlogP, a_hyd, a_aro, vsa_acc, BalabanJ, a_donacc, weinerPath. In 
red P-gp-selective inhibitors (class 1), in green BCRP-selective inhibitors (class 2). In blue dual inhibitors (class 3)
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using the restrained set of 71 MOE descriptors was built 
by training a simple set of rules (Jrip algorithm in Weka) 
with embedded attribute selection. The model obtained 
82.1 % of accuracy, a kappa of 0.64 and an AUC of 0.81 
(values are given as mean of ten ten-fold cross-validation 
runs). Interestingly, the model is very simple and is based 
only on two descriptors: the number of hydrophobic 
atoms (a_hyd) and the number of aromatic atoms (a_aro) 
(Fig. 6). Those two descriptors have also been identified 
as important ones in the previous three-class classifica-
tion models. The rule set can be written as follows: 

• • if the number of hydrophobic atoms is less or equal 
to 21: then the compound would be selective for 
BCRP (class 2)

• • else, if the number of aromatic atoms is superior or 
equal to 24: then the compound would be selective 
for BCRP (class 2)

• • else: the compound is selective for P-gp (class 1)

Interestingly, in a very recent paper, Xu and colleagues 
demonstrated that π–π stacking plays a role in increas-
ing the efficiency of binding of BCRP modulators [20]. 
This finding is in line with the higher number of aromatic 
atoms in selective BCRP inhibitors according to our 
machine learning model (second rule).

This model is not aimed at predicting new compounds, 
since one would first need to be sure that they are either 
inhibitors of P-gp or BCRP. Instead, it allows understand-
ing, with the dataset at hand, what distinguishes the two 
kinds of selective inhibitors.

Applying these rules to the training set leads to 9 mis-
classifications. These rules encode the fact that, in the 
restricted dataset of selective compounds, the inhibitors 
of BCRP have more aromatic atoms, while the inhibitors 

of P-gp contain more hydrophobic atoms. Six out of nine 
compounds that were misclassified by the model were 
violating at least one Lipinski rule (regarding the molecu-
lar weight and lipophilicity) [21]. All misclassified struc-
tures are reported in Additional file 1: Figure SI-10. One 
could argue that the number of aromatic atoms and the 
number of hydrophobic atoms may be correlated in our 
data. This is not the case as can be seen on the plot of 
both descriptors in Additional file  1: Figure SI-11. Dur-
ing the dense dataset analysis, we discovered three scaf-
folds, together containing around 40 compounds, which 
showed some selectivity for P-gp or BCRP. Thus, those 
compounds are labeled as class 1 or 2 and are part of the 
training set used to build the two-class model. Therefore, 
the high cross-validation results and the simplicity of 
the obtained model could be due to the lack of chemical 
diversity in the training set, and reduce the applicability 
of the rules for any selective inhibitors of the two trans-
porters of interest. Nevertheless, the model describes 
well the data available so far in the literature and in pub-
lic databases.

Chain of classifiers and binary relevance: exploiting all the 
data
The problem with the label-powerset approach described 
in the previous section is the need for data overlap 
between the labels. Here, the dataset got reduced to 161 
compounds only. Adding just one other label, BSEP inhi-
bition for example (another ABC-transporter expressed 
in the liver), would lead to 8 different classes to predict 
and much less than 100 compounds to train on.

In this section, we compare two methods that can han-
dle missing annotations in the labels: binary relevance 
and classifiers chains. Binary relevance assumes that the 
labels are independent and would not bring any informa-
tion to one another. Classifiers chains assume that having 
information for one label may help building the model 
for the next label. If one employs the same classifiers for 
both techniques, then the difference should come from 
the influence of using the information from one label to 
another in the case of the classifiers chain. The binary rel-
evance performance can be considered as the baseline in 
this case.

When taking all data available with inhibition data in 
BCRP or P-gp, the dataset contains 2191 compounds, 
where most of the label annotations are missing for one 
of the transporters (sparse dataset).

