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Abstract

Background: De novo genome assembly using NGS data remains a computation-intensive task especially for
large genomes. In practice, efficiency is often a primary concern and favors using a more efficient assembler like
SOAPdenovo2. Yet SOAPdenovo2, based on de Bruijn graph, fails to take full advantage of longer NGS reads
(say, 150 bp to 250 bp from Illumina HiSeq and MiSeq). Assemblers that are based on string graphs (e.g., SGA),
though less popular and also very slow, are more favorable for longer reads.

Methods: This paper shows a new de novo assembler called BASE. It enhances the classic seed-extension approach
by indexing the reads efficiently to generate adaptive seeds that have high probability to appear uniquely in the
genome. Such seeds form the basis for BASE to build extension trees and then to use reverse validation to remove
the branches based on read coverage and paired-end information, resulting in high-quality consensus sequences of
reads sharing the seeds. Such consensus sequences are then extended to contigs.

Results: Experiments on two bacteria and four human datasets shows the advantage of BASE in both contig
quality and speed in dealing with longer reads. In the experiment on bacteria, two datasets with read length
of 100 bp and 250 bp were used.. Especially for the 250 bp dataset, BASE gives much better quality than
SOAPdenovo2 and SGA and is simlilar to SPAdes. Regarding speed, BASE is consistently a few times faster than
SPAdes and SGA, but still slower than SOAPdenovo2. BASE and Soapdenov2 are further compared using human
datasets with read length 100 bp, 150 bp and 250 bp. BASE shows a higher N50 for all datasets, while the
improvement becomes more significant when read length reaches 250 bp. Besides, BASE is more-meory efficent
than SOAPdenovo2 when sequencing data with error rate.

Conclusions: BASE is a practically efficient tool for constructing contig, with significant improvement in quality for
long NGS reads. It is relatively easy to extend BASE to include scaffolding.

Background
The past few years have witnessed a number of im-
proved de novo genome assemblers, providing users
choices between speed and accuracy [1]. The more
recent NGS technologies have gradually increase the
read length beyond 100 bp (e.g., 150 bp from HiSeq and
250 - 400 bp from MiSeq), yet existing efficient
assemblers do not have much improvement regarding
accuracy, and it remains challenge how to take better

advantage of longer NGS reads to assemble genomes in
a fast and accurate manner. This paper presents a new
assembler that can achieve better assembly quality for
longer reads when compared with those efficient
assemblers, without scarifying speed a lot.
Most state-of-the-art short read assemblers such as

SOAPdenovo2 [2] and ALLPATHS-LG [3] are based on
de Bruijn graph (DBG). In these assemblers, reads are
chopped into a sequence of overlapping k-mers such
that two adjacent k-mers have k-1 bases in common.
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The DBG based method works well for short reads but
it is non-trivial to handle repetitive sequences that are
longer than k. When the reads are longer, it is natural to
consider using a larger k, yet this is not feasible as this
will require higher sequencing depth and consume much
more memory (especially for NGS data with high error
rate). Another method is to use the multiple k-mer
strategies like IDBA-UD [4] and SPAdes [5], which could
save memory by using smaller k parameter to take care
most of sequencing errors, and using larger k to solve
longer repetitive sequences. Yet this requires multiple
constructions of DBG and much longer running time,
limiting their usage for the assembly for relative large
genome.
Assemblers for Sanger sequencing reads or Roche 454

reads (400-800 bp) are mostly based on Overlap-Layout-
Consensus (OLC) strategy, such as Celera assembler and
Newbler. An alternative representation named string
graph was proposed by Mayer a decade ago [6], which
has been implemented in assemblers such as SGA [7],
Fermi [8], and Readjoiner [9]. Like OLC based assem-
blers, a proper minimum overlap size is required in string
graph based assemblers to reduce the complexity of graph
and to improve the connectivity of graph. Smaller mini-
mum overlap size will increase the probability that the
overlap sequence falls within a repetitive region of the
genome. This leaves much more branches in the graph
and may result in shorter contigs. Meanwhile, according
to the Lander-Waterman model [10], larger minimum
overlap size leads to a reduction of sufficient support for
overlap among reads, thus enhancing the demand for
higher sequencing depth. Therefore, due to the variation
in length of repetitive sequences in genome, it is difficult
to find a fixed minimum overlap size that fits all use cases
especially when the NGS read is not so long. Regarding
speed, for 30X 100 bp reads, BASE took 2 days and 5 days
to assemble raw contigs by SGA [7] and Fermi [8],
respectively. This speed is much slower than DBG based
assembler SOAPdenovo2, which takes only a half day to
obtain raw contigs.
Recently, a very efficient GPU-based method has been

