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Abstract

Background: Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous
group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma
(LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA,
microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between
AC and SCC.

Methods: Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray
profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC.

Results: At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly
between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several
genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB
genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early
diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood
samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver
genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread
correlation with an average of ~800 genes throughout the genome and highly associated with histological types.
Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA
replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways,
and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944.

Conclusions: Integrated molecular characterization of AC and SCC helped identify clinically relevant markers and
potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level
and have strong association with histological subtypes.
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Table 1 Characteristics of the patients

n = 123 (100%)

Age median (range) 63 (40.9-84.6)

Males n (%) 89 (72%)

Smoking Current 64 (52%)

Former 51 (42%)

Never 7 (6%)

Histology AC 57 (46%)

SCC 50 (41%)

LCC 13 (11%)

Other 3 (3%)

Stage 1 56 (50%)

2 25 (22%)

3 28 (25%)

4 4 (4%)

Adjuvant chemo (%) 61 (50%)

Characteristics of the patients in the study population.
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Background
Lung cancer is one of the most prevalent and deadliest
cancers; it accounts for 13% of all cancer cases and 18%
of the deaths in 2008 [1]. Among European men, in 2011
lung cancer deaths are predicted to reach ~182,000, with a
standardized rate of 37.6/100,000 person-years [2]. The rate
among European women is still expanding and may reach
14 to 15 per 100,000 person-years in 2015 [3]. Despite
recent advances in surgical and chemo/radiation therapies,
the prognosis is very poor, with a 5-year overall survival rate
of only ~15%, which has not improved over several decades.
The inability to cure lung cancer is related to the ad-

vanced stage of the disease at the time of diagnosis and the
resistance of the disease to currently available anti-cancer
drugs [4]. In its early stages lung cancer tends to be asymp-
tomatic, so at the time of diagnosis most tumors are locally
advanced (stage IIIB) or metastatic (IV). Furthermore, even
among early-stage patients who are treated primarily by
surgery with curative intent, 30-55% will develop and die
of metastatic recurrence.
Human lung cancers are classified into two major sub-

types, small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC), with the latter accounting for ~80%
of all primary lung cancers. NSCLC represents a heteroge-
neous group of cancers, consisting mainly of squamous
cell carcinoma (SCC) and adenocarcinoma (AC), and a
much smaller fraction of large-cell carcinoma (LCC).
Current clinical management and therapeutics depend
on histopathological classification, which is reliable for
surgical specimens, but often difficult to assess for small
biopsies. This is a serious issue, because in ~70% of cases
only small biopsies or cytology specimens are available [5].
The objectives of this study were to utilize integrated

genomic data including copy-number alteration, mRNA,
microRNA expression and candidate-gene full sequencing
data to characterize the molecular basis of the distinctions
between AC and SCC. Cancer genomes are often unstable
and accumulate a large number of mutations and structural
or copy-number changes. Thus we cannot tell which
genomic changes are ‘drivers’ and which are ‘passengers.’
Availability of data from multiple sources has the potential
to solve these problems, where, for example functional or
physiological impacts of the DNA-level genomic changes
can immediately be verified at RNA level. Integrated mo-
lecular characterization of AC and SCC may help identify
clinically relevant potential drivers, which are recurrent
and stable changes at DNA level that have functional
implications at RNA level and have strong association
with histological subtypes.

Methods
Patients and tissue samples
The present study was organized by the CHEMORES
initiative (Chemotherapy resistance consortium), which
is an EU funded (FP6) Integrated Project involving 19
academic centres, organizations for cancer research, and
research-oriented biotechnology companies in 8 European
countries.
Tissue samples from a cohort of 123 patients who

underwent complete surgical resection at the Institut
Mutualiste Montsouris (Paris, France) between 30 January
2002 and 26 June 2006 were analysed. Clinical characteris-
tics are given in Table 1. The median age of patients was
63 years (range 41–85), 34 (28%) were female and 89 (72%)
were male. The histopathology of all tumors was reviewed
by the same pathologist (JvdO): 50 patients had SCC,
57 AC, 13 LCC and 3 unclassified. Using the new 7th
edition TNM staging 56 were stage I, 25 stage II, 28
stage III and 4 stage IV. Adjuvant platinum based chemo-
therapy was administered to 61 patients. Fifty-nine patients
experienced a relapse. Two-year relapse-free survival was
64%, and the median time to recurrence for the cohort
was 5.2 years. After a median follow up of 40 months
(range 0–92) 36 patients had died and 23 patients were
alive with recurrence.
This study was performed using snap-frozen tumor

and adjacent normal lung tissue. Samples were handled
according to the Tumor Analysis Best Practices Working
Group [6]. Haematoxylin and eosin stained frozen sections,
taken before and after the cutting of slides for analysis,
revealed a median cell content of 85% (an inter-quartile
range of 65% to 95%). All tissues were banked after written
informed patient consent, and the study was approved by
the Ethics Committee of Institut Gustave Roussy (IGR).
Genomic investigations were performed at IGR, leader
of the Genomic work-package of Chemores consortium,
in the genomic center core facility certified ISO9001, la-
belled European reference and training center for Agilent
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technologies. Analyses were performed at IGR and
Karolinska Institute, the leader of integrated analyzes
work-package.