Models were built on the sparse dataset either using 
the binary relevance protocol, or the classifiers chain pro-
tocol, keeping the same base classifiers inside (Logistic 
regression, RandomForest or SVM). Results are shown in 
Table 4. Performance is measured by ten-fold cross-vali-
dation in the sparse dataset.

Fig. 6  Tree depiction of the JRip model to separate P-gp-selective 
inhibitors (red leaf) from BCRP-selective inhibitors (green leaves). a_hyd 
number of hydrophobic atoms, a_aro number of aromatic atoms. The 
numbers in the leaves correspond to the number of compounds in the 
training set that ended up in that leaf (left number) and the number 
of compounds in the training set that were mispredicted in that leaf 
(right number)
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Results show higher accuracy for all models when 
compared with the multi-class classification (Table  2), 
although one should keep in mind that the way accuracy 
is computed is different in both approaches. In the multi-
class classification, accuracy is computed by summing 
the correct predictions for all classes, and dividing it by 
the total number of predictions. In the classifiers chain or 
binary relevance cases, this computation is not possible 
(due to the fact that many compounds lack annotation 
for one label). Instead, the macro-accuracy is reported, 
which corresponds to an averaged accuracy of each indi-
vidual model built (see “Methods” for more details).There 
is no significant difference between models built with 
binary relevance (i.e. independent models for each label 
whose output is then shown as a list of predictions) and 
with the chain of classifiers. This indicates that for such a 
small amount of labels, we are not gaining enough infor-
mation as for impacting the second model. In our con-
crete case here, it seems that label-powerset was initially 
a good choice since the dataset only has two labels and 
a good balance between class repartitions. To make use 
of all the data, binary relevance is a simple method that 
performs well. We suppose that, in the case of a data-
set with many labels, the classifiers chain would actually 
show better performance than the naive binary relevance 
protocol.

Summary and conclusions
Polypharmacology profiling requires carefully collated, 
large datasets. In this work, we present a workflow to 
automatically retrieve and assemble polypharmacology 
data using the Open PHACTS Discovery Platform in 
conjunction with in-house or literature-retrieved pre-
curated data. This workflow allows automatizing the 
otherwise tedious task of manually querying databases, 
downloading structures and activity points, comparing 
data, establishing thresholds, etc. This task is the starting 

point of any ligand-based approach to tackle one or more 
targets. The fact that it allows combining pre-curated 
data may render it even more interesting for pharma-
ceutical companies (having their own in-house data) or 
research groups having already established datasets. 
Adding more targets to the query does not complicate 
the workflow; the only limit is the data availability.

In our study, we focused on the efflux pumps BCRP 
and P-gp, which have been recognized to influence the 
pharmacokinetic profile of co-administered drugs, thus 
causing drug–drug interactions and unwanted side-
effects. Due to their promiscuous nature regarding their 
compound profiles, and the significant overlap in sub-
strate and inhibitor profiles of BCRP/P-gp, inter-protein 
similarities in ligand recognition appear quite likely, but 
are still elusive to researchers in the field.

The automatic data collection led to a dense dataset of 
161 compounds with annotations for both targets, and 
a sparse dataset of 2191 compounds with annotation in 
at least one target. Applying distinct multi-label learning 
methods allowed to extract crucial characteristics of the 
compounds that are selective inhibitors of any of the two 
targets and to build models with good predictivity. The 
multi-label methods (except for binary relevance) take 
into account the potential interactions between labels, 
and therefore could bring an edge when entire protein 
families are of interest. To the best of our knowledge, this 
work pioneers the use of classifiers chain for multi-label 
classification in polypharmacology prediction, and might 
pave the way for studies across a larger set of targets.

Methods
Raw data
For human P-gp [UniProt: P08183], data about com-
pounds and their inhibitory bioactivities was retrieved 
from the Open PHACTS Discovery Platform merely. 
Human BCRP [UniProt: Q9UNQ0] inhibition data was 
composed of data from the Open PHACTS Discovery 
Platform [3, 22] and of manually annotated data col-
lected from literature sources [15], hereafter called pre-
curated data. In more detail, data for BCRP was extracted 
from ChEMBL [1], PubChem [2], and manual search 
through MEDLINE. Thresholds to annotate inhibitors 
and non-inhibitors were applied in an assay-by-assay 
fashion, trying to minimize incoherence between multi-
ple measurements. After careful cleaning, the manually 
curated BCRP dataset contained 433 inhibitors and 545 
non-inhibitors.

