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We have suggested in a previous publication a method to estimate the Bit Error Rate (BER) of a digital communications system
instead of using the famous Monte Carlo (MC) simulation. This method was based on the estimation of the probability density
function (pdf) of soft observed samples. The kernel method was used for the pdf estimation. In this paper, we suggest to use a
Gaussian Mixture (GM) model. The Expectation Maximisation algorithm is used to estimate the parameters of this mixture. The
optimal number of Gaussians is computed by using Mutual Information Theory. The analytical expression of the BER is therefore
simply given by using the different estimated parameters of the Gaussian Mixture. Simulation results are presented to compare
the three mentioned methods: Monte Carlo, Kernel and Gaussian Mixture. We analyze the performance of the proposed BER
estimator in the framework of a multiuser code division multiple access system and show that attractive performance is achieved
compared with conventional MC or Kernel aided techniques. The results show that the GM method can drastically reduce the
needed number of samples to estimate the BER in order to reduce the required simulation run-time, even at very low BER.

1. Introduction

To study the performance of a digital communications
system, we need to use, in general, the Monte Carlo
(MC) method to estimate the BER. A tutorial exposition
of different techniques is provided in [1] with particular
reference to four other specific methods: modified Monte
Carlo simulation (importance sampling), extreme value
theory, tail extrapolation, and quasianalytical method. The
modified Monte Carlo is achieved by importance sampling
which means that important events, and then errors, are
artificially generated by biasing the noise process. At the end
of simulation, the error countmust be properly unbiased (see
also [2]). The extreme value theory (see [3]) assumes that
the pdf can be approximated by exponential function. The
tail extrapolation method, which is a subset of the previous
one, is based on the assumption that only the tail region of
the pdf can be described by a generalized exponential class.
The quasianalytical method combines noiseless simulation
with analytical representation of noise. In [4], High-Order

Statistics (HOS) of the bit Log-Likelihood-Ratio (LLR) are
used for evaluating performance of turbo-like codes. In this
case, the characteristic function of the bit LLR is estimated by
using its first cumulants (or moments). The pdf is therefore
computed by using the inverse Fourier transform. The reader
can find other recent papers on this topic (see [5–8]).

In [9], we have suggested a soft BER estimation based on
the nonparametric computation of the pdf of the received
data. We have shown, in this last case, that hard decision is
not needed to compute the BER and that the total necessary
number of transmitted data is very small compared to the
classical MC simulation. This allows a significant reduction
in run time for computer simulations and may also be
used as the basis for rapid real-time BER estimation in real
communication systems.

In this paper, we suggest to use a Gaussian Mixture
(GM) model to estimate the pdf of the observed samples.
Two conditional pdfs are computed corresponding to the
transmitted bits equal to ±1. The Expectation Maximisation
(EM) algorithm is used to estimate, in an iterative fashion,
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Figure 1: General transmission scheme for any transmitter and

receiver with soft outputs X1, . . . ,XN and hard decisions ̂b1, . . . , ̂bN .

the different parameters of this mixture, that is, the means,
the variances, and the a priori probabilities. The different
parameters are estimated by using the Maximum Expecta-
tion of joint Likelihood criterion. The analytical expression
of the BER is therefore simply given by using the different
estimated parameters of the Gaussian Mixture. The choice
of the number of Gaussians for each pdf is very important.
In [10], a method, based on Mutual Information Theory,
was presented to find the optimal number of Gaussians in
order to give an accurate estimation of the pdf. Our suggested
analytical expression of the BER, based on the Gaussian
Mixture model, where parameters are jointly estimated by
EM algorithm and Mutual Information theory leads to an
efficient fast way to estimate the performance of a digital
communications system. Simulation results are carried out
to compare the three mentioned methods: Monte Carlo,
Kernel, and Gaussian Mixture. We analyze the performance
of the proposed BER estimator in the framework of a
multiuser code divisionmultiple access (CDMA) systemwith
single user detection and show that attractive performance
is achieved compared with conventional Monte Carlo (MC)
or Kernel aided techniques. The results show that the GM
method can drastically reduce the needed number of samples
to estimate the BER in order to reduce the simulation run-
time even at very low BER.

The main idea of this paper is the use, in an iterative way,
of the Expectation Maximisation (EM) Algorithm, for the
pdf estimation with Gaussian Mixture model, jointly with
the Mutual Information Theory, for the computation of the
optimal number of Gaussians. The analytical expression of
the BER is therefore given by using the different estimated
parameters of the Gaussian Mixture.

The EM algorithm was introduced for the first time
by Dempster et al. [11]. It is an iterative computation
method of maximum likelihood estimates of missing data
from observable variables. In this paper observable variables
are simply given by soft output values at the receiver of
a digital communications system. Missing data is given
by unknown true component (Gaussian) from which the
observation comes. Two conditional pdfs, according to the
transmitted bits ±1, must be estimated. For each pdf, a
Gaussian Mixture model, with a large enough initial number
of components, is used. Then, the EM algorithm performs,
in an iterative way, the estimation of the parameters for
each component, that is, means, variances, and a priori
probabilities. The Mutual Information (MI), according to
Shannon Theory, is computed. A component with positive
MI is assumed to be dependent on others components and
could be removed without damaging the pdf estimation.
The EM algorithm can be performed with a new decreased
value of the number of Gaussians. The algorithm stops
when the maximum of the computed MI, over all the
components, is nonpositive which means that all the reached
components are likely independent and therefore gives an
optimal structure of the Gaussian Mixture model. The two
conditional pdfs are then estimated, in a parallel fashion, by
using the Mutual Information Theory to compute iteratively
the optimal number of components and a subiteration for
the EM algorithm to estimate the different parameters of
each component. An analytical expression of the BER is
therefore obtained by using all parameters of the Gaussian
Model at the last iteration.

