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Abstract

Background: The aim of this study was to develop and validate an automated
method for extracting forward stroke volume (FSV) using indicator dilution theory
directly from dynamic positron emission tomography (PET) studies for two different
tracers and scanners.

Methods: 35 subjects underwent a dynamic 11C-acetate PET scan on a Siemens
Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both
dynamic 15O-water PET and 11C-acetate PET scans on a GE Discovery-ST PET/CT
(scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted
automatically from PET data using cluster analysis. The first-pass peak was isolated by
automatic extrapolation of the downslope of the TAC. FSV was calculated as the
injected dose divided by the product of heart rate and the area under the curve of
the first-pass peak. Gold standard FSV was measured using phase-contrast
cardiovascular magnetic resonance (CMR).

Results: FSVPET correlated highly with FSVCMR (r = 0.87, slope = 0.90 for scanner I, r = 0.87,
slope = 1.65, and r = 0.85, slope = 1.69 for scanner II for 15O-water and 11C-acetate,
respectively) although a systematic bias was observed for both scanners (p < 0.001
for all). FSV based on 11C-acetate and 15O-water correlated highly (r = 0.99, slope = 1.03)
with no significant difference between FSV estimates (p = 0.14).

Conclusions: FSV can be obtained automatically using dynamic PET/CT and cluster
analysis. Results are almost identical for 11C-acetate and 15O-water. A scanner-dependent
bias was observed, and a scanner calibration factor is required for multi-scanner
studies. Generalization of the method to other tracers and scanners requires further
validation.
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Background
The baseline definition of heart failure is the inability of the heart to pump sufficient

amounts of blood to meet the metabolic needs of the organism or to do so only at an

elevated filling pressure [1]. As the progression of almost any cardiac pathophysiology

might evolve into heart failure, accurate measurements of stroke volume (SV) are fun-

damental in a clinical routine. Right heart catheterization is considered the golden

standard but is used reluctantly due to its invasiveness. A great deal of effort has been

put into qualifying the various clinically used cardiac imaging tests for stroke volume

measurements. Cardiovascular magnetic resonance (CMR) with phase-contrast se-

quences has been established as the non-invasive golden standard for stroke volume

measurements [2, 3].

Positron emission tomography (PET) is increasingly used for quantitative perfusion im-

aging in ischemic heart disease and functions as a gatekeeper for revascularization in pa-

tients with suspected coronary artery disease [4–6]. Widespread use is highly facilitated

by standardized protocols and dedicated software for quantification [4, 7]. In addition,

there is a growing interest in the use of PET to diagnose specific molecular and metabolic

alterations both clinically and in research [8–10]. Some PET tracers with high myocardial

retention lend themselves to ECG-gated assessments of left ventricular (LV) geometry

and can thus be used for routine diagnosis of systolic LV derangement [11–13]. Other

tracers, such as 15O-water and 11C-Pittsburgh compound B (11C-PIB), do not.

Access to reliable SV estimates directly from the dynamic PET data would enhance the

value of many cardiac PET investigations. Similar to the invasive gold standard, these

hemodynamic parameters are obtainable from PET by use of the indicator dilution

principle, as previously shown [14]. Although the required data are easily acquired, the

calculated parameters are rarely used with PET because of laborious manual procedures

and lack of procedural standardization. The prerequisites are relatively simple: the left

ventricular time-activity curve, the injected dose, and the heart rate. However, the intra-

venous bolus has to be rapidly and consistently delivered, the injected dose rigorously

established, the heart rate recorded in a standardized fashion, and the blood pool time-

activity curve manipulations have to account for shape variations. The aims of this study

were to develop a systematic and fully automated approach for human SV measurements

using any small-molecule PET tracer which can be applied routinely to any quantitative

PET analyses and to evaluate the variation caused by the scanner device.