Oligonucleotide aCGH
DNA samples were extracted from tissues using Qiagen
QIAamp DNA Mini kit (Qiagen, Hilden, Germany). In each
case, the normal tissue sample was used as the reference
to its corresponding tumor sample. DNA was restriction
digested and controlled by Agilent Bioanalyzer on DNA
7500 chips (Agilent Technologies, Santa Clara, CA, USA).
The fragmented reference and test DNA were labelled
with Cy3-dUTP or Cy5-dUTP, respectively, using Agilent
Genomic DNA Labelling Kit PLUS. Samples were purified
using Microcon YM-30 filters (Millipore, Billerica, MA).
Hybridization was carried out on Agilent 244K arrays for
24 hours at 65°C in a rotating oven (Robbins Scientific,
Mountain View, CA) at 20 rpm, followed by appropriate
washing steps. Scanning was performed with an Agilent
G2505C DNA Microarray scanner using default parame-
ters. Quantification of Cy5 and Cy3 signals from scans
was performed with Feature Extraction v10.5.1.1 (Agilent
Technologies) using default parameters.

aCGH data processing and analysis
Resulting raw signals and log2 (ratio) profiles were nor-
malized and centered according to their dye composition
(Cy5/Cy3) and local GC content. These profiles were seg-
mented with the Circular Binary Segmentation algorithm
[7] through its implementation in the DNAcopy package
for R v2.8.1 using default parameters. DNA copy number
imbalances were detected considering a minimum of 3
consecutive probes and a minimal absolute amplitude
threshold that was specific for each profile, accordingly
with its internal noise. This specific internal noise was
computed as one-fourth of the median of the absolute
log2 (ratio) distances across consecutive probes on the
genome. Of the 128 aCGH hybridizations performed,
17 were discarded: 7 due to their clinical annotations, 2
due to anomalies in their normal reference, and 8 due to
the bad quality of their profile, resulting in 111 usable
profiles. All aCGH coordinates in this study are mapped
against the human genome as defined by the UCSC
build hg18.
To assess the discovery of the genomic regions with dif-

ferential anomalies between the AC, LCC and SCC popu-
lations, ANOVA tests were performed on the segmented
aCGH dataset. To account for multiple testing, p-values
were transformed to false discovery rate (FDR) [8].

Gene expression and microRNA microarray assay
The lysis of 40 to 50 frozen sections of 10 micron-thickness,
cut from each NSCLC tissue sample was done using a
Polytron homogenizer (Ultraturrax, IMLAB, Lille, France).
The RNA extraction was performed with TRIzol® Reagent
protocol (Invitrogen, Carlsbad, CA, USA). Total RNA
was quantified and qualified with Nanodrop ND-1000
spectrometer and Bioanalyzer-2100 (Agilent Technologies).
For dual color Cy3 (normal samples) and Cy5 (tumor

samples) labelling, Agilent Fluorescent Low Input Linear
Amplification kit adapted for small amounts of total
RNA (500 ng total RNA per reaction) was used, followed
by purification of labelled probes by Qiagen RNeasy
Mini kit and by a protocol provided by Agilent. Gene
expression profiling was performed with dye-swap, using
dual-color 244K Human exon array from Agilent (custom
design with the content of the 44K Human genome plus
195,000 probes, one for each exon as defined in refGene
list of UCSC build hg18 (http://genome.ucsc.edu/)).
Hybridization was carried out for 17 hours at 65°C at 10
rpm, followed by washing steps. Scanned microarray
images were analyzed by using Feature Extraction software
version 10.5.1.1 (Agilent).
For the microRNA analysis, normal and tumor samples

were hybridized on separate arrays. Agilent miRNA
Microarray System with miRNA complete labelling and
hybridization kit was used for Cy3 labelling. Briefly, isolated
total RNAs were dephosphorylated, labelled with pCp-Cy3
and hybridized to Agilent 8x15K arrays for 20 hours at
55°C in a rotating oven (Robbins Scientific) at 20 rpm.
Slides were washed and scanned for gene expression
using an Agilent G2565C DNA microarray scanner using
defaults parameters.

Gene mutations analysis
Sequencing was performed at IGR and at the Royal Insti-
tute of Technology (Stockholm, Sweden). DNA was ex-
tracted with QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany). After PCR amplification of target exons,
sequencing reactions were carried out using the BigDye®
Terminator Cycle Sequencing Kit (Applied Biosystems,
Forster City, CA). The primer sequences are available on
request. Sequencing reactions were run on a 48-capillary
3730 DNA Analyzer®. Sequence analysis and alignment was
performed with SeqScape® software (Applied Biosystems).
All detected mutations were confirmed in at least one inde-
pendent PCR reaction. In all 123 samples, full coding se-
quences of exons including oncogenic mutational hotspots
were analyzed corresponding to: TP53 (NM_000546.4)
exons 5–8; KRAS (NM_004448.2) exons 2 and 3; EGFR
(NM_005228.3) exons 18–21; PIK3CA (NM_006218.2)
exons 10 and 21; BRAF (NM_004333.4) exon 15; ERBB2
(NM_004448.2) exons 18, 20–24; KDR (NM_002253.1)
exons 2, 26, 27 and 30; and AKT1 (NM_005163.2) exon 4.