Let us recall that the EM algorithm has mainly been used,
in the past twenty last years, in image processing or more
precisely in image segmentation for different applications
such as image or video compression. The reader can find in
[12] an example of an application of SEM (Stochastic version
of EM) algorithm in SPOT satellite image segmentation
where a Gaussian distribution is assumed for each class. In
[13], a hybrid version of SEM is used assuming a generalized
Dirichlet distribution.

Nonparametric pdf estimation has also been used in
different applications such as speech coding and pattern
recognition [14, 15]. The Gaussian Mixture model has also
been used in speaker identification [16].

Let us consider a general communications system (see
Figure 1) where bit information is transmitted using any
kind of transmission schemes such as CDMA, FDMA,
TDMA, MC-CDMA techniques, with or without channel
coding, space time coding, using single or multitransmit
antennas, transmitting over Gaussian, fading or multipath,
fixed or time variant, channel. At the receiver, any kind of
detection such as MIMO equalization, multiuser detection,
turbo techniques detection, or simply Rake receiver, may
be implemented. The only assumption we use in this
paper is the fact that the receiver is able to perform the
soft decision (Xi in Figure 1) which is right before the

hard decision, ̂bi, of each transmitted bit. In this paper,
only binary phase shift key (BPSK) modulation is used.
The case of other kinds of modulation is left for future
work.
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Let (bi)1≤i≤N ∈ {+1,−1} be a set of N transmitted bits.
The (bi)1≤i≤N are assumed to be independent and identically
distributed with P[bi = +1] = π+ and P[bi = −1] =
π−, where π+ + π− = 1. Let us note that (Xi)1≤i≤N the
corresponding soft output at the receiver such as the hard

decision is taken by using its sign: ̂bi = sgn(Xi). All the
received soft output decisions (Xi)1≤i≤N are random variables
having the same pdf, fX(x).

Throughout the paper, the following notation is used.
The output decisions (Xi)1≤i≤N are random variables having
the same pdf, fX(x). The cardinality N of set C is denoted
N = |C|. When X is a random variable, E[X] and Var[X]
denote the mathematical expectation and variance of X ,
respectively. When f is a second derivative function, ( f )′(x)
and ( f )′′(x) denote its first and second derivatives at point
x, respectively. sgn(·) denotes the sign of the argument, and
ln(·) is the natural log function. P[·] is the probability of a
given event, and superscript � denotes the transpose.

The paper is organized as follows: Section 2 briefly
shows how the probability density function (pdf) of the
soft output signal at the receiver is estimated using the
Kernel method in a nonparametric way by estimating the
optimal smoothing parameter. The BER is performed based
on all soft observations and the smoothing parameter
value. In Section 3, we will show how a Gaussian Mixture
model can be performed, for each conditional pdf, by
using the Expectation Maximization (EM) algorithm. The
Mutual Information is used to compute iteratively the
optimal number of Gaussians. The BER is, therefore, simply
computed by using all parameters (means, variances, and a
priori probabilities) for each conditional pdf given by the EM
algorithm at the last iteration. Different simulation results are
presented in 4. Finally, a brief conclusion is given in Section 5.
Proofs of all theoretical results are given in the appendices.

2. Kernel Method for BER Estimation

2.1. Pdf Estimation Based on Kernel Method. A brief descrip-
tion of the kernel method simulation will be given in this
section. The reader can find more details in our previous
work ([9]). Let us note that fX(x), the pdf of the output
observations, is a mixture of the two conditional pdfs and
then can be written as

fX(x) = π+ f
b+
X (x) + π− f

b−
X (x), (1)

Where f b+X (·) (resp., f b−X (·)) is the conditional pdf of X
such that bi = +1 (resp., bi = −1), π+ = P[bi =
+1], and π− = P[bi = −1], with π+ + π− = 1. We
assume that we know the exact partitions of the observations
{(Xi)1≤i≤N} into two classes (or partitions)C+ andC− which,
respectively, contains the observed received soft bit Xi such
as the corresponding transmitted bit information bi = +1
(resp., bi = −1). Let N+ (resp., N−) be the cardinality of
C+ (resp., C−). The kernel method ([17–19]) is used to

estimate the different pdfs. In this case, the estimation of the
conditional pdf, f b+X , can be given by the following formula:

̂f b+X ,N+
(x) = 1

N+hN+

∑

Xi∈C+

K

(

x − Xi

hN+

)

, (2)

Where hN+ is the smoothing parameter which depends on the
length of the observed samples, N+. K(·) is any pdf (called
the kernel) assumed to be an even and regular (i.e, square
integrated) function with unit variance and zero mean.
For simplicity reasons, we will not give the corresponding
equations for the conditional pdf, f b−X . The reader can easily
find them by replacing “+” by “−”.

The choice of the smoothing parameter hN+ is very
important ([14, 15]). Let us note that for conditional
Gaussian distribution f b+X ∼ N (m, σ2), and for Gaussian
kernel, the optimal smoothing parameter is given by

h∗N+
=

(

4
3N+

)1/5

σ. (3)

2.2. BER Estimation Based on Kernel Method. The BER is
given by:

pe = π+

∫ 0

−∞
f b+X (x)dx + π−

∫ +∞

0
f b−X (x)dx, (4)

To estimate the BER of our system, we must evaluate the
expression of (4). We can show that for the chosen Gaussian
kernel, a soft BER estimation can be given by the following
expression (see proof in [20]):

p̂e,N = π+
N+

∑

Xi∈C+

Q

(

Xi

h∗N+

)

+
π−
N−

∑

Xi∈C−
Q

(

− Xi

h∗N−

)

, (5)

where Q(·) denotes the complementary unit cumula-
tive Gaussian distribution, for example, Q(x) = ∫ +∞

x (1/√
2π) exp(−t2/2)dt.
We have given some theoretical studies, in [20], regarding

the convergence of this BER estimator. We have shown that
this estimator is asymptotically unbiased. Different details
can be found in [20].

