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Abstract

Background: Panic disorder (PD) is considered to be a multifactorial disorder emerging from interactions among
multiple genetic and environmental factors. To date, although genetic studies reported several susceptibility genes
with PD, few of them were replicated and the pathogenesis of PD remains to be clarified. Epigenetics is considered
to play an important role in etiology of complex traits and diseases, and DNA methylation is one of the major
forms of epigenetic modifications. In this study, we performed an epigenome-wide association study of PD using
DNA methylation arrays so as to investigate the possibility that different levels of DNA methylation might be
associated with PD.

Methods: The DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples
(PD, N = 48, control, N = 48) extracted from peripheral blood. Methylation arrays were used for the analysis. β values,
which represent the levels of DNA methylation, were normalized via an appropriate pipeline. Then, β values were
converted to M values via the logit transformation for epigenome-wide association study. The relationship between
each DNA methylation site and PD was assessed by linear regression analysis with adjustments for the effects of
leukocyte subsets.

Results: Forty CpG sites showed significant association with PD at 5% FDR correction, though the differences of
the DNA methylation levels were relatively small. Most of the significant CpG sites (37/40 CpG sites) were located
in or around CpG islands. Many of the significant CpG sites (27/40 CpG sites) were located upstream of genes,
and all such CpG sites with the exception of two were hypomethylated in PD subjects. A pathway analysis on
the genes annotated to the significant CpG sites identified several pathways, including “positive regulation of
lymphocyte activation.”

Conclusions: Although future studies with larger number of samples are necessary to confirm the small DNA
methylation abnormalities associated with PD, there is a possibility that several CpG sites might be associated,
together as a group, with PD.
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Background
Panic disorder (PD) is a major anxiety disorder charac-
terized by recurrent unexpected panic attacks and antici-
patory anxiety. According to previous twin and family
studies [1–3], PD is considered to be a multifactorial
disorder emerging from the interactions between multiple
genetic and environmental factors. Recently, genome-
wide association studies (GWASs), whole-exome se-
quencing and meta- analyses were performed [4–8] and
identified transmembrane protein 132D (TMEM132D)
and catechol-O-methyltransferase (COMT) as PD sus-
ceptibility genes [4, 5]. However, there would be other
genetic factors associated with PD.
Epigenetics is one of the biological fields that is consid-

ered to play an important role in the etiology of complex
diseases [9]. The term “epigenetics” is now generally
understood to refer to potentially heritable and function-
ally relevant to gene expression and chromatin structure
with no changes to genetic sequences [9, 10]. DNA
methylation is one of the major forms of epigenetic
modifications that was found to play important roles in
the context of gene regulation [11]. Moreover, a part of
the DNA methylation is reported to be involved in the
pathogenesis of psychiatric disorders, including anxiety
disorders [12, 13].
Previous studies on DNA methylation in anxiety disor-

ders have focused mainly on candidate genes that were
reported to be involved in the stress response, neuro-
transmission, and neuroplasticity [14]. One recent study
conducted in social anxiety disorder (SAD) patients
reported an association between SAD and oxytocin re-
ceptor (OXTR) gene hypomethylation [15]. Hypomethy-
lation of the promoter and intron 2 region in another
candidate gene, glutamate-decarboxylase 1 (GAD1),
was also reported in PD patients [16]. Another prelim-
inary study showed that CpG sites in monoamine oxi-
dase A (MAOA) were significantly less methylated in
PD patients than in healthy controls [17, 18] and nega-
tive life events were associated with this lower level of
DNA methylation [18]. In another study, solute carrier
family 6, member 4 (SLC6A4) and serotonin transporter
(SERT) were examined in children with anxiety disor-
ders before and after cognitive behavior therapy; a
DNA methylation change in SLC6A4 was related to
response to the psychological therapy, as responders
had increased SLC6A4 methylation [19]. Methylation of
another neurotransmitter transporter, noradrenaline
transporter (NET), also known as solute carrier family
6, member 2 (SLC6A2), was also studied in subjects
with PD and hypertension; results showed that DNA
hypermethylation in the promoter region of NET caused
NET gene silencing through the binding of methyl-CpG
binding protein 2 (MeCP2), a methylation-related
inhibitory transcription factor [20, 21]. However, results

from another study did not support the finding of sig-
nificant changes in SLC6A2 promoter methylation in the
patients with PD or major depressive disorder [22].
Overall, the results from such previous studies suggest
the importance of DNA methylation abnormalities in
the pathogenesis of PD, although the number of studies
and the sample sizes have been limited and most of the
findings have not been confirmed in replication studies.
Recently, a genome-wide approach has enabled the

examination of DNA methylation patterns without any
prior information. A methylation array (Infinium® Human
Methylation 450 K BeadChip, Illumina Inc., San Diego,
CA, USA) can simultaneously detect the DNA methyla-
tion status of more than 480,000 cytosine residues
across the genome. This array has been used to suc-
cessfully identify DNA methylation marks related to
aging [23, 24], leukocyte subsets [25], smoking [26],
and disease outcomes [27, 28]. As far as we know, there
has been no report of the examination of genome-wide
DNA methylation patterns in PD.
In this study, we performed an epigenome-wide asso-

ciation study (EWAS) of PD using the array technology.
DNA samples extracted from peripheral blood were
utilized. Although an EWAS using brain tissue would
be more appropriate for identifying disease-associated
differentially methylated positions (DMPs), peripheral
blood is more accessible and might enable the develop-
ment of diagnostic biomarkers. Here, we examined the
genome-wide DNA methylation profiles of 48 PD sub-
jects and 48 age- and sex-matched control subjects to
investigate aberrant differences in DNA methylation
that are related to PD.