Gene-expression data processing and normalisation
All processing methods used for gene expression analysis
were performed on the median signal from Agilent Feature

http://genome.ucsc.edu/
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Extraction raw data files using functions and packages
collected in the R Bioconductor project [9] as well as
custom written routines.
For gene expression data, dye-swap arrays were first

combined (by taking the average of intensities) to obtained
only one array per condition. This combination has the
result of centering the M values (log2ratios) on zero. Then,
flagged spots as well as control spots were removed.
Normalization was then performed using the normalize-
WithinArrays function from R package LIMMA [10].
For miRNA data, control spots were systematically

removed, and flagged spots (gIsFeatNonUnifOL and gIsSa-
turated columns from raw files) were considered as missing
values (“NA”). Array normalization was performed using
the least-variant-set method [11].

Differential expression analyses of miRNA expression
To assess differentially-expressed miRNA, we first esti-
mated the fold changes and standard errors between
two groups of samples by fitting a linear model for
each probe with the lmFit function of LIMMA package
in R. Then we applied an empirical Bayes smoothing to
the standard errors from the linear model previously
computed with eBayes function.

Integrated genomics using Driver-Gene Search algorithm
Motivated by Akavia et al. [12], we considered each gene in
an altered region a potential driver; its functional impacts
on other genes can then be due to its direct copy number
alterations or indirectly via the corresponding expression of
the gene. It was then assumed that the functional impact of
the driver is mediated through a biological pathway, such
as proliferation or invasion, which would contain genes that
are correlated to the driver. We identified such pathways
by clustering genes into the candidate drivers. Thus the
output of this clustering process is a collection of potential
drivers together with a set of target genes associated with
each driver. We developed the Driver-Gene Search (DGS)
algorithm for this purpose, employing transparent statistical
analyses to identify the so-called candidate target and driver
genes. A complete workflow is shown in Figure 1.
The DGS algorithm consists of 3 broad steps as follows.

Step 1: Identify recurrent copy-number alterations (CNAs)
across individuals. This is achieved using the combination
of two computational algorithms implemented in MPSS and
cnvpack, available from http://www.meb.ki.se/~yudpaw/.
Based on a correlated random-effect model for the
unobserved patterns, MPSS takes a robust smooth seg-
mentation approach to identify whether a segment is a
true CNA [13]. The segmentation threshold is fixed
at −0.15 and 0.15 of the intensities for deletions and
duplications, respectively. Segments with FDR less than
1e-05, number of probes less than 10, length of segments
less than 1 kb are filtered out. As shown in Figure 1, these
abnormal regions for individuals become input of step 1
in the workflow. We then apply the cnvpack to identify
recurrent CNA regions [14], defined as alterations found
in at least 10% of the subjects in whom at least one
abnormal region is found by MPSS. Genes / miRNAs in
recurrent CNAs are chosen as candidate drivers.
Step 2: Set up initial modules. First identify candidate

drivers from CNA regions from Step 1, and compute
pair-wise correlation between candidate driver and target
genes. Each target gene is grouped with the highest signifi-
cantly correlated candidate driver gene, using P < 0.001.
From this initial pairing, we know that genes within each
module are all highly correlated with at least one candi-
date driver. Step 3: Find final modules. It is reasonable to
assume that these target genes are also possibly correlated
with other candidate drivers. In this step, we identify the
correlation between several candidate drivers and the
target genes in every module using the canonical correlation
analysis (CCA). We used an R package SCCA to perform
sparse canonical correlation analysis [15].
Network enrichment analysis
Next we functionally characterize the potential driver
genes using the network enrichment analyses (NEA) [16].
Target genes are likely enriched with diverse biological
processes and pathways that reveal the physiological roles
of the driver and the associated genes. We use neaGUI to
test whether there is an over-representation of network
links between genes associated with their driver and genes
in KEGG pathways. The tool is available for download
from https://r-forge.r-project.org/projects/neagui/. To main-
tain an adequate number of genes for testing and a moder-
ate correlation with the driver, we select a threshold
of correlation coefficient based on Additional file 1:
Figure S4 such that the number of target genes is around
100. For driver miRNA, the tested gene set contains bio-
logically regulated genes obtained from miRBase [17]. The
NEA method uses topological information of the gene
interaction network, so target miRNAs identified by the
DGS algorithm are not included in the NEA for testing.
Validation of expression data analyses
For mRNA expression we used previously published
NSCLC expression dataset GSE3141 [18] from the Gene
Expression Omnibus website in order to validate some
of the results based on mRNA expression. The dataset
comprised of 58 AC and 53 SCC samples, and mRNA
was extracted from frozen tissue of primary lung tumors.
The gene expression was measured on Affymetrix Human
Genome U133 Plus 2.0 Array, which we subsequently nor-
malized using global normalization at the log-expression
level. If a gene is represented by several Affymetrix probes,
we take the average of the log-expression value to represent

http://www.meb.ki.se/~yudpaw/
https://r-forge.r-project.org/projects/neagui/
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the gene. For miRNA expression we validated our results
using Ming You et al’s data GSE29135 [19].