Methods
Patient population

This retrospective analysis included data of two patient cohorts undergoing both car-

diac PET and CMR scans in the context of other studies. The first group, scanned on

scanner I, consisted of 35 consecutive patients (25 men, age range 48.0–84.8 years, mean

age 68.4 ± 9.6 years, 10 women, age range 52.6–86.5 years, mean age 67.9 ± 9.4 years) with

aortic valve stenosis. This patient group was recruited and scanned at the Aarhus Univer-

sity Hospital, Aarhus, Denmark. All patients had sinus rhythm, no signs of myocardial is-

chemia and aortic valve area ≤1.2 cm2 ,and/or transaortic maximal velocity of 3.0–5.0 m/s

based on echocardiography. The second group, scanned on scanner II, consisted of 10

consecutive patients with mitral regurgitation (10 men, age range 22–73 years, mean age
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56.1 ± 15.9 years) and mild-moderate heart failure. This group was recruited and scanned

at the Uppsala University, Uppsala, Sweden. All patients had significant (>20 %) mitral in-

sufficiency according to echocardiography. The study was approved by the local ethical

committees at both hospitals, and all patients gave written informed consent prior to in-

clusion in this study.

Scanning protocol

PET

[11C]-acetate synthesis was done according to Pike [15] with minor in-house

modifications.

The first patient group underwent a 27-min 11C-acetate PET scan on a Siemens Bio-

graph TruePoint TrueV 64 PET/CT scanner (scanner I). Subjects were instructed to >4 h

fasting prior to PET recordings, except for water and medicine prescribed for daily intake.

After a scout CT scan, a low-dose CT scan (120 kV, 30 mAs, 4-mm slice thickness) was

performed. Following this low-dose CT scan, a 27-min list mode emission scan was per-

formed, starting simultaneously with injection of 400 MBq 11C-acetate as a 5- to 10-mL

bolus (1 mL s−1) in a peripheral vein, using an automatic injection system, followed by a

35-mL saline flush (2.0 mL s−1) similarly as described in [16]. The list mode data were

rebinned to give a dynamic series with 29 time frames (1 × 10 s, 12 × 5 s, 5 × 10 s, 2 × 30 s,

3 × 60 s, 3 × 120 s, 3 × 300 s) using all data. Dynamic images were reconstructed using the

TrueX algorithm (3 iterations, 21 subsets, 5-mm 3D Gaussian post-filter) and routine cor-

rections for attenuation, scatter, dead time, and decay as supplied by the vendor.

The second patient group underwent an 15O-water scan followed by a 11C-acetate

scan on a GE discovery ST (scanner II). Acquisition protocol for 11C-acetate was identi-

cal to that of group I. For 15O-water, a 6-min list mode emission scan was performed,

starting simultaneously with bolus injection of 400 MBq of 15O-water using the same

injection protocol as described above. Emission data were acquired in list mode and re-

constructed in a dynamic series with 22 time frames (1 × 10 s, 8 × 5 s, 4 × 20 s, 2 × 15 s,

3 × 20 s, 2 × 30 s, 2 × 60 s) for 15O-water. Data were reconstructed using the 3D IR

algorithm (2 iterations, 21 subsets, 4.29-mm Gaussian post-filter) with routine correc-

tions for attenuation, scatter, dead time, and decay as supplied by the vendor. To avoid

contamination of the signal due to residual activity, the 11C-acetate scan was started at

least 10 min (five half-lives) after the end of the 15O-water scan.

CMR

The first group of patients was scanned on an Ingenia 1.5 T whole-body scanner (Philips

Healthcare, Best, The Netherlands). Based on three-chamber and left-ventricular outflow

tract (LVOT) cine images, breath-hold through-plane phase-contrast CMR acquisitions

were performed at the level of the LVOT. The following parameters were applied: echo

time (TE) = 2.5 ms, repetition time (TR) = 4.1 ms, phase percentage = 60 %, field of view

(FOV) = 350 mm, matrix = 140 × 140, number of phases = 25, number of excitations

(NEX) = 1, and slice thickness (ST) = 8 mm. To avoid aliasing, encoding velocity was set

to 100–200 cm/s based on pulse wave Doppler imaging from echocardiography per-

formed just prior to CMR. To avoid biases and variability due to stenosis-induced velocity

gradients or turbulence, imaging was performed at the level of the LVOT where flow is

laminar.
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The second group of patients was scanned on a ingenia 3 T whole-body scanner (Philips

Healthcare, Best, The Netherlands). Scanning protocol was comparable to that of the first

group of patients, with some differences. Based on orthogonal balanced turbo field echo im-

ages, respiratory triggered through-plane phase-contrast MR acquisitions were obtained at

the level of the aorta ascendens during free breathing. Typical parameters were as follows:

TE = 2.7 ms, TR = 4.7 ms, phase percentage = 81 %, FOV= 320 mm, matrix = 128 × 104,

number of phases = 40, NEX= 2, ST = 8 mm, and encoding velocity = 100–200 kollas.