3. GaussianMixture for BER Estimation

In this section, instead of using the Kernel method (given
by (2)), a Gaussian Mixture (GM) model will be used.
The mixture model is used in general for its mathemat-
ical flexibilities. For example, a mixture of two Gaussian
distributions with different means and different variances
results in a density with two modes, which is not a standard
parametric distribution model. Mixture distributions can
model extreme events better than the basic Gaussian ones.
More details about Mixture distributions can be found in
[21].

The following sub section will show how to estimate
the two conditional pdfs using a Gaussian Mixture model.
The Expectation Maximization (EM) algorithm will be per-
formed to compute the mean, the variance and the a priori
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probability of each component of this mixture. Therfore,
Section 3.2 will show how the BER can be simply computed
by using these different estimated parameters. For simplicity
reason, equations are developped only for one conditional
pdf, f b+X (·). The reader can easily find all the corresponding

equations for the estimation of f b−X (·).

3.1. Pdf Estimation Based on Gaussian Mixture Method. In
this section, we will assume that the conditional pdf f b+X is a
mixture of K+ Gaussians as follows: (see [21])

̂f b+X ,N+
(x) =

K+
∑

k=1
α+k f

+
k

(

x;μ+k , σ
+2
k

)

, (6)

where α+k is the a priori probability of the kth component
for the Gaussian mixture and f +k (x;μ

+
k , σ

+2
k ) is a Gaussian

pdf with μ+k as a mean and σ+2k as a variance. We have the
constraint that

∑K+
k=1 α

+
k = 1.

Let X = (X)1≤i≤N+
be the soft observed samples

corresponding to the transmitted bits equal to +1. As the
pdf of the obseved samples is a mixture of K+ Gaussians, this
means (see [21]) that each Xi is produced by one component
k of this mixture (1 ≤ k ≤ K+). We have to find the
value of this component: this is the missing data that we
will try to compute. Let Z = (Zi)1≤i≤K+

be the missing
data which is a sequence of variables that determines the
component from which the observations originate. Zi = k
means that Xi is generated by the kth component of the
Gaussian mixture, that is, Xi ∼ N (μ+k , σ

+2
k ). The a priori

probability α+k represents the probability that Zi = k, that
is, P[Zi = k] = α+k .

In order to estimate the conditional pdf, from (6), we
have to estimate the unknown parameters represented by
θ+ = (α+k ,μ

+
k , σ

+2
k )1≤i≤K+

. The criterion we will use is the
maximization of the conditional expectation of the joint
likelihood of both observed samples, X , and missing data,
Z (see [11] for details about this criterion). The likelihood
function is given by:

L(θ+,X ,Z) =
N+
∏

i=1

⎛

⎝

K+
∑

k=1
1k(Zi)α+k f

+
k

(

Xi;μ+k , σ
+2
k

)

⎞

⎠, (7)

where 1k(·) is the indicator function given by:

1k(Zi) =
⎧

⎨

⎩

1, if Z i = k

0, otherwise.
(8)

In this section, we will use the Expection Maximization
algorithm to estimate, in an iterative way, the unknown
parameter θ+. For each new iteration t and for a given

estimate of the paramater θ(t−1)+ , computed at a previous
iteration, two steps are performed. In the first one, that is,
Estimation step, we will compute the different a posteriori
probabilities (APP): ρ+(t)k,i = P[Zi = k | Xi = xi, θ

(t−1)
+ ]. In

the second one, that is, Maximization step, we will compute
the new parameter θ(t)+ by maximizing the conditional
expectation of the Joint Log likelihood of observed samples,
X , and missing data, Z.

3.1.1. Estimation Step. In this step, at iteration t, we estimate
the unobserved component in the Gaussian mixture for each
observed sample (Xi)1≤i≤N+

using the parameter value θ(t−1)+ ,
computed at the last Maximization step at the previous
iteration (t − 1). Then, using simple Bayes’ rule, we have:

ρ+(t)k,i = P
[

Zi = k | Xi = xi, θ
(t−1)
+

]

,

=
P
[

Xi = xi | Zi = k, θ(t−1)+

]

P
[

Zi = k | θ(t−1)+

]

P
[

Xi = xi | θ(t−1)+

] ,
(9)

Therefore, for i = 1, . . . ,N+, and for k = 1, . . . ,K+, we have:

ρ+(t)k,i =
α+(t−1)k f +k

(

Xi;μ
+(t−1)
k , σ+(t−1)2k

)

∑K+
k=1 α

+(t−1)
k f +k

(

Xi;μ
+(t−1)
k , σ+(t−1)2k

) (10)

3.1.2. Maximization Step. Now, at the current iteration
t, we will maximize the conditional expectation of the
log-likelihood of the joint event, assuming independent
observation Xi. Then, we have:

θ(t)+ = arg max E
[

ln
(

L
(

θ(t−1)+ ,X ,Z
))

| X
]

(11)

Where L(θ(t−1)+ ,X ,Z) is the joint likelihood event given by
(7).