Validation of candidate driver genes
For the candidate driver genes we also attempted to verify
the CNA status and the correlation of CNA and expression
in an independent dataset previously published by Chitale
et al. [20]. Frequency of CNAs was validated in 199 AC
cases hybridized to Agilent 44K CGH arrays, where probes
were less dense than the 244K arrays used in our sudy. Of
the 199 samples, 102 were hybridized to the HG-U133A
2.0 Affymetrix oligonucleotide arrays. The robust multichip
average method, which outputs log2-transformed expres-
sion values, was used to summarize probe measurements
into one measurement for each probe. We assessed copy
number status of the 500 kb region surrounding each
driver gene. On average, 20 probes were targeted at the
driver gene region. A region was considered as amplified
if its regional averaged probe intensity was significantly
higher than zero, which was the global mean after
standardization of the LogRatio intensities within samples.
One-sided Welch t-test was used to assess the statistical
significance.

Results
Copy-number alteration profiles
ANOVA testing was performed to compare the different
histological groups according to their genomic anomalies
from the aCGH data. At FDR < 1.0e-5, we identified 168
differential genomic regions. These regions were then
merged into 34 genomic clusters within which the fre-
quencies of aberrations for each genomic state and each
subpopulation did not vary for more than 1%. These 34
clusters distributed into two main loci: chromosomal
regions 3q26.2-29 and 22q12.1-13.1 (Figure 2). Additional
file 1: Table S1 shows the top 34 differential genomic
clusters and their genomic annotation of interest, and the
gene composition is given in Additional file 1: Table S2.

mRNA expression analyses
Figure 3 shows the plots of the first 3 principal components
(PC) of mRNA expression data. These plots indicate that
the transcriptomic variability in NSCLC is dominated by
histological types. Particularly, we observed in Figure 3(a)
that AC was well separated from SCC. Indeed, a 15-gene
classifier between AC and SCC achieved a cross-validated
AUC of 96%, which means that these two types could
almost perfectly be separated. The classifier was built
using L1-penalized logistic regression, such that the
estimates of many regression coefficients are shrunk
towards zero. The selected 15 genes have the strongest
effect with little shrinkage and can be used to predict AC
and SCC. The clear separation between AC and SCC is
also shown by the color map in Additional file 1: Figure S1.
We validated this result using Bild et al’s NSCLC data
GSE3141 [18], where the 15-gene signature achieved



Figure 2 Differential genomic regions for AC vs LCC vs SCC populations aCGH profiles. The three upper panels display the average profiles
of AC, LCC and SCC subpopulations as their respective frequencies of gains (green, from 0 to 100%) and losses (red, from 0 to −100%) along the human
genome. Darker green bars correspond to the frequencies of amplifications, defined as regions with a log2 (ratio) above 1.0. The lowest panel shows the
significance of the ANOVA tests displaying the minus log10-transformed raw (lighter blue) and BH-adjusted (darker blue) p-values. The horizontal red
line corresponds to a BH-adjusted p-value < 1.0E-05. Arrows point to the two most significant differential regions: 3q26.2-3q29 and 22q12.1-22q13.1.
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an AUC of 92%. We performed a Monte-Carlo test by
taking 1000 random selections of 15 genes and considered
each as a signature. For these random signatures we
obtained a median AUC ~73%, and all had AUCs < 92%,
thus giving a p-value < 0.001 for the observed signature.
The list of the 15 classifier genes and the probes from
both platforms are given in Additional file 1: Table S3.
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GREM1, SPINK1 and BMP7, and 5 non-secreted genes
KRT6A, TP63, LGALS7, GCNT3, SPRR2D as IHC bio-
marker candidates (Table 2). The distributions of the
markers are shown in Additional file 1: Figures S2 and S3.
As shown in these figures, the corresponding distributions
of these markers in Bild et al’s NSCLC data GSE3141 [18]
were largely similar to those in our data. The list of the
genes and the probes from both platforms are given in
Additional file 1: Table S4. SPP1, CTHRC1 and GREM1
are candidate biomarkers to identify the cancer. Addition-
ally, based on the AUC values in Table 2, SPINK1 and
BMP7 would help to distinguish AC from SCC. The
non-secreted IHC biomarkers can be used for annotation
of small biopsies in order to identify the cancer and,
except for GCNT3, they are informative for distinguishing
AC from SCC.