developed to index short reads using the Burrows
Wheeler Transform (BWT) or bi-directional BWT of
short reads [11]. For 30X human short reads, it only needs
6 h to build the BWT index. With such an index, the
depth of any sequence that is no longer than the read
length could be calculated in real time, which enables us
to predict whether a sequence comes from a repetitive
region of the genome [12]. With such efficient indexing,
we find that it becomes feasible to produce better assem-
blies efficiently for large genomes using longer NGS reads,
and in particular, we developed an adaptive seed extension
method called BASE to construct contigs by searching for
non-repetitive overlaps between reads. The details of our

algorithm are given in the Methods Section, and an
overview of the extension method is shown in Fig. 1. We
tested the performance of BASE using data from HiSeq
and MiSeq, with length ranging from 100 bp to 250 bp
and compared BASE to popular assemblers including
SOAPdenovo2, SGA and SPAdes.

Methods
Preliminary
Given a set of reads R = {R0, R1, …, Rn-1}, and each Ri is
terminated with a sentinel symbol $ (i.e., Ri[|Ri|] = $).
We also define Ri[|Ri|] < Rj[|Rj|], if i < j.
Let SuffR = {Ri[j…|Ri|] | 0 ≤ i < n and 0 ≤ j ≤ |Ri|} be all

possible suffices of reads in R. The suffix array SAR of R
is defined as SAR[k] = (i, j) if Ri[j…|Ri|] is the k-th
lexicographical smallest suffix in SuffR. The BWT of R is
an array defined by BWTR[k] = Ri[j-1] if SAR[k] = (i, j).
Given a string P, the range [lR(P), uR(P)] of P in SAR is

defined as follows:

� lR(P) = min{k | SAR[k] = (i, j) and P is a prefix of
Ri[j…|Ri|]}

� uR(P) = max{k | SAR[k] = (i, j) and P is a prefix of
Ri[j…|Ri|]}

From this definition, the size of SA range (uR(P)
-lR(P) + 1) is the number of reads containing string P.
If lR(P) > uR(P), it means that P is not a substring of
any reads in R.
For double-stranded DNA sequence, we define P' as

the reverse sequence of P and RC(P) for its reverse
complement sequence. In this way, we also define R’ as
the reverse of R, SAR’ as the suffix array of R’ and BWT
of R’. Then for string P, we can also have the SA' range
as [lR'(P'), uR'(P')], which can help to find the reads
containing the RC(P) [13]. The BWT of R and BWT of
R’ form the bi-directional BWT of R.
For bi-directional BWT, we introduce the term intact

SA range (ISR) of P, which is the combination of: a) the
SA range of P in R, b) the SA range of RC(P) in R, and
c) the SA' range of RC(P) in R. The intact SA range is
denoted by ISR(P) = [lR(P), uR(P), lR(RC(P)), uR(RC(P)),
lR'(RC(P)), uR'(RC(P))]. Note that the size of b) and c) are
the same. With respect to ISR(P), the depth of P (with
respect to the set R) is defined as follows:

� Dep(P) = max{0, uR(P) - lR(P) + 1} +max{0, uR'(RC(P))
- lR'(RC(P)) + 1}.

As shown by Lam et al. [13], bi-directional BWT can
finish the following operations in constant time:

� For any string P and a character c in {A, C, G, T, $},
calculate the SA range of cP from the SA range of P.
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� For any string P and a character c in {A, C, G, T, $},
calculate the SA range and the SA' range of cP (or
Pc) from the SA range and the SA' range of P.

Then for P = P[0…m], using backward searching, the
depth of P[m], P[m-1…m],…, P[0…m] can be calculated
incrementally by updating their ISRs. Therefore, with
the bi-directional BWT of R, it is possible to trace how
Dep(P) decreases with the increasing length of P.

Bi-directional BWT construction
We build the BWT index of the reads based on our
GPU-accerlated algorithm [11]. To test the efficiency of
GPU acceleration and to make this construction avail-
able to computers without GPU, we have also developed
a CPU-only version.
Meanwhile, the detailed content of BWT is also modi-

fied for easier genome assembly.