We can show that for k = 1, . . . ,K+, the new parameters
are given by: (see Appendices A–D for proofs)

α+(t)k = 1
N+

N+
∑

i=1
ρ+(t)k,i , (12)

μ+(t)k =
∑N+

i=1 ρ
+(t)
k,i Xi

∑N+
i=1 ρ

+(t)
k,i

, (13)

σ+(t)2k =
∑N+

i=1 ρ
+(t)
k,i

(

Xi − μ+(t)k

)2

∑N+
i=1 ρ

+(t)
k,i

. (14)

3.2. BER Estimation Based on Gaussian Mixture Method.
In this section, we derive the expression of BER esti-
mate assuming Gaussian Mixture based pdf estima-

tor. Let θ(T)+ = (α+(T)k ,μ+(T)k , σ+(T)2k )1≤i≤K+
and θ(T)− =

(α−(T)k ,μ−(T)k , σ−(T)2k )1≤i≤K− the reached values at the last
iteration of the EM algorithm described in the previous

Section 3.1. The parameter θ(T)+ (resp., θ(T)− ) allows the
estimation of the conditional pdf f b+X (·) (resp., f b−X (·)). Let
us underline that we need to perform the EM algorithm
two times and in independent way. At each time, a different
data base is used: C+ (resp., C−), of soft observations
corresponding to the transmitted bits equal +1 (resp., −1)
to estimate θ(T)+ (resp., θ(T)− ).

At the last iteration T of EM algorithm, reliable estimates

of θ(T)+ and θ(T)− are reached and the BER is computed using
the obtained estimates. Let us recall the expression of the BER
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given by (4). Replacing the two conditional pdfs by their
Gaussian Mixture based estimates (6) using the parameters

θ(T)+ and θ(T)− , the BER estimates is simply computed as

p̂e,N = π+

K+
∑

k=1
α+(T)k Q

⎛

⎝

μ+(T)k

σ+(T)k

⎞

⎠ + π−
K−
∑

k=1
α−(T)k Q

⎛

⎝−μ−(T)k

σ−(T)k

⎞

⎠,

(15)

WhereQ(·) denotes the classical complementary unit cumu-
lative Gaussian distribution. Details regarding the derivation
of (15) are provided in Appendix D.

3.3. Optimal Choice of the Number of Components. The
choice of K− and K+ is very important. It is clear that if this
number of components is too low, the corresponding pdf will
be too smooth and then the BER less reliable. On the other
hand, if this number is too high, this means that the same
class of observed samples comes from different components
and then these components should be correlated which
is not useful for simulation since all the observed data
are assumed to be independent. Consequently, the optimal
number of components has to be the largest one such that all
the components are independent. Similar method has been
suggested by [16] for speaker identification applications by
increasing the number of classes in the k-means algorithm.
More mathematical details can be found in [10]. Here, we
suggest to initialize the algorithm with a high enough value,
to perform the EM algorithm to estimate the different com-
ponents and test their independence after the last iteration. If
it is not the case, we have to decrease iteratively the number
of components until the independence is reached.

To test the independence of two components k1 and k2,
mutual information theory, as proposed by Shannon [22],
can be used. For speaker identification application, in [16],
the mutual relationship of the two components has been
defined as

MI+(k1, k2) = p+(k1, k2)log2
p+(k1, k2)

p+(k1)p+(k2)
, (16)

Where, p+(k1) = α+k is the probability of the mixture k1
(see (6)), and p+(k1, k2) is the joint probability of these two
components as follow,

p+(k1) = 1
N+

N+
∑

i=1
ρ+k1,i, (17)

p+(k1, k2) = 1
N+

N+
∑

i=1
ρ+k1,iρ

+
k2,i. (18)

The sign of the expression of (16) allows us to know
whether the two components are statistically independent:
if sgn(MI+(k1, k2)) = 0 then the two components are inde-
pendent (p+(k1, k2) = p+(k1)p+(k2)), if sgn(MI+(k1, k2)) > 0
then the two components are statistically dependent and then
one of these components can be removed without damaging
the estimation of the pdf. If sgn(MI+(k1, k2)) < 0, the two

components are much less correlated. So, the following
quantity,

I+ = max (MI+(k1, k2))1≤k1,k2≤K+ (19)

allows us to know if we have to reduce the number
of components or not. To find the optimal number of
components K− and K+, we have to just choose a large
enough initial number and at the end of the EM algorithm,
the sign of I+ (or I− ) allows us to know if we have to reduce
K+ (or K−). If sgn(I+) > 0, we decrease the number of
component by one, otherwise we stop the algorithm. The
computation of the optimal values K+ and K−, which could
of course be different, can be performed in a parallel fashion.
For a new decreased value, (K+−1), initial GM parameters of
EM algorithm could be given by the output parameters at the
last iteration of the previous EM algorithm, where we remove
the kth component given by

k = arg max1≤k1≤K+

K+
∑

k2=1
MI+(k1, k2). (20)

The quantity
∑K+

k2=1MI+(k1, k2) presents the mutual infor-
mation for the component k1 and denotes whether this
component has a significant and independent contribution
to the pdf estimation. The biggest positive value has a
less and dependent contribution to the GM estimation
and should therefore be removed. The proposed Gaussian
Mixture based BER estimation using EM algorithm and
Mutual Information theory can now be summarized in
Algorithm 1. Figure 2 gives the flow chart of the suggested
algorithm.

4. Performance Evaluation

To evaluate the performance of the three methods, we
consider the framework of a synchronous CDMA system
with two users using binary phase-shift keying (BPSK) and
operating over an additive white Gaussian noise (AWGN)
channel. We restrict ourselves to the conventional single
user CDMA detector. Performance assessment in the case of
advanced signaling/receivers is not reported in this paper due
to space limitation and is left for future contributions.

With respect to the considered framework, the received
LSF × 1 chip-level signal vector at discrete time instant i can
be expressed as

ri = A1b
(1)
i s1 + A2b

(2)
i s2 + ni, (21)

where LSF denotes the spreading factor, and sk ∈
{±1/√LSF}LSF is the spreading code corresponding to user k.