Driver genes analyses
In total we identified 864 CNAs occurring at least once
among 86 subjects, where 55 CNAs occurred in at least
12 (10%) of the total 121 subjects. These 55 highly recur-
rent CNAs covered ~50% of the genes contained in the
original 864 CNAs. To further increase our confidence we
Table 2 List of top 5 secreted and 5 non-secreted markers

Candidate Gene name Frequency of overexpression
N in AC patients (%) (p-val

SPP1 Secreted phosphoprotein 1 96

(<10-10)

CTHRC1 Collagen triple helix containing 1 96

(<10-10)

GREM1 Gremlin 1 88

(<10-10)

SPINK1 Serine peptidase
inhibitor Kazal type 1

93

(<10-10)

BMP7 Bone morphogenetic
protein 7

34

(0.01)

KRT6A Keratin 6A 73

(9.18 × 10-5)

TP63 Tumor protein p63 39

(0.09)

LGALS7 Lectin, galactoside-binding,
soluble, 7

73

(9.18 × 10-5)

GCNT3 Glucosaminyl (N-acetyl)
transferase 3

88

(<10-10)

SPRR2D Small proline-rich
protein 2D

52

(0.76)

Notes: T = tumour, N = Normal; Overexpression is defined as log(T/N) > 0. P-values
AUC values refer to prediction of AC vs SCC. Median values of individual AUCs of th
p-values based on 1,000 runs are indicated in the bracket. LGALS7 and SPRR2D pro
List of top 5 secreted (the first five entries) and 5 non-secreted markers (the second
excluded regions that contained both amplifications and
deletions: this resulted in 7 CNAs containing only
amplifications and 6 CNAs with only deletions. These
CNA regions contained 93 genes. The corresponding genes
were further filtered out if their mRNA expression did not
vary across subjects (i.e., standard deviation < 0.25); this
step resulted in 75 genes in amplified regions and 7 genes
in deleted regions.
To explore the impact of CNAs on gene expression,

we analyzed the patterns of gene expression in samples
with mutations compared to samples with normal copy
number. We first note that many amplified genes do not
necessarily have a higher expression in tumor compared
to in normal tissue and vice versa, suggesting that further
filtering is necessary. We thus kept only those genes that
(1) exhibited significantly up-regulated gene expression in
samples with amplifications compared to non-mutated
samples, based on P < 0.05 using one-sided Welch’s t test
and fold-change > 2; vice versa for samples with deletions,
and (2) showed consistent over-expression in tumors
with amplifications; vice versa in tumors with deletions.
Using these requirements, all genes with recurrent copy
number losses were excluded, and 8 genes with recurrent
T vs
ue)

Frequency of overexpression T
vs N in SCC patients (%) (p-value)

Chemores
AUC (p-value)

Bild et al.
AUC (p-value)

98 0.41 0.40

(<10-10) (0.70) (0.76)

98 0.42 0.40

(<10-10) (0.63) (0.75)

98 0.40 0.40

(<10-10) (0.77) (0.78)

80 0.80 0.81

(1.14 × 10-7) (0.03) (0.01)

90 0.86 0.82

(<10-10) (0.003) (0.01)

96 0.90 0.88

(<10-10) (0.002) (0.002)

98 0.95 0.85

(<10-10) (<0.001) (0.01)

94 0.87 –

(<10-10) (0.003) –

80 0.72 0.68

(1.14 × 10-7) (0.08) (0.10)

96 0.84 –

(<10-10) (0.003) –

in the brackets are from the test that whether the frequency differs from 50%.
e ten biomarkers in classifying histology type are computed. Monte-Carlo
bes were not in Bild et al. data.
five entries) that are over-expressed in tumours compared to normal tissues.
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copy number gains were identified as a final list of candi-
date driver genes: RNF7, NDRG1, FAM49B, MRPS22,
SLC25A36, ACPL2, PPP1R16A and LRRC14.
An initial pairing of candidate target and driver genes

based on correlation formed 8 modules consisting of
8,600 target genes. The biggest module contained 2,147
target genes and smallest module 336 genes. Using SCCA,
we reduced the number of target genes in the modules to
an average of 815 target genes. The number of target
genes in a module gives us some idea of the importance of
a driver gene. It is tempting to speculate that the higher
number of targets whose expression is affected by a driver
the more likely the mutated driver in this module might
play a major role in tumor development. We plotted the
number of target genes as a function of the correlation
threshold in Additional file 1: Figure S4. The ranking of
the candidate driver genes remained the same across the
correlation threshold.
We then compared the mRNA expression in samples

with vs those without altered genes, and selected four
candidate driver genes with fold-change > 4 and P < 0.001:
MRPS22, RNF7, NDRG1, FAM49B; see Additional file 1:
Figure S5. Next we assessed their predictive value in
predicting tumor histology. The individual AUCs using of
these four genes were 0.81 (Pvalue = 0.02), 0.75 (0.05),
0.73 (0.07), 0.40 (0.76), respectively; see Table 3. The
Pvalues were obtained from a Monte-Carlo test by
computing the AUCs of 1000 random genes. We validated
this result using Bild et al’s data GSE3141, where the can-
didate driver genes achieved AUCs of 0.74 (Pvalue = 0.04),
0.81 (0.01), 0.72 (0.05), 0.40 (0.77). Thus MRPS22, RNF7
and NDRG1 were significant predictors of histology, but
FAM49B does not appear to be specific to any histological
type. MRPS22 was over-expressed in 78% and amplified in
16% of the SCC tumors, but showed little amplification or
over-expression in AC (Additional file 1: Table S5). RNF7
and NDRG1 showed more amplification and mRNA
over-expression in SCC compared to AC.
Next we used an independent data set published by

Chitale et al’s data [20] to get a bioinformatics validation
Table 3 AUCs of the candidate driver genes and miRNAs

Rank 1 Rank 2 Rank 3 Rank 4

Genes MRPS22 RNF7 NDRG1 FAM49B

Chemores 0.81 (0.02) 0.75 (0.05) 0.73 (0.07) 0.40 (0.76)

Bild et al. 0.74 (0.04) 0.81 (0.01) 0.72 (0.05) 0.40 (0.77)

miRNAs hsa-miR-944 hsa-miR-570 hsa-miR-16-2* hsa-miR-31*

Chemores 0.88 (0.001) 0.59 (0.10) 0.56 (0.18) 0.40 (0.61)

Ming You
et al.