(a)A base is encoded with 4 bits using the first 3 bits
to encode “A”, “C”, “G”, “T” or the read terminal
symbol “$”, and the last 1 bit to indicate whether the

base has a high sequencing quality with respect to a
user-defined threshold.

(b)Read ID (2i, 2i + 1) is defined by the i-th pair of
reads, and an auxiliary table is used to record the
mapping between a read ID and the position of the
“$” in the BWT w.r.t this read. This enables fast
recovery of read sequences and qualities in linear
time. However, this method requires that all reads
have equal length.

Seed selection
A seed is a sub-sequence shorter than a read. The main
idea of our seed selection strategy is to select the seeds
that have only one occurrence in the genome to be
assembled. In the context of de novo assembly, there is
no way to calculate the exact number of occurrences of
a seed in the genome. We develop the following method
to guarantee a high probability to select one-occurrence
seeds, which we call inferred-unique seeds.
Let d be the average sequencing depth of a genome,

and each read has length m. Here we define the
expected depth of a sub-sequence P with length k to be

Fig. 1 Overview of the whole assembly method. There are five steps for one direction extension. Firstly, we choose an initial read by order and find
an initial seed in this read. Then we use bi-directional BWT to get the SA ranges of this seed using backward exact matching. Thirdly, we build up a
backward extension tree by adding bases to continue the backward matching. After removing erroneous branches and heterozygosis branches, we
obtain the consensus sequence of the extended region. Finally, we continue to find a new seed in the extended region and extend iteratively
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dk = (m – k + 1) * d/m [12]. If Dep(P) (which is the depth
of P calculated according to ISR(P) in Section 2) is no
larger than z*dk, in which z is a user-defined parameter,
we define P as an inferred-unique sequence, which
means it is likely to occur only once in the genome.
To find an inferred-unique seed in a read Ri or a

previously extended sequence, starting at the end and by
using backward search mentioned above, we can update
the ISRs and calculate the depth incrementally until it
achieves inferred-unique. For example, we find a seed in
read Ri of length m, we calcualte the ISRs and depth of
Ri[m-1], Ri[m-2,m-1], …, Ri[1…m-1] and Ri[0…m-1].
Meanwhile, We calculate the expected depth dm-j with j
decreasing from m-1 to 0. Then there would be two
cases for the changes of depth from these sub-sequences:
Case 1: The depth of Ri[j…m-1] is reduced to less than

user-defined depth threshold τ. Then we will further try
to find seed in the substring Ri[0…j-1].
Case 2: The depth of Ri[j…m-1] is no larger than z*

dm-j. Then sub-sequence Ri[j…k-1] meets the require-
ment of inferred-unique and no more sub-sequences will
be checked.
Each inferred-unique sub-sequence will be further

checked to make sure the all the bases in seed have high
quality scores (using the 1-bit base quality stored in
BWT). Then we obtain a high quality inferred-unique
seed to start the extension step. It can be found in a read
to initialize an extention as an initial seed or in the
extended regions to start a new iteration.

Seed extension and consensus
Given a pattern P with Dep(P) > 0 and a character c, we
define cP as a valid backward extension of P if and only
if Dep(cP) > 0. For a seed S, by adding characters in the
head base by base, we can construct a backward exten-
sion tree Ts whose nodes are tagged with characters
chosen from {“A”, “C”, “G”, “T”}, except for the root
node, which is tagged with Seed S. Define L(v), the label
of a node v, to be the concatenation of tags from v to
the root; and define W(v), the weight of the node v, to
be the depth of L(v).
Backward extension tree is built recursively. The root

tagged with S is firstly created. For each newly created
node v, if cL(v) is a valid backward extension of L(v) for
some character c in {“A”, “C”, “G”, “T”}, a new node is
created as a child of v and is tagged with c. Note that
the label of a node will not be longer than the read
length, the depth of the tree is limited by the read length
minus the seed length. Moreover, for any node v in the
tree, if Dep($L(v)) > 0, we obtain the IDs of reads which
have L(v) as a shared prefix and mark these reads to
avoid redundant assembly.
The consensus sequence for the backward extension