Ak is the amplitude of user k = 1, 2, b(k)i is the information
bit value ∈ {±1} of user k at time instant i, and ni ∈ RLSF

is the temporally and spatially white Gaussian noise, that is,
ni ∼ N (0, σ2ILSF ). The a priori probabilities of information
bits are supposed to be identical and uniform for both users,
that is, π+ = π− = 1/2.
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Figure 2: Flow Chart for the proposed Fast iterative BER estimation based on EM-Gaussian Mixture and Mutual Information measures.

1. Initialization:
1.1. Classify soft outputs X1, . . . , XN according to their transmitted bits, that is,

C+ = {Xi | bi = +1}, C− = {Xi | bi = −1}. Let N+ = |C+|, N− = |C−|
1.2. Deduce the two priori probabilities: π+ = N+/N , π− = N−/N
1.3. Choose a large enough number of the Gaussian mixture: K+ and K−.

2. EM algorithm for C+:
2.1. Initialization of θ(0)+

2.2. At each iteration t, (t = 1, . . . ,T)
2.2.1 Estimation step:

Estimate APPs, ρ+(t)k,i using (10).
2.2.2 Maximization step:

Computation of θ(t)+ by using (12), (13) and (14).
3. Verification of optimality of K+:

3.1. Compute I+ (19)
3.2. If I+ ≤ 0, save θ(T)+ go to step 4. Otherwise, K+: K+ − 1, go to 2.

4. EM algorithm for C−:
4.1. Initialization of θ(0)−
4.2. At each iteration t, (t = 1, . . . ,T)

4.2.1 Estimation step:
Estimate APPs, ρ−(t)k,i using (10).

4.2.2 Maximization step:
Computation of θ(t)− by using (12), (13) and (14).

5. Verification of optimality of K−:
5.1. Compute I− (19)
5.2. If I− ≤ 0, save θ(T)− go to step 6. Otherwise, K−: K− − 1, go to 4.

6. BER Computation:
6.1. Compute the BER estimate from (15) using θ(T)+ and θ(T)− .

Algorithm 1: Summary of the Gaussian Mixture based BER estimation using EM algorithm and Mutual Information theory. θ(T)+ and θ(T)−
are computed in a parallel fashion.
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The decision statistic that serves for detecting user 1 at

time instant i is X (1)
i = s�1 ri [23] and is given as,

X (1)
i = A1b

(1)
i + A2b

(2)
i ρ + ñ(1)i , (22)

Where ρ is the normalized cross-correlation between the two

spreading codes s1 and s2, and ñ
(1)
i is the Gaussian noise at the

output of the single user detector, that is, ñ(1)i ∼ N (0, σ2).

The decision about information bit b(1)i corresponds to the

sign of decision statistic X (1)
i , that is, ̂b(1)i = sgn(X (1)

i ). Note

that the soft output X (1)
i in (22) contains a mixture of a

Gaussian noise. Using (22), we can easily show that the BEP
for user 1 is

pe1 =
1
2
Q

(

A1 − A2ρ

σ

)

+
1
2
Q

(

A1 + A2ρ

σ

)

. (23)

In the following, we use the two spreading codes

s1 = 1√
7

[

+ + + + − − −
]�

, (24)

s2 = 1√
7

[

− − + + − − −
]�

, (25)

Where the cross-correlation is ρ = 3/7. We consider the case
where the two users have equal powers A1 = A2 = 1. The
SNR at the output of the MF of each user is therefore SNR =
1/2σ2.

4.1. Output Pdf Estimation Comparison. First of all, in this
simulation, we would like to compare the three different pdf
estimation: Histogram method which leads to MC method,
Kernel method and Gaussian Mixture method. In order to
make a fair comparison, the three methods are used in
optimal conditions. In particular, the length of the bins of
the Histogram is chosen equal to the smoothing parameter
computed for the kernel method so as the convergence of the
histogram in theMSE and IMSE criterion can be guaranteed.

For this first simulation, we have chosen a pdf as a
mixture of 3 different pdfs according to Gaussian, Rayleigh
and Beta first kind laws with fixed different parameters. So
the true chosen pdf is

f (x) = a1 f1(x) + a2 f2(x) + a3 f3(x), (26)

Where, f1(x) = e−(x+1)
2/2/
√
2π, f2(x) = xe−x2/21R+ and

f3(x) = 6x(1 − x)1[0,1](x). a1 = 0.50, a2 = 0.40 and
a3 = 0.10. Figure 3 plots the true pdf with the estimated
pdf for the three cases. N = 2, 000 samples has been
generated for this first simulation. GM method has found
that 4 components are sufficients to estimate the pdf as
̂fGM(x) = 0.27N (x;−1.64, 0.51) + 0.20N (x;−0.38, 0.39) +
0.24N (x; 0.67, 0.11) + 0.29N (x; 1.53, 0.50).

The Integrated Square Error (ISE), which is defined

as ISE = ∫

( f (x)− ̂f (x))
2
dx, has been computed for this

simulation. We have carried out one hundred different
trials and computed the Mean ISE (MISE) and the variance
of the ISE for the three methods. Table 1 summarizes

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

x

pd
f

True pdf
Histogram method

(a)

Kernel method

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

x

pd
f

True pdf

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

x

pd
f

True pdf
Gaussian Mixture method

(c)

Figure 3: Comparison between the real and the estimated pdfs.
Three different methods are used. From top to bottom: Histogram,
Kernel, and Gaussian methods. N = 2, 000 Samples are used. The
same samples are used for the three methods.

these results and shows that Kernel method gives the best
estimation of the pdf in the sense of the minimum of MISE.
Gaussian Mixture method seems to be the worst one in the
MISE criterion. So, for general applications, such as pattern
recognition or speech coding, the Kernel method seems to
be the best one to choose. For our application, that is, BER
estimation, we do not need an accurate estimate of the whole
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Table 1: Mean and Standard deviation of Integrated Square Error
pdf estimation for the three methods by using 1,000 different trials.
N = 2, 000 samples are used for each trials.