Workflow for data collection and data merging
A KNIME workflow [14] was created in order to collect 
data from the various sources, preprocess the data, merge 
it via InChIKeys [23], and filter it for the generation of the 

Table 4  Comparison of results for binary relevance (base-
line) and classifiers chain, by ten-fold cross-validation

In italic letters, the model that gives the best results

Algorithms Macro-accuracy Macro-MCC Macro-AUC

Binary relevance, Logistic 
Regression

0.812 0.594 0.793

Classifiers chain, Logisitic 
Regression

0.812 0.594 0.793

Binary relevance,  
RandomForest

0.835 0.641 0.808

Classifiers chain,  
RandomForest

0.836 0.643 0.809

Binary relevance, SVM 0.766 0.504 0.749

Classifiers chain, SVM 0.767 0.504 0.750
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datasets of different sizes to be used by the various multi-
label learning techniques. The whole workflow is available 
from myExperiment (http://www.myexperiment.org/work-
flows/4754.html), and can be flexibly adapted to any other 
pre-curated dataset or list of protein targets where there is 
data available in the open domain. The workflow queries 
across open data sources by means of the Open PHACTS 
Discovery Platform, and consists of the following steps:

Retrieving pharmacology data from the open domain 
and endpoint filtering
The “Target Pharmacology: List” API call was used to 
retrieve pharmacology data from ChEMBL for the pro-
tein targets under study by including a filter for the “activ-
ity_types” (activity endpoints) “IC50”, “EC50”, and “Ki”, 
as well as for the “activity_unit” “nanomolar”. Upstream, 
input was given by providing the Uniform Resource Iden-
tifier (URIs) for the UniProt identifiers of P-gp and BCRP 
in the form of a table. The pharmacology output was then 
further processed to exclude records with unspecified 
compound activity, and with activity values greater than 
108 (to avoid potential data errors). Further, activity val-
ues (for IC50, EC50, and Ki endpoints) were transformed 
into their negative logarithmic molar values (“-logAc-
tivity values [molar]”). The same activity endpoints are 
available as “pCHEMBL values” from the ChEMBL data-
base, but in addition we also kept values with a relation 
different from “=”. For a binary representation (active: 1, 
inactive: 0), a cutoff value of “-logActivity values [molar]” 
of greater than five (<10 µM) was applied to define active 
molecules. This cutoff guarantees that activity values with 
a relation sign and activity >10 µM are not considered as 
actives. As for some data points from the Open PHACTS 
Discovery Platform a structural representation was miss-
ing, the “ChEMBLdb Connector Input” node was used in 
order to retrieve InChIKeys for all ChEMBL compound 
IDs in the “open” data set.

Importing and preprocessing pre‑curated data
An sd file served as input for the import of pre-curated 
BCRP data. By the “String Replacer” node the terminol-
ogy can be adapted to the one of the open data set (in 
our case “INACTIVE” was replaced by “0” and “INHIBI-
TOR” by “1” for labeling the activity of a compound). 
Also column names might be adapted using the “Column 
Rename”. The structural input from the column “SDF 
Molecule” was transformed into the RDKit format, and 
subsequently into the InChI and InChIKey format to be 
able to perform the subsequent dataset merging.

Merging Open Data with pre‑curated data
The various sources of data were merged by applying the 
“Concatenate” node in KNIME. By using the “Column 

Merger”, different columns can be united from the vari-
ous input data sets (e.g. those for InChIs or activity 
labels).