tree is constructed by walking down the tree from the

root to a certain node. This process is called consensus-
walk. When visiting a node with only one child, the walk
moves on to that child. Otherwise we have to select a
branch to move on or stop immediately. A greedy algo-
rithm, which chooses the child with the largest weight,
is straightforward but error-prone. Therefore, we intro-
duce another strategy, which we call reverse validation,
to improve the probability of choosing the correct
branch. For simplicity, we describe our method for the
case of two branches. As shown in Fig. 2, let ν be the
node that the consensus is currently processing to, a
and b be two children of v, tagged with ta and tb respec-
tively. Let C = L(v) be the consensus sequence we have
already constructed. The method incrementally calcu-
lates the depth of ta, taC[0], taC[0 … 1], taC[0 … 2], etc.
and tb, tbC[0], tbC[0 … 1], tbC[0 … 2], etc.
Below τ denotes a user-defined threshold.
Case 1. If Dep(taC[0 … i]) < τ and Dep(taC[0 … i]) < 0

for some i, we immediately conclude that a is an errone-
ous branch and b is authentic if it demonstrates the
following properties:

(a)Dep(taC[0 … i - 1]) is significantly larger than
Dep(taC[0 … i]).

(b)Dep(tbC[0 … i]) is significantly larger than
Dep(taC[0 … i]).

(c)The expected depth di+2 is significantly larger than
Dep(taC[0 … i]).

Case 2. if Dep(taC[0 … i]) = 0 for some i, we conclude
that the initial seed is a false positive inferred-unique
seed and a is near another copy of this seed in the
genome, and a is named as a repetitive branch if it
demonstrates the following properties:

(a)Dep(taC[0 … i - 1]) is significantly larger than 0.
(b)Dep(tbC[0 … i]) is significantly larger than 0.
(c)di+2 is significantly larger than 0.

If we fail to identify the above two cases, an additional
step will be introduced to estimate whether the branches
are due to heterozygous sites. Starting from a and b, we
use a greedy algorithm mentioned above to obtain two
sequences representing the consensus of the sub-trees
rooted at a and b, respectively. If the similarity of these
two sequences is high enough, we make a prediction that
these two branches are caused by heterozygous sites,
and walk to the child with larger weight. Otherwise, the
consensus-walk stopped at node v.
If the consensus-walk does not stop at the root of the

tree, i.e. the consensus sequence has been extent by at
least one base pair from the seed, a new inferred unique
seed will be chosen from the prefixes of the consensus
sequences to start a new round. The process of seeding,
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backward extension and consensus is repeated until the
consensus-walk stops at the root of the extension tree in
some round. Then a series of symmetric processes
follow, which forward extend the initial seed. Finally the
contig containing this initial seed, which is the conca-
tenation of the consensus sequences in both directions,
is obtained when the forward extension completes.

Contig assembly using paired-end information
Paired-end reads have adjacent read IDs in the BWT and
this information is used to resolve longer repetitive
regions, when the consensus-walk stops at the root of
the extension tree. For two children nodes a and b of
root node v, reads with “$” falling in the sub-tree of a
and sub-tree of b regions are divided into R(a) and R(b).
We check whether the paired reads of R(a) or R(b) have
been used in current assembled sequences and whether
the distances are proper as estimated by their positions
in this contig and their insert sizes. Without loss of
generality, if only paired reads of R(a) are found and the
number is larger than user-defined threshold τ men-
tioned above, the child node b will be removed. This
method could be used to assemble repetitive sequences
longer than read length and obtain longer contig
sequences.

Results and discussion
Datasets
We compared the assembly performance based on
several sets of real data, including two bacterial
Staphylococcus aureusMW2 240X HiSeq 100 bp reads
(SRR857914) [14], V. parahaemolyticus 240X MiSeq
250 bp reads (DRX016227) [15], and four human
sequencing data sets including YH Solexa 100 bp reads
[2] (gigadb.org), YH HiSeq 150 bp reads (BGI),
NA12878D HiSeq X Ten 150 bp data (DNAnexus.com)
and NA12878 HiSeq 250 bp data (SRR891258,
SRR891259). All raw sequencing data are pre-processed
with SOAPfilter [2] to remove reads containing excessive
amount of ‘N’s or adaptors, low quality reads and
duplicated reads. The four human datasets are further
corrected with SOAPec [2] using 23-mer.