ISE Histogram Kernel Gaussian Mixture

Mean 7.44 ×10−2 7.29 ×10−2 8.09 ×10−2
Std 5.40 ×10−3 5.40 ×10−3 5.00 ×10−3

Table 2: Mean and Standard deviation of error estimation of A =
∫∞
+3 f (x)dx using the three methods with 1,000 different trials. N =
2, 000 samples are used for each trial.

A =
∫∞
+3( f (x)−
̂f (x))dx

Histogram Kernel
Gaussian
Mixture

Mean 5.10× 10−3 8.10× 10−3 3.60× 10−3

Std 2.23× 10−2 2.30× 10−2 2.38× 10−2

pdf. We only need an accurate estimate of the tail of the
pdf. That is why, in another simulation, we are interested
in estimating the area of the tail delimited between, for
example, +3 and +∞. In this area, the tail is a mixture
of Gaussian and Rayleigh laws. We can easily show that in
this case A = ∫ +∞

+3 f (x)dx = a1Q(4) + a3e−4.5 = 11 ×
10−4. Let us now estimate the quantity A using the three
different pdf estimates with one hundred different trials.
Table 2 shows the mean and the Standard deviation for the
three methods. GM method clearly gives the best estimate of
the area computation. This result will be confirmed in the
following sub section for BER estimation in the framework
of CDMA systems described in the begining of Section 4.

4.2. Performance Comparison for the Three Methods. In
order to compare the three methods (MC, Kernel and
GM method), N = 2, 000 soft outputs were generated
for each SNR to estimate the BER. 1, 000 different trials
were simulated, for each method, to compute the Mean,
Minimum and Maximum of BER values. The number of EM
iterations is fixed to 20. All these results are given in Figure 4.

In addition, the Mean, the Standard deviation with
the theoretical value of BER for different values of SNR
are given in Table 3. This table shows that GM method
provides the best performance in the sense of the minimum
of Mean Squared Error of the BER estimation, even if a
small bias is observed for medium values of SNR. This
bias will completely disappear for increased number of EM
iterations as it will be seen in Section 4.3. In the same
time, MC technique fails to do so and stops between 8 and
14dB because of the very limited number of transmitted
information bits and lack of errors. The Kernel method leads
to a smaller bias but has the greatest standard deviation and
then less reliable than the GMmethod.

On the other hand, for GM method and for a fixed
SNR value (10 dB), we have computed the Mean BER and
the Standard deviation for different number of soft outputs
(between 1, 000 and 100, 000) with 100 different trials.

The number of EM iterations is fixed to 20. All these
results are given in Table 4. The precision of the estimation,

Table 3: Mean and Standard deviation of BER estimation with the
three methods (MC, Kernel, GM) at different SNR. N = 2, 000
samples are used for each simulation. 1,000 different trials are
performed to compute the Mean and the Standard deviation.

MC Kernel GM

SNR (dB) Theoretical BER Mean Mean Mean

Std. Dev. Std. Dev. Std. Dev.

1.2× 10−1
1.1× 10−1 1.2× 10−1 1.2× 10−1

0 7.2× 10−3 6.8× 10−3 6.2× 10−3

5.0× 10−2
5.0× 10−2 5.1× 10−2 5.1× 10−2

4 4.8× 10−3 4.6× 10−3 4.3× 10−3

1.1× 10−2
1.1× 10−2 1.1× 10−2 9.6× 10−3

8 2.3× 10−3 2.1× 10−3 1.6× 10−3

3.2× 10−4
3.2× 10−4 4.1× 10−4 5.0× 10−4

12 4.0× 10−4 3.6× 10−4 2.4× 10−4

8.5× 10−8
− 4.4× 10−7 6.6× 10−7

16 − 8.5× 10−6 4.6× 10−6

1.6× 10−16
− 2.5× 10−16 8.7× 10−16

20 − 7.8× 10−15 1.9× 10−15

Table 4:Mean, Standard deviation and precision of BER estimation
GM method, for SNR = 10 dB, at different number of samples
are used for each simulation. 100 different trials are performed to
compute the Mean, the Standard deviation and the precision.

Nb of samples Mean of BER Std. Dev. Precision

1,000 2.7× 10−3 5.71× 10−4 0.220

2,000 2.7× 10−3 6.00× 10−4 0.220

5,000 2.7× 10−3 5.95× 10−4 0.220

10,000 2.8× 10−3 6.45× 10−4 0.232

15,000 2.8× 10−3 5.97× 10−4 0.225

20,000 2.7× 10−3 6.19× 10−4 0.227

25,000 2.7× 10−3 6.24× 10−4 0.228

30,000 2.7× 10−3 6.19× 10−4 0.230

35,000 2.7× 10−3 6.59× 10−4 0.242

40,000 2.7× 10−3 7.08× 10−4 0.259

100,000 2.7× 10−3 6.13× 10−4 0.226

defined as the the standard deviation to the mean of BER
ratio, does not decrease with the number of samples. This is
linked to the observed bias mentioned before.

Figure 5 shows the performance of the receiver, for
GM method, with different number of EM iterations and
using N = 2, 000 samples. This figure clearly shows that
performance of GM method increases with the number of
iterations.