Creating overlap representations of pharmacology data 
and heat map representations
A pivot table was generated to display bioactivities of 
compounds against the two targets using the “Pivoting” 
node in KNIME grouping rows by InChIKeys and col-
umns by “Target name”. If several activity values are given 
for the same compound-target pair, only one representa-
tion (row) will be kept, preserving the mean and median 
activity labels as well as the list of all labels assigned to 
one compound-target pair. In our case of binary repre-
sentation, “1” (active) and “0” (inactive) were chosen 
according to the label given by the pre-curated data (if 
available), in order to treat those annotations preferen-
tially. In other cases, the median value of activity labels 
from different measurements (different ChEMBL assay 
IDs) was taken as the final label. In cases of 0.5 median 
activity labels (i.e. the compounds was attributed the two 
possible labels with the same frequency), compounds 
were removed from the dataset by applying the “Row Fil-
ter” node. The resulting heat maps were visualized with 
the “HeatMap (JFreeChart)” node in KNIME.

Datasets
The dataset retrieved by the workflow can either contain 
no missing value (“dense dataset”, only compounds hav-
ing pharmacological annotation for both transporters 
were kept), or can contain missing annotation for at most 
one of the transporters (“sparse dataset”). The “dense” 
dataset contains 161 compounds. The “sparse” dataset 
contains 2191 compounds, including the 161 compounds 
of the dense dataset.

The raw sparse and dense datasets retrieved by the 
workflow were processed using the following protocol: 
salts were stripped and compounds neutralized using 
the Wash module of MOE 2013 [24]. Mixtures, organo-
metallic and compounds containing rare elements were 
removed. Both datasets are available for download as 
Additional files 2 and 3 in their washed form.

Descriptors
All MOE 2D physicochemical descriptors were com-
puted for the molecules of the dense dataset. In a second 
step, a subset of 71 interpretable descriptors was selected 
from the original set, in order to facilitate interpretation 
of the results. The exact list of the 71 selected descrip-
tors is available in the Additional file 1. These descriptors 
were not selected based on information content or cor-
relation with the dependent variable, but rather on their 
interpretability. Additionally, we computed the MACCS 

http://www.myexperiment.org/workflows/4754.html
http://www.myexperiment.org/workflows/4754.html
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keys and the Morgan fingerprints (circular fingerprints 
similar to extended-connectivity fingerprints, hereafter 
named “ECFP”) with a diameter of 8 and folded to 1024 
bits using RDKit [25].

Multi‑class classification on the dense dataset
Class encoding
Initially, the problem at hand can be considered a multi-
label classification, with two labels: P-gp and BCRP. A 
compound that inhibits both P-gp and BCRP would 
therefore contain the two labels. This kind of machine 
learning question can be transformed into a more trac-
table problem [12]. The method we are using here is the 
label-powerset. Simply, each possible label combina-
tion is transformed into a class, thereby transforming 
the multi-label problem into a multi-class classification 
problem.

The dense P-gp/BCRP dataset was therefore encoded 
into a 4-class classification dataset. The first class (here-
after class 0) corresponds to compounds that are non-
inhibitors of both P-gp and BCRP. The second class 
(hereafter class 1) corresponds to compounds that inhibit 
P-gp but not BCRP. The third class (hereafter class 2) cor-
responds to compounds that inhibit BCRP but not P-gp. 
The fourth class (hereafter class 3) corresponds to com-
pounds that inhibit both P-gp and BCRP. Note that such 
problem transformation cannot be done with missing 
values in the labels.

Model building and validation
Models for predicting the four classes at the same time 
were built using Morgan fingerprints, MACCS keys or 
MOE 2D physicochemical descriptors and various algo-
rithms (see Results). Models for distinguishing the three 
kinds of inhibition (classes 1, 2 and 3) were built on the 
small set of MOE 2D descriptors. When attribute selec-
tion was used, it was done in an embedded way inside the 
classifier itself to avoid over-fitting and keep the cross-
validation pristine. Models for distinguishing the selec-
tive inhibitors of the two transporters (classes 1 and 2) 
were built on the small set of MOE 2D descriptors.

Validation was done by ten-fold cross-validation exclu-
sively because of the reduced size of the dataset, but for 
the best models it was repeated 10 times with different 
random seeds to average results. The accuracy, Cohen’s 
kappa and AUC under the ROC curve are reported as 
measures of the quality of the classifiers.