Data analysis

The local standard method of calculating forward stroke volume using CMR (FSVCMR)

differed slightly between the two centers. For the first group of patients, forward stroke

volume (FSV)CMR was calculated from phase-contrast velocity measurement in the

LVOT using the freely available software Segment (version 1.9 R3746) [17]. For the sec-

ond group of patients, FSVCMR was calculated from phase-contrast velocity measure-

ment in the aorta ascendens and flow analyses were performed on a ViewForum

workstation (Philips, Best, the Netherlands).

FSV analysis of PET scans was implemented in Cardiac VUer [18], which is a software

used by both centers for routine work and clinical research in cardiac PET. The soft-

ware automatically obtains arterial and venous input functions using cluster analysis

[18, 19]. These input functions are further used by the software for kinetic modeling,

yielding fully quantitative myocardial blood flow values for 15O-water and rate of myo-

cardial oxygen consumption for 11C-acetate. For 15O-water, six clusters were used while

for 11C-acetate five clusters were found to yield more stable results. After visual inspec-

tion of the resulting clusters (Fig. 1a), the user selects the cluster representing the arter-

ial blood pool (red in Fig. 1a) and the venous blood pool (blue in Fig. 1a) after which

the average time-activity curve of each voxel in each cluster was used as final arterial

and venous input functions. To reduce partial volume effects and spillover of activity

from surrounding organs, the outer layer of voxels included in each cluster was eroded

before input functions were obtained.

Fig. 1 a Example of arterial (red) and venous (blue) clusters as obtained after cluster analysis. The arterial
cluster includes the left atrium and ventricle and the aorta while the venous cluster includes the vena cava,
right atrium and ventricle, and the pulmonary arteries. b Time-activity curves of the clusters in a for arterial
(red circles) and venous (blue circles) blood and corresponding isolated first-pass peaks (lines)
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Then, FSVPET was estimated fully automatically using the indicator dilution

method [14]:

FSVPET ¼ 1
R
CA tð Þ dt �HR

In which FSVPET represents the forward stroke volume, I injected dose, HR the heart

rate, and CA(t) the whole-blood time-activity curve (TAC) for the first-pass only. For

calculation of FSV, the area under the curve of the first-pass peak of CA(t) was ex-

tracted fully automatically (Fig. 1b). First, the two successive frames t1 and t2 with a

downslope greater than 0.75 times the maximum downslope were identified, and an ex-

ponential curve was fitted through these two frames. Then, the first-pass peak was de-

fined as the activity of the original CA(t) or CV(t) up to frame t2 followed by the

exponential fit from frame t2. The areas under the resulting curves were integrated by

summing the products of time frame length and average activity for all time frames.

Correlation and agreement between FSVCMR and FSVPET was assessed using linear

regression and Bland Altman plots, and a paired t test was used to assess the presence

of systematic differences. Proportional errors were indicated by a significant correlation

in Bland Altman plots while systematic errors were indicated by the mean difference

between measurements. Repeatability coefficient (RPC) was calculated as two times the

standard deviation (SD) of the differences between measurements or, in case of a pro-

portional error, as two times SD of the residuals of the linear regression in the Bland

Altman plot. FSVPET was calculated using the arterial whole-blood time-activity curve

(CA(t)) or the venous time-activity curve (CV(t)). In addition, the average of these

values was obtained and compared to FSVCMR.

Results and discussion
For one patient of scanner I, injected dose was not measured and two patients showed

visually identifiable motion, and these patient had to be excluded from further analyses.

Patient characteristics of the remaining patients are shown in Table 1. Hemodynamic pa-

rameters during PET are shown in Table 2. No significant differences in blood pressures

and heart rates were found between 15O-water and 11C-acetate scans on scanner II. Blood

pressures were comparable between patients scanned on scanner I and II while heart rate

was significantly higher for the patients scanned on scanner I (p < 0.01).

Cluster analysis was performed automatically and successfully in all remaining pa-

tients. Analysis time was <1 min on a standard desktop PC. Average FSV values for

both tracers and imaging modalities are shown in Table 3. A significant overestimation

of FSV based on PET was found for all scanners and tracers, with the largest overesti-

mation for scanner II.