4.3. Performance of GM Method in the High SNR Region.
We would like to test our suggested algorithm in severe
conditions for high values of SNR while using, in the same
time, few samples such N = 1, 000 output observations.
Figure 6 shows the performance of the receiver (one random
simulation), using 50 EM-iterations. We can see that we
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Figure 4: BER Comparison: Three different methods are used. From top to bottom: MC, Kernel, and Gaussian mixture method. N = 2, 000
Samples are used for each simulation. 1,000 different trials are performed to compute the Mean, Min, and Max.
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Figure 5: BER estimated by Gaussian mixture method with
different iteration. N = 2, 000 Samples are used.

obtain an unbelievable result, a BER estimate down to
10−200 has been measured. This result is only limited by the

computer precision. To obtain this figure, the simulation run
time is 31 seconds on a conventional PC. For each SNR
point, the simulation takes less than 2 seconds. This time
is computed by using the CPU-time command of Matlab
software. The run time does not depend on the value of
SNR which is a huge advantage of our suggested method. For
20EM iterations, the run time takes less than one second for
each SNR value.

It is, of course unimaginable and impossible today, to
plot this kind of figures using Monte Carlo method and
waiting for 100 errors to have an accurate estimate. Indeed,
using our computer with Matlab Software, we need 43
milliseconds to generate 1, 000 output observations. Let
us now assume that in the world, there are 10 billion
inhabitants, that each one has got 10 PC and each PC is
10,000 times more powerful than the one we used for our
simulation. Let us also assume that we can use all these PCs
in a parallel and optimized structure. A simple calculation
shows that we need to wait formore than one year to estimate
a BER at only 10−25, hoping that there will be no failure or cut
electricity. The CPU time for MC method at different values
of SNR is given in Table 5.
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Table 5: CPU time for Monte Carlo simulation at different BER,
assuming using 1015 computers with equivalent power to the one
we used for Gaussian Mixture simulation.

CPU time

BER Years Months Days Hours mn s

10−20 7 10

10−21 1 11 40

10−22 11 56 40

10−23 4 23 26 40

10−24 1 19 18 26 40

10−25 1 4 17 16 26 40

10−26 13 9 26 20 26 40

0 5 10 15 20 25 30 35
10−250

10−200

10−150

10−100

10−50

100

B
E
R
1

Classical Monte Carlo
Theoretical BER
Mixture Gaussian Soft BER

Eb1/N0

Figure 6: BER estimated by Gaussian mixture method for very high
SNR values and only using N = 1, 000 samples with 50 iterations.
See Figure 7 for a zoom of this figure at high BER to seeMonte Carlo
simulation.

4.4. Comparison with Importance Sampling Technique.
Importance sampling technique, also known as Modified
Monte Carlo method, was introduced by Shanmugam and
Balaban (see [2]) to estimate error probabilities in digital
communications systems. The importance sampling tech-
nique is used to modify the probability density function
of the noise process in a way to make simulation possible.
An estimate of the pdf of soft decision is constructed in a
histogram form. The idea is to modify this pdf, that is, the
statistical properties of the soft decision sequence, in such a
way that higher rate of errors occur in the simulation process.
Therefore, the error count has to be modified appropriately
to obtain an unbiased estimate of the true error probability.
The main drawback of the importance sampling technique
is the difficulty, for complex systems, of determining which
regions of the pdf to bias and how to bias these regions.

Compared to classical Monte Carlo method, the impor-
tance sampling technique, reduces the sample size require-
ment by a factor ranging from 10 up to 1, 000. Let us
assume that this factor is equal to 1, 000 in order to compare
importance sampling technique with our suggested GM
method. In this case, the CPU time given in Table 5 for
Monte Carlo simulation has to be divided by a factor of
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10−2
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Figure 7: A zoom of Figure 6 at high BER to see Monte Carlo
simulation.

1, 000 to obtain the CPU time for the importance sampling
technique simulation. Our suggested GM method has still a
huge advantage as the run time does not depend on the value
of SNR. In fact, for each SNR point, the simulation takes
less than 2 seconds (see Section 4.2). Another advantage of
our suggested GM method is the possibility to estimate the
performance of a system at a very very low BER (down to
10−200 for a CDMA system case in this paper, see Figure 6).
The only limitation is given by the precision of the used
computer.

5. Conclusions

In this paper, we considered the problem of BER estimation
for a digital communications system using any transmission
technology or channel coding. BPSK modulation is used.
The receiver is assumed to be able to compute soft decision.
We proposed a BER estimation algorithm where only soft
observations that serve for computing hard decisions about
information bits are used. First of all, we provided a
formulation of the problem where we showed that BER
estimation is equivalent to the estimation of conditional
pdfs of soft observations corresponding to the transmitted
bits equal to ±1. We then proposed a BER computation
technique using Gaussian Mixture-based pdf estimation.
The Expectation Maximisation (EM) algorithm was used
to estimate, in an iterative way, the different parameters of
this mixture, that is, the means, the variances and the a
priori probabilities. The analytical expression of the BER
was therefore simply given by using the different estimated
parameters of the Gaussian Mixture. The optimal number of
Gaussians was computed using Mutual Information Theory.
Finally, we evaluated the performance of the proposed BER
estimation technique in the framework of CDMA systems.
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Performance comparison with MC techniques and Kernel
method was simulated. Interestingly, we showed that while
classical MC method fails to perform BER estimation in the
region of high SNR, the proposed GM estimator provides
reliable estimates and better, in the sense of minimum Mean
Squared Error, than Kernel method using only few soft
observations. A measure of BER down to 10−200 has been
reached in less than 2 seconds using only 1, 000 soft outputs
samples.