Evaluation
Using reference genomes for Staphylococcus aureus
MW2 (www.genomic.ch/edena/results2013/ReferenceSe
quences/) and V. parahaemolyticus (RIMD2210633), we
evaluated the accuracy of assembly using the GAGE
pipeline [16], in which metrics such as correct N50,
mismatch, align rate and coverage are assessed. For YH
and NA12878, we mapped the assembled contigs to

Fig. 2 Remove branches in backward extension tree. In the backward extension tree, we try to remove erroneous branches, repetitive branches and
heterozygosis branches to obtain the consensus sequences of the extended region. As an example, we meet node v with two child node a and b.
Firstly, combined with L(v), we obtained TL(v) for a and GL(v) for b to detect erroneous branches between a and b. We incrementally calculate the
depth of sub-sequences of a(sub-ai with length i): T, TA, TAT,…, and b(sub-bi with length i): G, GA, GAT,… until the depth of sub-a is less than
user-defined threshold τ. At the same time, if Dep(sub-ai) is significantly smaller than Dep(sub-ai-1), Dep(sub-ai) is significantly smaller than di and
Dep(sub-bi) is significantly larger than Dep(sub-ai), then branch a will be treated as a erroneous branch or repetitive branch. When there is no
erroneous signal, we will further try to remove the branch, which might be caused by heterozygosis. After obtaining two sequences representing the
consensus sequences of the sub-trees rooted at a and b respectively, we compare the two sequences to find the matched region and get the depth
of it. Then we use this depth to calculate base depth and compare to the base depth calculated by depth of initial seed. If the two sequences have
high similarity and the two base depths are similar to each other, we will treat a as heterozygous branch if W(a) is smaller than W(b)
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hg19 with LAST [17] and evaluated the alignment rate,
reference coverage and repeat-masked reference coverage.

Comparison
As shown in the bacterial assembly (Table 1), BASE
obtains contigs with the highest accuracy among all
evaluated assemblers and is the only assembler that
achieve 100 % alignment rate. Except four translocations
of SPAdes in dataset of V.para, translocations assembled
by BASE, SGA and SOAPdenovo2 are all caused by
circular DNA and are not included in Table 1. For the
100 bp dataset of S.aureus, the correct N50 statistics of
BASE is much shorter than that of SPAdes and is only a
bit longer than that of SGA and SOAPdenovo2. Further
analysis showed that BASE’s improvement over SGA
and SOAPdenenovo2 is mainly due to the effective usage
of paired-end information. For the 250 bp dataset of
V.para, the correct N50 from BASE is indeed compa-
rable to that of SPAdes and is much longer than that of
SGA and SOAPdenovo2. As shown in Table 1, BASE
takes slightly longer time in building index and assem-
bling contigs than SOAPdenovo2, but is much faster

than SPAdes and SGA. The coverage of contigs from
BASE is relatively low, which could be improved by
devoting more time to initialize more extension or by
scaffolding like SOAPdenovo2.
We also tested human genome assembly with four

datasets: YH 100 bp ~35X, YH 150 bp ~63X, NA12878
XTen 150 bp ~35X and NA12878 HiSeq 250 bp ~45X.
With 30X 100 bp reads, it already took SGA more than
2 days [7] and Fermi nearly five days [8] to output the
contigs. As shown in Table 2, for the ~35X 100 bp YH
dataset, both BASE and SOAPdenovo2 (in single-kmer
mode) took only about half a day to obtain the contigs.
To assemble X Ten data (150 bp reads), BASE used
much less memory than SOAPdenovo2 on indexing and
contig assembly (Table 3). This is probably related to the
high error rate of X Ten data, as shown in 17mer depth
distribution of the three datasets in Fig. 3.
In all four human datasets, shown in Table 3 the N50

statistics of BASE improves as read length increases,
while SOAPdenovo2 does not show such degree of
improvement. BASE’s improvement over SOAPdenovo2
becomes significant for 250 bp reads. Similar to bacterial

Table 1 Contig assembly of deeply sequenced bacterial genomes

Tools Parameters Correct N50 Misatch/Indel Aligned rate Coverage Time(sec)

S.aureus MW2 (240X, 100 bp HiSeq) SPAdes 51,63,85 299,305 134/6 99.79 % 100.00 % 1239