Figure 2 shows correlation between FSVCMR and FSVPET using arterial blood TACs for

scanner I and its corresponding Bland Altman plot. A highly significant and high correl-

ation was found when using arterial blood TACs (r = 0.87, p < 0.001). Similar but slightly

lower correlations were found for venous blood TACs (r = 0.74, p < 0.001) or the average

FSVPET (r = 0.82, p < 0.001). Bland Altman analysis revealed a systematic error (p < 0.001)

but no proportional error (p = 0.737). Correlation between FSVCMR and FSVPET for scan-

ner II for 11C-acetate and 15O-water and their corresponding Bland Altman plots are

shown in Figs. 3 and 4, respectively, based on the arterial blood TACs. Again, high and
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highly significant correlations were found when using 11C-acetate (r = 0.87, p = 0.001 for

arterial blood; r = 0.86, p = 0.001 for venous blood; and r = 0.88, p < 0.001 for the average)

and similar results were found when using 15O-water (r = 0.85, p = 0.002 for arterial blood;

r = 0.88, p < 0.001 for venous blood; and r = 0.88, p < 0.001 for the average). Bland Altman

analysis revealed both a systematic (p < 0.001) and proportional error (p = 0.004) for
11C-acetate and both a systematic (p < 0.001) and proportional error (p = 0.004) for
15O-water.

Correlation between FSVPET based on 11C-acetate and 15O-water (Fig. 5) was close to

unity (r = 0.99, p < 0.001) with no systematic (p = 0.14) or proportional (p = 0.513) differ-

ence between measurements. Repeatability coefficient for these measures was 11.0 mL.

Discussion

This study shows the feasibility of a fully automated method of measuring forward stroke

volume using the indicator-dilution principle and dynamic PET with two different tracers

Table 1 Patient characteristics in mean ± SD for continuous variables or N (%) for dichotomous
variables

Scanner I (n = 32) Scanner II (n = 10) p value

Male gender 23 (72) 10 (100) 0.001

Age (years) 68.9 ± 8.5 56.1 ± 15.9 0.033

BMI (kg/m2) 26.0 ± 3.7 24.5 ± 3.5 0.374

BSA (m2) 1.90 ± 0.18 2.04 ± 0.17 0.044

Hypertension 18 (56) 3 (30) 0.158

Diabetes 6 (19) 0 (0) 0.012

NYHA class

I 19 (59) 7 (70) 0.556

II 8 (25) 2 (20) 0.75

III 4 (13) 1 (10) 0.833

Unknown 1 (3) 0 (0) 0.325

LVEF (%) 66 ± 11 60 ± 6 0.039

RF (%) – 41 ± 11 –

Medication

ACE or ATII inhibitors 9 (28) 3 (30) 0.915

Beta-blockers 4 (13) 2 (20) 0.616

Statins 20 (63) 0 (0) <0.001

Diuretics 16 (50) 0 (0) <0.001

Calcium antagonists 8 (25) 1 (10) 0.25

BMI body mass index, BSA body-surface area, NYHA New York Heart Association, LVEF left-ventricular ejection fraction, RF
regurgitant fraction

Table 2 Blood pressures (in mmHg) and heart rate (min−1) of all patients groups

SBP DBP MAP HR

Scanner I 11C-acetate 138.2 ± 17.5 78.8 ± 10.3 98.6 ± 11.3 64.5 ± 11.5

Scanner II 11C-acetate 133.8 ± 17.4 72.3 ± 10.8 92.8 ± 11.9 56.8 ± 5.4**

Scanner II 15O-water 133.9 ± 16.4 72.1 ± 11.3 92.7 ± 12.1 57.1 ± 5.3**

SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, HR heart rate
**p < 0.01 vs scanner I 11C-acetate
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and scanners. The method requires no additional manual labor or separate PET recon-

structions over those required for standard quantitative analysis of dynamic PET data.

When using the arterial blood time-activity curve, a high correlation (r ≥ 0.85) was found
with FSV as measured with the gold standard, phase-contrast CMR.