0.78 (<0.001) 0.52 (0.44) 0.44 (0.76) 0.56 (0.31)

Median values of individual AUCs of the four candidate driver genes and the
four candidate driver miRNAs in classifying histology type. Monte-Carlo
p-values based on 1,000 runs are indicated in the bracket.
of the potential driver genes. To assess the copy-number
alteration profiles, Chitale et al. used Agilent 44K CGH
arrays, which are much less dense than the 244K arrays
in our study. Because the sensitivity of CNV detection
algorithms is limited by the resolution of the array, we
decided to validate the frequency of copy number gains
for the candidate driver genes directly, as well as their
properties, including the number of correlated genes
and relationship between the copy number status and
gene expression. (See more details in the Methods Section.)
We did find significant copy-number gains for these driver
genes. Using a threshold of p-value < 0.001, the frequency
of copy number gains was 11.6%, 28.1% and 7.5% for
MRPS22, NDRG1 and RNF7, similar or exceeding as we
reported in Additional file 1: Table S5 for AC patients from
our study. We then performed a one-sided Welch t-test to
compare the gene expression level in patients with copy
number gains vs the non-mutated samples. We obtained
p-values of 0.07, 7.5 × 10-6, and 0.2 for MRPS22, NDRG1
and RNF7, respectively. Had we used the p-value threshold
of 0.05 in defining the copy number gain, all three candi-
date driver genes would exhibit significantly up-regulated
gene expression in samples with amplifications, with
corresponding P-values 0.002, 6.7 × 10-7, and 0.0009,
respectively, suggesting that expression of the three drivers
exhibit the expected positive correlation between the copy
number gains and up-regulated gene expression. We also
find that the number of genes correlated with driver gene
MRPS22, NDRG1 and RNF7 is 395, 219 and 311, respect-
ively, at a correlation coefficient at least 0.4. This large
number of correlated genes is similar with what we observe
in our data in Additional file 1: Figure S4.

Driver miRNAs
We used the same procedure to identify potential driver
miRNAs and examined their predictive ability on histology
type. Because of the total number of miRNAs was much
smaller than the number of genes in the genome, less
stringent filtering procedures were applied. We started
with the 864 common CNAs. To further increase our
confidence we excluded regions that were amplified in
some individuals and deleted in others, but by allowing
a mixture of amplifications and deletions at a threshold of
less than 10% mixture, we arrived at 84 CNAs containing
mainly amplifications and 254 CNAs with mainly deletions.
These CNA regions contained 33 miRNAs. Expression of
all these altered miRNAs has a standard deviation > 0.25.
To explore the impact of CNAs on miRNA expression,

we analyzed the patterns of miRNA expression in samples
with mutations compared to samples with normal copy
number. We kept only those miRNAs that (1) exhibited
up-regulated expression in samples with amplifications
compared to non-mutated samples, based on P < 0.01
using one-sided Welch t test; vice versa for samples with
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deletions, and (2) showed over-expression on average
in tumors with amplifications, and under-expression in
tumors with deletions. Using these requirements, three
miRNAs hsa-miR-16-2*, hsa-miR-570 and hsa-miR-944
with recurrent copy number gains were found, and one
miRNA hsa-miR-31* with recurrent copy number losses
was identified as a final list of candidate driver miRNAs.
Next we assessed the predictive ability of the four

potential driver miRNAs in classifying tumor histology;
Table 3. Only hsa-miR-944 showed a significant AUC
of 88% (Pvalue = 0.001 from the Monte-Carlo test). We
validated this result using Ming You et al’s data GSE29135
[19], where hsa-miR-944 achieved a median AUC of 78%
(Pvalue = 0.001). None of the other miRNAs was significant
on the validation data.

Network enrichment analyses
The network enrichment analysis was used to functionally
characterize the candidate driver genes and miRNA. In
this analysis we assessed the gene-network interaction
between the target genes of each candidate driver with
the genes in KEGG pathways; this was previously shown to
be more powerful than the gene-set enrichment analysis
[16]. For each of the three potential driver genes that were
also good predictors of histological subtypes, we used the
number of target genes in Additional file 1: Figure S4 to
guide the choice of threshold of correlation coefficient.
A total of 72 target genes of MRPS22 were selected at a
correlation threshold 0.6, and 68 and 113 target genes of
NDRG1 and RNF7, respectively, at a correlation threshold
0.45. A set of 641 genes was regulated by hsa-miR-944,
which best classifies tumor histology among the potential
driver miRNAs. The expressions of a miRNA and its
target mRNAs are not necessarily correlated, so we did
not filter the set of target mRNAs of hsa-miR-944 by
correlation coefficient.
The results are presented in Additional file 1: Table S6.