SOAPdenovo2 87-95 82,495 0/0 99.84 % 99.27 % 25;16

SGA 29;91 74,584 7/0 99.81 % 99.98 % 1228;1149

BASE 4 92,706 0/0 100.00 % 99.97 % 161; 93

V.para (240X, 250 bp MiSeq) SPAdes 33,55,65,75,85,99 169,978 118/45 99.97 % 99.97 % 4616

SOAPdenovo2 125 88,858 23/30 99.98 % 99.98 % 110;1

SGA 29;149 95,711 58/26 99.80 % 99.97 % 2478;2884

BASE 4 159,715 29/29 100.00 % 99.75 % 676; 388

S.aureus MW2 has its real reference with length 2.8 Mb and V.para has its species’ reference with length 5.1 Mb and two chromosomes. Both of these two
bacteria are sequenced up to 240X. GAGE validation pipeline was used to calculate the corrected contig N50, base errors, structural errors, contig aligned rate
and reference coverage. Except BASE used single thread for contig assembly part, and other the assemblies were all performed with 24 threads. The time before
semicolon is for index building and after semicolon is for assembly. For SGA, indexing time contains the time used in the indexing after error correction and
filtering; assembly time contains the time used in the overlap and assembly

Table 2 Performance for human genome assembly

SOAPdenovo2 BASE

Wall time (h) CPU time (h) Max memory (GB) Wall time (h) CPU time (h) Max memory (GB)

YH, 100 bp, 36X Index 4 46 163 5 18 200

Contig 2 2 41 4 53 140

Total 6 48 163 9 71 200

YH, 150 bp, 64X Index 6 75 201 11 36 192

Contig 1 1 33 5 80 225

Total 7 76 201 16 116 225

NA12878D, 150 bp Index 9 141 477 9 34 194

Contig 1 1 24 7 144 142

Total 10 141 477 16 178 194

For X Ten data, we used a different machine with larger memory to finish SOAPdenovo2 and BASE assembly, so it is improper to compare the time usage of this
dataset to other dataset. Other dataset are all performed in the same machine with 24 CPU
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Table 3 Summary of human contig assembly

YH, 100 bp YH, 150 bp NA12878, 150 bp NA12878, 250 bp

SOAPdenovo2,k = 41 BASE SOAPdenovo2,k = 61 BASE SOAPdenovo2,k = 41 BASE SOAPdenovo2,k = 61 BASE

Contig num 3,420,897 3,319,617 2,279,026 2,145,792 8,068,278 1,934,261 1,416,658 1,511,270

Contig size 2.67E + 09 2.88E + 09 2.76E + 09 2.95E + 09 2.44E + 09 2.90E + 09 2.60E + 09 2.94E + 09

Contig N50 2,244 2,279 3,008 3,126 1,140 3,823 3,368 4,199

Contig
aligned rate

99.10 % 97.07 % 98.87 % 95.96 % 99.40 % 97.62 % 99.34 % 96.33 %

Genome
coverage

90.36 % 93.76 % 93.12 % 93.90 % 84.11 % 95.58 % 89.55 % 94.09 %

RepeatMasked
coverage

97.05 % 96.13 % 97.28 % 95.32 % 93.94 % 97.38 % 95.60 % 95.99 %

Exon coverage 93.76 % 91.51 % 95.73 % 94.13 % 91.48 % 96.84 % 93.90 % 91.49 %

Mismatch
base

2,735,141 3,479,046 2,911,990 3,839,110 2,301,111 3,459,648 2,544,785 3,751,887

Mismatch
ratio

0.103 % 0.121 % 0.105 % 0.130 % 0.094 % 0.119 % 0.098 % 0.128 %

Indel num 340,930 327,469 358,358 334,989 259,190 322,214 327,695 372,941

Indel base 1,412,005 1,587,265 1,692,213 1,741,947 1,086,014 1,602,240 1,400,230 1,953,311

Indel ratio 0.053 % 0.057 % 0.062 % 0.061 % 0.045 % 0.057 % 0.054 % 0.069 %

We mapped the raw contigs to Hg19. Aligned rate is the contig-aligned length divided by total contig length. To calculate genome coverage, the length of gap
regions in Hg19 has been removed. For unique coverage, the repetitive regions have been further removed. For SOAPdenovo2 contig assembly, we all used
single-kmer method and M1 to treat heterozygous regions

Fig. 3 17mer depth distribution of three human sequencing dataset. We count the depth of all 17mers in the sequencing reads, and calculate
the frequency of each depth. About 35 % 17mers of YH 100 bp reads, 30 % 17mers of YH 150 bp reads and 53 % 17mers of NA12878D XTen
reads having depth no more than 3. Then we say the NA12878D XTen reads should have more sequencing errors left after raw data filter and
correction than YH dataset
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assembly, BASE’s genome coverage, with repeat masked,
is lower that of SOAPdenovo2. But BASE has an overall
higher genome coverage in each dataset. This suggests
that BASE is able to assemble more repetitive regions,
which can be used to explain the slightly more mis-
matches between assembled sequences and hg19 for
BASE, as shown in Table 4.
The efficiency of GPU acceleration is shown in Table 5.