The method uses cluster analysis [18, 19] for extraction of image-derived input func-

tions (i.e. CA(t)). This approach minimizes interobserver variability in quantitative analysis

of myocardial blood flow [4, 18] and allows for integration of FSVPET measurements in a

clinical workflow without additional workload and independent of operator skill level.

The method presented in this study is routinely applicable to any dynamic cardiac PET

study, provided that a standardized and rapid infusion protocol is used and scan data with

at least 90 s of short time frames is available.

There were no significant differences between the values obtained with 15O-water

and 11C-acetate (p = 0.14). This illustrates the consistency of the method between dif-

ferent tracers and its high reproducibility. In addition, factors such as the increased

positron range and shorter half-life of 15O or differences in uptake patterns between
15O-water and 11C-acetate did not affect the obtained results. This suggests that the

method can be used with any tracer, as long as it is injected as a rapid bolus in a stan-

dardized fashion. In this study, automated injection devices were used in both centers

and the infusion protocol was identical, eliminating possible biases due to differences

in injection methodology. To reproduce the current results, care has to be taken to

avoid a bolus injection that is too rapid as the low time-sampling typically found in

PET studies limits the accuracy of boluses with too steep time-activity curves. Bolus in-

fusion times of less than 5 s are therefore not recommended. In addition, care has to

be taken that the infusion time is fast enough to minimize overlap between the first

Table 3 Average values for FSV (in mL) derived using CMR and PET

CMR Arterial blood Venous blood Average

Scanner I 11C-acetate 79.5 ± 19.6 98.9 ± 20.3* 99.4 ± 19.5* 99.1 ± 19.5*

Scanner II 11C-acetate 94.5 ± 17.6 139.1 ± 33.4* 132.9 ± 29.7* 136.0 ± 31.1*

Scanner II 15O-water 94.5 ± 17.6 136.3 ± 34.7* 143.6 ± 29.7* 140.0 ± 31.6*

*Denotes significantly different from CMR values (p < 0.001)

Fig. 2 Correlation (a) between FSVCMR and FSVPET for scanner I based on 11C-acetate and arterial blood and
its corresponding Bland Altman plot (b). Correlation coefficient, slope, and intercept of the linear fit were
0.87, 0.90, and 27.7 mL for FSVPET. No significant correlation was found in Bland Altman analyses. Continuous
lines indicate the line of identity and dotted lines the linear fit in (a) and the mean difference and the 95 %
confidence interval in (b)
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and second pass of the bolus through the blood pool. Including the second (or higher)

pass in CA(t) will lead to overestimations of the area under the curve of the first-pass

peak and consequently an underestimation of FSVPET.

On the other hand, a systematic bias with CMR was found for both scanners (p < 0.001),

and this bias was different between scanners. Differences in for instance scatter correc-

tions, detector material and crystal dimensions, or counting performance during the first-

pass might induce scanner-dependent differences in obtained FSV values. In addition, the

influence on partial volume effects is expected to be scanner dependent, manifesting itself

in differences in contrast recovery. Furthermore, it has been shown that using reconstruc-

tions with corrections for the point-spread function (such as the TrueX reconstruction

used for group I) yield higher contrast recovery as compared to standard iterative recon-

structions [20]. Increased contrast recovery leads to increased areas under the peak of the

first-pass and consequently less overestimation of FSV values. This might explain some of

the differences in results between the scanners used in this study. Standardized corrections

for partial volume effects using scanner-dependent recovery coefficients might reduce or

even eliminate some of these issues. However, aortic diameter is not consistent between

Fig. 3 Correlation (a) between FSVCMR and FSVPET for scanner II based on 11C-acetate and arterial blood and
its corresponding Bland Altman plot (b). Correlation coefficient, slope, and intercept of the linear fit were
0.87, 1.65, and −16.9 mL for FSVPET, and a significant correlation in Bland Altman analyses was found.
Continuous lines indicate the line of identity and dotted lines the linear fit in (a) and the mean difference
and the 95 % confidence interval in (b)

Fig. 4 Correlation (a) between FSVCMR and FSVPET for scanner II based on 15O-water and arterial blood and
its corresponding Bland Altman plot (b). Correlation coefficient, slope, and intercept of the linear fit were
0.85, 1.69, and −23.0 mL for FSVPET, and a significant correlation in Bland Altman analyses was found.
Continuous lines indicate the line of identity and dotted lines the linear fit in (a) and the mean difference
and the 95 % confidence interval in (b)
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cardiac patients and using a fixed (a priori) recovery coefficient might introduce different

biases in the data as these coefficients are object-size dependent. Since correlation with

FSV based on CMR was high for both scanners, scanner-specific correction factors can be

derived and used to get consistent values independent of scanner used. Alternatively, when

this is not possible, FSVPET can be used in a relative fashion when patients are scanned

multiple times, as reproducibility of the method is high (Fig. 5).