For MRPS22 and hsa-miR-944, the top enriched pathways
included many pathways known to be involved in cancer,
such as DNA replication, cell cycle, mismatch repair, p53
signalling pathway and other lung cancer related signalling
pathways. Intriguingly, the top pathways associated with
NDRG1 included few known cancer-related pathways, but
a large number of immunological pathways, such as Fc
gamma R-mediated phagocytosis, B-cell receptor signalling
pathway, T cell receptor signaling pathway, Fc epsilon
RI signaling pathway and chemokine signaling pathway.
RNF7 appeared to be associated with cell shape and
motility-related pathways, such as focal adhesion, ECM-
receptor interaction and regulation of actin cytoskeleton
and adherens junction pathways. Figure 4 shows an ex-
ample of network from the three driver genes and 23 genes
in the pathway of mismatch repair, which was significantly
enriched in the target genes of MRPS22. We observed
more links connecting to MRPS22 than to RNF7 and
NDRG1, in line with the results that the mismatch
repair pathway was among the top enriched pathways
for MRPS22, but not for the latter two drivers.

Mutation analyses
We observed the following number of mutations from the
sequence analyses: KDR 5, AKT1 0, KRAS 20, EGFR 13,
PIK3CA 2, BRAF 4, ERBB2 1 and TP53 29 mutations.
Further analyses were performed with the KRAS, EFGR
and TP53 mutations. There was no evidence of association
with time to relapse and no evidence of interaction with
adjuvant chemo therapy (smallest P > 0.21 for the three and
combined mutations). There was no significant association
with tumor stage or lymph-node status.
The most significant result was the association with

histology: almost all (18/20) KRAS mutations were found
in AC, and none in SCC; 19% of AC had TP53 mutations
vs 28% of SCC, but this was not statistically significant
(P = 0.41). Since AC and SCC had significantly distinct
mRNA expression profiles, we also found significantly
distinct mRNA profiles between KRAS + vs KRAS- tumors
(AUC= 0.86). For TP53 mutations, there were numerous
DE genes (the top 200 genes had FDR~ 8%), but the AUC
for the L1 classifier was only ~0.67. This suggests that the
multi-functionality of TP53 and its aberrations led to a
broad spectrum of transcriptional responses.

Discussion
In this study we analyzed a cohort of corresponding
tumor and non-tumor tissue samples at DNA, RNA and
miRNA level from NSCLC patients. Integrated molecular
characterization of AC and SCC had identified clinically
relevant markers and potential drivers, which are recurrent
and stable changes at DNA level that have functional
implications at RNA level and have strong association
with histological subtypes.
The common feature of all of the previous studies was

the exploration of tumor samples only. In contrast, the
strength of our study design is the use of paired tumor
and adjacent normal lung tissue from the same patient.
This investigation was performed, for each patient, by
comparing perfectly defined histological tumor and normal
frozen lung samples obtained during curative surgery. The
main advantage of this unique feature is that noise related
to the genetic background variability is reduced, which
should lead to more tumor-specific molecular data and
more sensitive statistical analysis.
From a methodological perspective, our study is the few

recent studies [21-24] to employ an integrative systems
biology approach in NSCLC. We found distinct molecular
characteristics of AC and SCC, a result supported also
by others [25,26]. We also have evidence that LCC does
not form a distinct molecular subgroup, but appears to



Figure 4 Network links between 23 genes in pathway of mismatch repair and three driver genes. Network links between 23 genes in
pathway of mismatch repair and driver genes MRPS22, NDRG1, RNF7. Links shown include physical interactions, metabolic and signaling links
from the functional coupling network (http://FunCoup.sbc.su.se).
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be a subgroup of AC. Among the 34 genomic clusters
identified by aCGH, several genes exhibited a different
profile of aberrations between AC and SCC, including
PIK3CA, SOX2, THPO, TP63, PDGFB genes. These
chromosomal regions could be targeted by FISH probes,
which might help pathologists to distinguish between
the two entities. Thus far the FISH method was mainly
used on the one hand to check for certain chemotherapy
targets such as EGFR [27] or HER-2 [28]; and on the other
hand to define a set of four genetic markers (frequent
copy number gains in chromosomes 1q32, 3q26, 5p15,
and 8q24) applied to spiral CT-guided FNA cytology
samples, which were highly sensitive for the diagnosis of
lung cancer and highly specific in their ability to exclude
cancer within a given specimen [29].
Our results provide evidence that there are multiple

potential biomarkers for early diagnosis and to help
pathologists to distinguish between AC and SCC in small
biopsies or in blood samples. Besides confirming some
existing non-secreted SCC markers such as TP63 and
KRT6A, novel findings include using gene expression
profiling analysis to identify five secreted genes, among
which SPP1, CTHRC1 and GREM1 would be candidate
biomarkers to identify the cancer using blood samples;
additionally, SPINK1 and BMP7 would help to distinguish
AC from SCC as complementary to existing SCC markers.
High expression of SPP1, also known as osteopontin,
was associated with poor survival of patients with stage
I NSCLC [30]. CTHRC1 is known to have an aberrant
expression in many tumor types, such as cancers of the
gastrointestinal tract, breast, lung and thyroid, but until
now this marker was not investigated in differential
diagnostics of NSCLC [31]. GREM1 is a member of the
aberrantly activated Hedgehog signalling pathway, and
has been reported to act in an oncogenic manner in lung
adenocarcinoma and can induce cell migration, invasion
and proliferation [32,33]. SPINK1 or tumor-associated
trypsin inhibitor (TATI) did not appear to be a good
tumor marker in lung cancer, since its sensitivity was poor
and the correlation between TATI serum levels and stage
of the disease and histological type was weak [34]. A
recent publication indicated that BMP7 plays a key role
in the regulation of lung cancer progression, linking its
expression level to lymph node involvement [35].
Using integrated genomics approach we found in re-