To construct BWT of small datasets from two bacterial
genomes, without GPU, it takes 1.38 ~ 1.56 folds longer
time than GPU version. But for large human datasets,
the CPU-only version takes near 4 times as much time
as the GPU version. Therefore the GPU version is
recommended especially for large sequencing dataset.

Conclusions
The primary objective of this paper is to study whether a
seed-extension approach to contig assembly, coupled with
reverse validation, can give a performance (accuracy and
N50) comparable to SOAPdenovo2 and SGA. As shown
in the previous section, the new approach gives clear
advantage for longer reads, and with speed much higher
than SGA and comparable to SOAPdenovo2, and stable
memory usage (i.e., not sensitive to error rate of the
reads). The contigs obtained by BASE are longer and

cover more repetitive sequences than those from
SOAPdenovo2 and SGA.
Based on the high quality contigs assembled by BASE,

one could use less accurate third generation reads or
paired-end reads with longer insert size for scaffolding
and gap closing. This approach has been used in a
recently published assembler DBG2OLC [18], which
assembles second level contigs onto high accurate DBG
contigs. Indels or SV could also be detected with these
contigs using established methods [8].
With the increasing length of high quality Illumina

reads, it is of computational interest how to fully utlilize
the read length information in contig assembly. SGA,
Fermi and our tool BASE both build an index of the
reads and make it possible to assemble high-depth short
reads without splitting them into kmers. Although SGA
and Fermi could finish assembly with less memory, they
need much longer time. As noted in MEGAHIT [19],
the requirment for big memory machine can be circum-
vented. For future bioinformatics analysis including
assembly, it is time and robustness that matter most.
We plan to further reduce the running time of BASE.
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Table 4 Mismatches analysis for human genome assembly

Dataset Assembler Whole genome mismatches Exon region mismatches

Total Variant Call Public SNP Novel Total Variant Call Public SNP Novel

YH_100bp SOAPdenovo2 2,735,141 2,423,482 108,044 203,615 47,926 40,701 1,590 5,635

BASE 3,479,046 2,872,396 208,351 398,299 47,515 42,124 1,724 3,667

YH_150bp SOAPdenovo2 2,911,990 2,613,670 113,037 185,283 46,002 43,151 1,148 1,703

BASE 3,839,110 3,075,913 256,217 506,980 52,561 46,420 1,822 4,319

NA12878_150bp SOAPdenovo2 2,301,111 2,025,220 109,497 166,394 39,702 35,644 1,740 2,318

BASE 3,459,648 3,052,269 129,933 277,446 49,711 45,361 1,151 3,199

NA12878_250bp SOAPdenovo2 2,544,785 2,122,144 130,806 291,835 42,744 35,890 1,936 4,918

BASE 3,751,887 2,613,065 604,805 534,017 48,635 37,853 5,068 5,714

We mapped the assembled contigs to Hg19 and got the mismatches between each contig and reference sequence. Then we used the detected SNPs and SNPs
from published SNP databases to analysis these mismatches in whole genome and exon regions respecitively

Table 5 Acceleration performance of GPU on BWT construction

Read_num Read_length With
GPU

Without
GPU

Time
fold

S.aureus
MW2

6,720,000 100 133 s 184 s 1.38

V.para 4,896,000 250 329 s 514 s 1.56

YH, 100 bp 1,057,750,382 100 5 h 19 h 3.80

NA12878,
150 bp

770,960,980 150 7 h 30 h 4.29

To evaluate the acceleration performance of GPU on BWT construction,
we used two versions, one of which used GPU and the other not, to build
bi-directional BWT on four datasets. The results showed that especially in
large genome dataset, compared with GPU version, version without GPU
costs ~4 fold more time to construct BWT
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