Irrespective of these scanner differences, both scanners yielded a systematic overesti-

mation of FSV. Underestimations of the total blood activity due to the partial volume

effect (PVE), which is especially prominent in the descending aorta and to a lesser ex-

tent in the ascending aorta, lead to overestimations of FSV. To evaluate the impact of

PVE, one additional erosion step was applied to the obtained clusters, keeping only the

most central voxels which should suffer less from partial volume effects. For scanner I,

no differences in FSV were found as compared to values obtained without additional

erosion (p = 0.13), suggesting that partial volume effects were not significant. On the

other hand, for scanner II, FSV values were significantly lower after an additional ero-

sion (4.0 ± 1.6 %, p < 0.001), showing that partial volume effects still play a minor but

significant role for this older scanner. Nevertheless, other factors such as scanner

counting performance at high dead times, scatter corrections, and accuracy of the

injected dose remain that might play a role and could be investigated further. However,

the high correlation coefficients observed in this study show the consistency of the bias,

and potentially correction factors can be applied for a more routine setting on current

generation of PET/CT scanners. This however requires further validation.

Phase-contrast CMR is a versatile and thoroughly validated technique, at least theoretic-

ally not associated with scanner-related or operator bias although this has not been docu-

mented. The protocols might differ, as in this study, which potentially accounts for some

differences in mean FSVCMR between the two cohorts. In this study, there were three

main differences in CMR protocol between sites. First, for patients investigated with scan-

ner I, flow velocity was measured at the level of the LVOT because in patients with a sten-

otic aortic valve, flow is not laminar downstream of the aortic valve, and therefore flow

measurements would inevitably be subjected to larger variation if the sampling site was

Fig. 5 Correlation (a) between FSVPET based on 11C-acetate and based on 15O-water when using arterial
blood TACs and its corresponding Bland Altman plot (b). Correlation coefficient, slope, and intercept of the
linear fit were 0.99, 1.03, and −6.4 mL, respectively, and no correlation was found in the Bland Altman plot.
Repeatability coefficient was 11.0 mL. Continuous lines indicate the line of identity and dotted lines the linear
fit in (a) and the mean difference and the 95 % confidence interval in (b). RPC repeatability coefficient
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chosen to be the ascending aorta. In patients investigated with scanner II, flow was mea-

sured in the ascending aorta. However, these patients did not have a stenotic aortic valve,

flow was assumed to be laminar in the ascending aorta and consequently, the impact of

this difference in CMR protocol is expected to be marginal. Second, patients investigated

with scanner I had CMR during breathhold, while patients in the second cohort had

CMR during free breathing. Cardiac loading conditions change with the breathing cycle,

and, as a consequence, the measured stroke volume differs. All PET scans were done with

free breathing, and the bolus travels through either chamber during a few breaths. The ex-

cellent repeatability of the PET measurements performed with scanner II suggests that

free breathing during first-pass PET does not induce significant errors. However, if PET is

calibrated to CMR for the sake of measurement portability, the actual CMR protocol might

affect the PET values. Finally, the temporal resolution was higher in patients scanned on

scanner II (32 cardiac phases per beat) as compared to scanner I (15 cardiac phases per

beat). For this reason, it is expected that FSVCMR estimates are more precise and accurate

for the former group although systematic differences are not expected. Finally, it has to be

noted that differences in age, body-surface area, heart rate, loading conditions, and disease

state between both groups may account for some differences in average FSV.