Feature importance in bagging of trees
The selected model for 3-class classification was bagging 
of trees. In this method, many trees are built on different 
samples of the training set. For each tree and each fea-
ture, the percentage of data passing by the nodes in which 

the feature is used to split was collected. For example, a 
feature used at the top of the tree will see 100 % of the 
data. These fractions of samples they contribute to are 
then averaged over all trees and used to rank the features.

Classifiers chain versus binary relevance on the sparse 
dataset
Classifiers chain
The concept of classifiers chain for multi-label learn-
ing was presented in [13]. Briefly, the list of labels (here, 
BCRP inhibition and P-gp inhibition) is shuffled and a 
model is trained using the first label and all the data for 
which there is an annotation for that label. The model 
is then used to predict this label (as a score between 0 
and 1) for all compounds of the dataset (even those for 
which there was no information for that label). This pre-
diction is appended to the features matrix and serves as 
additional descriptor for training the next model, on the 
second label. This in turn can be used to predict the next 
label, etc. until all labels in the shuffled list have been 
learned.

Binary relevance
Binary relevance corresponds to the baseline of multi-
label classification. It assumes independence of labels, 
and therefore building independent models for each label 
and using them together for the final prediction is a sim-
ple and efficient approach [26].

Model building and evaluation
In the present implementation, the same modeling algo-
rithms were used for both labels. We used logistic regres-
sion with default parameters, random forest with 100 
trees, and a support vector machine with polynomial 
kernel of degree two from scikit-learn [27] as base clas-
sifiers. The features used were the Morgan fingerprints as 
described in the “Descriptors” section. Accuracy, MCC 
and AUC were computed using the macro-averaging pro-
cedure [11] after running ten-fold cross-validation. In 
macro-averaging, the number of true positive, true nega-
tive, false positive and false negative are computed label 
by label, then accuracy, MCC and AUC are computed, 
also label by label. These values are then averaged. Note 
that this evaluation cannot be compared with the direct 
evaluation of the label-powerset models, since there the 
accuracy represents all exact matches between the pre-
dictions and the real class. It is stricter than the macro-
averaged measures. This method cannot be applied here 
since there are missing labels in the training set. The same 
evaluation method is applied to both classifiers chain and 
binary relevance (each individual model is evaluated by 
the same cross-validation folds and then the individual 
measures are averaged).
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The python code to build and validate such classifiers 
as well as instructions for running it is available as Addi-
tional files 1 and 4.

Scaffolds analysis
Bemis–Murcko scaffolds [16] were extracted with RDKit 
KNIME node “RDKit Find Murcko Scaffolds” from both 
the dense and sparse datasets. Compounds sharing the 
same scaffold were grouped together and their pharma-
cological annotations were retrieved. Heat map represen-
tations for the most prominent scaffolds were visualized 
with the “HeatMap (JFreeChart)” node in KNIME.

Software
The data collection workflow was implemented in 
KNIME version 2.11 [14]. The Open PHACTS API ver-
sion 1.5 [28] was used to query across integrated public 
data sources: ChEMBL [1], ChEBI [29], DrugBank [30], 
Chemspider [31], Gene Ontology [32], WikiPathways 
[33], Uniprot [34], ENZYME [35], and ConceptWiki [36]. 
OPS-KNIME nodes (version 1.1.0) are available from 
[37]. Data cleaning and descriptor calculations were 
performed using MOE 2013 [24] and RDKit 2014.09.2 
[25]. Multi-class classification models were built using 
the Weka 3.7.7 package [38] and chemical space projec-
tions were done with CheS-Mapper 1.9.0 [18]. Classifi-
ers chain and binary relevance models were built using 
an in-house script using the scikit-learn python library 
[27] version 0.16.1. The distribution plots of the descrip-
tors were done using an in-house python script and the 
matplotlib library [39] version 1.14.3. The Bemis-Murcko 
scaffold analysis was done in LibreOffice Calc 4.2.8.2 and 
the structures were drawn in Marvin 5.11.3, 2012, Che-
mAxon (http://www.chemaxon.com).
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