currently altered regions a list of three potential driver
genes, MRPS22, NDRG1 and RNF7, which were consist-
ently over-expressed in amplified regions, had wide-spread
correlation with an average of ~800 genes throughout
the genome and highly associated with histological types.
Using a network enrichment analysis, the targets of these
potential drivers were seen to be involved in DNA replica-
tion, cell cycle, mismatch repair, p53 signalling pathway
and other lung cancer related signalling pathways, and
many immunological pathways. NDRG1 has been recently
reported to predict tumor angiogenesis and poor outcome

http://FunCoup.sbc.su.se
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in patients with lung cancer [36]. Expression of RNF7 has
been found to be a prognostic marker in non-small cell
lung cancer [37].
Multiple sets of molecular signatures are presented in

this study. They are identified in parallel using different
approaches with different intentions and could help
to better characterize NSCLC from various aspects.
Ten markers, composed of a panel of 5 secreted and 5
non-secreted biomarker candidates, are identified as
top-ranking differentially expressed genes, i.e. by comparing
the direction of relative mRNA expression between tumour
vs normal tissues. In clinical practice, these potential
biomarkers may be used for early diagnosis of the cancer,
and additionally to distinguish between AC and SCC in
small biopsies or in blood samples. In contrast, three
potential drivers are selected using an integrated genomics
approach, called Driver-Gene Search algorithm, which
combines information on both of DNA and RNA levels.
The DGS algorithm attempts to select potential driver
genes that may have functional impact on the expression
of other genes due to copy-number alterations of the
driver genes. There is no guarantee that the driver genes
are ranked as the top differentially expressed genes.
The findings of the drivers provide a clue for downstream
experimental analysis to understand the molecular mecha-
nisms of the development of lung cancer.
Conclusions
In summary, an understanding of the molecular mecha-
nisms involved in formation of various NSCLC subtypes
is crucial for the development of efficient differential
diagnostics methods to better distinguish between tumor
entities even in small biopsies. Our results provide evidence
that there are multiple molecular signatures which could
help pathologists to diagnose small tissue samples with
NSCLC. Novel findings include differentially expressed
sets of secreted and non-secreted genes that may help in
the diagnosis and classification of NSCLC on serum or
tissue samples. The driver-gene search algorithm for
integrating genomic data, mRNA and miRNA expression
identified potential driver genes, which are useful for
follow-up experimental validation. The findings of this
study should help to instigate others to implement these
in clinical practice.
Data availability
The microarray data related to this paper have been
submitted to the Array Express data repository at the
European Bioinformatics Institute (http://www.ebi.ac.uk/
arrayexpress/) under the accession numbers E-MTAB-
1132 (GE), E-MTAB-1133 (CGH) and E-MTAB-1134
(MIR).
Additional file

Additional file 1: Figure S1. Color map of the log2-expression ratio for
AC and SCC patients using 657 gene-probes. Each column represents a
patient and each row a probe. Figure S2: Boxplots of the log2-
expression ratio for the top 5 secreted biomarkers found in Chemores
and the corresponding log-expression values in Bild et al’s NSCLC data
GSE3141. Figure S3: Boxplots of the log2-expression ratio for the top 5
non-secreted biomarkers and the corresponding log-expression values in
Bild et al’s NSCLC data GSE3141. Figure S4: Drivers and number of their
targeted genes given on the y-axis. Figure S5: P-values of Welch’s t test
on –log10 scale (left) and fold change of driver genes’ expression (right)
are given on x-axis; Number of targeted genes with a correlation coefficient
at least 0.3 are given on the y-axis. Genes in the topright area are considered
in a predictive model of lung cancer histology. Table S1: List of the 34
clusters of the most differential genomic regions between AC, LCC and
SCC populations. Table S2: List of the 34 clusters of the most differential
genomic regions between AC, LCC and SCC populations with the known
genes within each cluster. Table S3: List of the 15 classifier-genes with the
corresponding probes on Agilent 244K and Affymetrix U133 Plus 2.0 arrays.
Table S4: List of the 10 potential biomarker genes with the corresponding
probes on Agilent 244K and Affymetrix U133 Plus 2.0 arrays. Table S5: List
of 4 candidate driver genes and 4 candidate driver miRNAs, their tumor
expression levels and copy-number alteration status in AC and SCC. Table S6:
Network enrichment analysis of target genes of MRPS22, NDRG1, RNF7 and
hsa-miR-944. The top and bottom 20 ranked pathways are shown.
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