FSV measurements of the patients scanned on scanner II had a more pronounced bias,

compared to CMR. These patients had significant mitral regurgitation, potentially enhan-

cing the bias. Phase-contrast CMR separates outward and backward flow velocities while

the PET method only measures net outflow of the bolus. The PET application of FSV

measurements is an implementation of standard indicator dilution technique, similar to

the invasive thermodilution approach, and also successfully applied for decades using ra-

dionuclides and external gamma counters [21]. PET has a much lower time resolution

than both temperature probes and gamma cameras, but since the clusters (Fig. 1) incorp-

orate both the left-ventricular and the left-atrial cavity, regurgitated blood is still included

in the arterial cluster. This will increase the area under the first-pass curve proportionally,

and mitral regurgitation is therefore accounted for when estimating FSVPET. This was

confirmed by the excellent correlation between FSVCMR and FSVPET, as well as the excel-

lent correlations between FSVPET for both venous and arterial blood. Consequently, the

bias observed with scanner II is related to the PET device and not the cardiac condition

or the indicator dilution principle per se.

The method applied in this study utilizes cluster analysis; an automatic segmentation

method which is use in cardiac PET has been shown before [18] and is successfully ap-

plied in a clinical setting [4]. This is in contrast to other studies using manually defined

blood TACs [14, 22, 23] or semi-automated methods [24, 25]. The automated segmen-

tation method has the obvious advantage of reducing or eliminating observer-induced

variation and increasing workflow. Since arterial input functions are fundamental for

any quantitative PET study, the method described in this study requires no extra work

other than entering the heart rate during the start of the scan and the injected dose.

The proposed method is therefore easily applied to a clinical routine. In addition, isola-

tion of the first-pass peak from CA(t) or CV(t) is performed fully automatically. In con-

trast to [23], no assumptions are made regarding the upslope of the peak, and except

for the exponential fit starting after the frame with the maximum downslope (t2), the

original data of CA(t) and CV(t) are retained. Fewer processing steps to the data are

likely to limit potential biases and errors due to post-processing.
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There are several limitations to the method described in this study. First, the injected

dose must be administered as a rapid bolus in order to accurately isolate the peak of the

first-pass. In cases where the bolus is fractionated or where a significant part of the bolus is

for instance stuck in the arms, the relationship between the injected dose and the area of

the first-pass peak (Eq. 1) is compromised and results are unreliable. Similarly, when the in-

jection is performed as a slow bolus or an infusion, as is typically the case when using 82Sr/
82Rb generators, overlap between the first and second pass of the tracer can occur and will

influence obtained values of FSV. Consistent tracer administration methods are therefore

required for accurate measurements of FSV. The patients included in this study all had

valvular abnormalities. Because of this, a comparison between regular stroke volume based

on CMR or ECG-gated PET data and FSVPET was not performed, as significant differences

between total stroke volume and forward stroke volume cannot be ruled out.

Left-ventricular ejection fraction (LVEF) may be a more powerful predictor of cardiac

events than SV alone. However, LVEF requires not only SV but also end-diastolic volume

which cannot obtained using the methods described in this study, ruling out calculation

of LVEF. More studies are warranted for automated and routine extraction of end-

diastolic volume from dynamic PET images, enabling subsequent calculation of LVEF.

This study shows the validity of FSVPET for 11C-acetate and 15O-water. In spite of the

highly different downstream distribution pattern, these tracers performed equally well

for measuring FSV. This suggests that the new method is directly applicable to most

other and more widely used tracers, such as 18F-FDG and 13N-ammonia. 82Rb-rubid-

ium generators may have variable infusion schemes based on generator age, which will

require additional validation of FSV measurements in that setting. Similarly, additional

validation is also needed for tracers with potentially very high first-pass lung retention,

such as 11C-PIB in studies of cardiac amyloidosis and some tracers of highly lipophilic

drugs. However, for some of these tracers, absolute quantification is not routinely per-

formed, and static uptake images are used instead, often accompanied with ECG-gated

reconstructions. Performing separate dynamic reconstructions to obtain FSVPET has lit-

tle value over the use of regular SV based on ECG-gated reconstructions in these cases.

The use of FSVPET can therefore only be recommended for tracers which frequently re-

quire dynamic scanning and absolute quantification, as the method can be incorporated

in the standard analysis only in these cases.

Conclusions
Forward stroke volume can be obtained automatically and reliably using dynamic PET/CT

and cluster analysis. Although a scanner-dependent bias was found, the method was inde-

pendent of the tracer used in this study and can in theory be extended to other tracers.

This allows automated, rapid, and routine calculation of forward stroke volume with any

dynamic cardiac PET examination.
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