Appendices

A. Proof of (12)

Proof. Using (7), the conditional Expectation of the log
likelihood function can be written as:

Q(θ+) = E[ln L(θ+,X ,Z) | X , θ+(t)]

= E

⎡

⎢

⎣

N+
∑

i=1

K+
∑

k=1
1k(Zi)

⎡

⎢

⎣ ln α+k −
1
2
ln (2π)− 1

2
ln σ+2k

−
(

Xi − μ+k
)2

2σ+2k

⎤

⎥

⎦ | X , θ(t)+

⎤

⎥

⎦,

=
N+
∑

i=1

K+
∑

k=1
ρ+(t)k,i

⎡

⎢

⎣ ln α+k −
1
2
ln (2π)− 1

2
ln σ+2k

−
(

Xi − μ+k
)2

2σ+2k

⎤

⎥

⎦,

(A.1)

We must maximize Q(θ+) taking into account the
constraint

∑K
k=1 α

+
k = 1. If we add a Langrange Multiplier,

we get:

L(θ+) =
N+
∑

i=1

K+
∑

k=1
ρ+(t)k,i

⎡

⎢

⎣ ln α+k−
1
2
ln (2π)− 1

2
ln σ+2k

−
(

Xi − μ+k
)2

2σ+2k

⎤

⎥

⎦− λ

(

K
∑

k=1
α+k − 1

)

.

(A.2)

Setting the derivative ∂L(θ+)/∂α+k to zero, we find, for k =
1, . . . ,K+

α+(t)k = 1
λ

N+
∑

i=1
ρ+(t)k,i (A.3)

By invoking the fact that
∑K+

k=1 α
+
k = 1 and that

∑K
k=1 ρ

+(t)
k,i = 1, it follows from (A.3) that λ = N+. Equation

(12) is then obtained.

B. Proof of (13)

Proof. Let us use the conditional Expectation of the log
likelihood function given in Appendix A, (A.1). Setting the
derivative ∂Q(θ+)/∂μ+k to zero, we find, for k = 1, . . . ,K+

∂Q(θ+)
∂μ+k

=
N+
∑

i=1
ρ+(t)k,i

⎡

⎣+2

(

Xi − μ+k
)

2σ+2k

⎤

⎦

=
N+
∑

i=1
ρ+(t)k,i Xi − μ+k

N+
∑

i=1
ρ+(t)k,i

= 0

(B.1)

Then, for k = 1, . . . ,K+, we have,

μ+(t)k =
∑N+

i=1 ρ
+(t)
k,i Xi

∑N+
i=1 ρ

+(t)
k,i

. (B.2)

C. Proof of (14)

Proof. Let us use the conditional Expectation of the log
likelihood function given in Appendix A,(A.1). Setting the
derivative ∂Q(θ+)/∂σ+2k to zero, we find, for k = 1, . . . ,K+

∂Q(θ+)
∂σ+2k

=
N+
∑

i=1
ρ+(t)k,i

⎡

⎢

⎣− 1
2σ+2k

+

(

Xi − μ+k
)2

2σ+4k

⎤

⎥

⎦

= − 1
2σ+2k

N+
∑

i=1
ρ+(t)k,i +

1
2σ+4k

N+
∑

i=1
ρ+(t)k,i

(

Xi − μ+k
)2

= 0

(C.1)

Then, for k = 1, . . . ,K+, we have,

σ+(t)2k =
∑N+

i=1 ρ
+(t)
k,i

(

Xi − μ+(t)k

)2

∑N+
i=1 ρ

+(t)
k,i

. (C.2)

D. Proof of (15)

Proof. By using the expression of the Bit Error Probability(4)

and the two conditional pdfs estimates, ̂f b+X ,N+
and ̂f b−X ,N− , we

can express the BER estimate as,

p̂e,N = π+

∫ 0

−∞
̂f b+X ,N+

(x)dx
︸ ︷︷ ︸

D+

+ π−
∫ +∞

0

̂f b−X ,N−(x)dx
︸ ︷︷ ︸

D−

.
(D.1)

Given the fact that the two conditional pdfs are estimated
using the Gaussian Mixture based pdf estimate, by EM
algorithm, acording to (6), and using the following change
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of variables, t = (x − μ+k )/σ
+
k (resp., t = (x − μ−k )/σ

−
k ), for D+

(resp., D−), we get,

D+ =
∫ 0

−∞
̂f b+X ,N+

(x)dx

=
∫ 0

−∞

K+
∑

k=1
α+k f

+
k

(

x;μ+k , σ
+2
k

)

dx

=
K+
∑

k=1
α+k

∫ 0

−∞
1√
2π

e−(x−μ
+
k )

2/2σ+2k dx

=
K+
∑

k=1
α+k

∫ −μ+k /σ+k

−∞
1√
2π

e−t
2/2dx

=
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∑

k=1
α+k

∫ +∞

μ+k /σ
+
k

1√
2π

e−t
2/2dx

=
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k=1
α+kQ

(

μ+k
σ+k

)

,

(D.2)

D− =
∫ +∞

0

̂f b−X ,N−(x)dx

=
∫ +∞

0

K−
∑

k=1
α−k f

−
k

(

x;μ−k , σ
−2
k

)

dx

=
K−
∑

k=1
α−k

∫ +∞

0

1√
2π

e−(x−μ
−
k )

2/2σ−2k dx

=
K−
∑

k=1
α−k

∫ +∞

−μ−k /σ−k

1√
2π

e−t
2/2dx

=
K−
∑

k=1
α−k Q

(

−μ−k
σ−k

)

,

(D.3)

The BER estimate given by (15) is simply obtained by
combining (D.1), (D.2) and (D.3).
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