Results
Quality check of the DNA methylation array data
In the DNA methylation array analysis, each probe
signal for a sample had a detection P value calculated as
the probability that a target signal is distinguishable
from the negative controls to show the overall probe
performance. We confirmed that more than 99% of all
probes in all samples had a detection P value ≤0.05,
showing that the overall performance of the assay was
high. Principal component analysis using probes on the
X chromosome was performed to predict the gender of
samples in this study. The result showed that all samples
were correctly labeled in the gender groups (Additional
file 1: Figure S1). Density plots of the β values were
prepared from the raw data of each sample for a visual
inspection. All plots showed a standard bimodal distri-
bution of the β values (Additional file 1: Figure S2) with
the same characteristics of the distribution described in
a previous study [29]. The distribution of DNA methyla-
tion was bimodal with a minority of probes showing
intermediate DNA methylation levels. The DNAm age
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was estimated using the results of approximately 350
probes, and the Pearson’s correlation coefficients be-
tween the estimated DNAm age and chronological age
were calculated to be 0.77 and 0.90 in PD and control
groups, respectively, which is considered to support the
data quality of this method (Additional file 1: Figure S3).

Prediction of the distribution of leukocyte subsets
The proportions of leukocyte subsets (natural killer cells,
B cells, CD4+ T cells, CD8+ T cells, monocytes, and
granulocytes) were estimated from the DNA methylation
array data using a published algorithm [30]. Wilcoxon’s
rank-sum tests using the estimated proportion of each
leukocyte subset were performed to examine whether
the compositions of leukocyte cells differed between the
PD and control subjects. The proportion of CD4+ T cells
was significantly higher in the PD subjects than in the
control subjects (P = 0.0034) (Fig. 1). To further interpret
the result of the prediction of leukocyte subsets, the
abundance measures of plasmablasts, CD8+CD28−

CD45RA− T cells, naive CD8+T cells, and naive CD4+ T
cells were estimated and compared between PD and
control subjects, resulting that no significant difference
was observed (Additional file 1: Figure S4).

EWAS of PD and control subjects
With the DNA methylation array experiment, the
methylation status of a total of 485,512 cytosine resi-
dues were examined. We filtered out the low quality

probes and those on sex chromosomes, and finally,
376,602 probes remained (Additional file 1: Figure
S5). The data were normalized via the pipeline, Lumi:
QN + BMIQ + ComBat. We then performed an EWAS
of PD. The Q-Q plot was showed in Additional file 1:
Figure S6. After excluding three possible cross-
reactive probes, 40 probes showed significant associ-
ation with PD when the false discovery rate (FDR)
was set to 5% (Table 1, Fig. 2). The most significant
probe, cg25270498, was located upstream of the meteorin,
glial cell differentiation regulator-like (METRNL) gene and
was significantly hypomethylated in PD patients (FDR q
value = 1.19 × 10−4), followed by cg05910615 (HSPB6;
C19orf55, FDR q value = 1.19 × 10−4) and cg20340149
(CLASP1, FDR q value = 8.64 × 10−4). At many of the
CpG sites with significantly different levels of DNA
methylation, the cytosine residues were less methylated
in the PD subjects than in the control subjects (Fig. 2).
Only eight CpG sites were found to be significantly
more methylated in the PD subjects than in the control
subjects. Most of the significant CpG sites (37/40 CpG
sites) were located in CpG island or CpG island shore
and shelf that span up to 2 kb and 2–4 kb from CpG
islands, respectively (Table 1). Many of them (27/40
CpG sites) were located upstream (within 1500 bp from
the transcriptional start site, the 5′ untranslated region
and the first exon) of genes, and these 27 CpG sites
other than two were all hypomethylated in PD subjects
(Table 1).

Fig. 1 The estimated proportions of leukocyte subsets. The proportions of leukocyte subsets (natural killer cell, B cell, CD4+ T cell, CD8+ T cell,
monocyte, and granulocyte) were estimated using the results of the DNA methylation array. Wilcoxon rank-sum tests using estimated proportions
of leukocyte subsets were performed between the PD and control subjects. P values are indicated in blue characters. Significance level after the
Bonferroni correction was set as α = 0.005
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Table 1 Probes with significant differential DNA methylation status between PD and control

CHR Position
(hg19)

Target ID Mean
β value

Mean Adjusted
M value

Genes Location with respect
to genes

Relation
to CpG
IsladaPD Control PD Control P value q value

17 81037414 cg25270498 0.257 0.283 -1.71 -1.53 5.67×10-10 1.19×10-4 METRNL TSS200 Island

19 36248877 cg05910615 0.222 0.251 -2.05 -1.81 6.30×10-10 1.19×10-4 HSPB6;C19orf55 TSS1500;TSS200 N_Shore

2 122407145 cg20340149 0.152 0.175 -2.73 -2.49 6.88×10-9 8.64×10-4 CLASP1 TSS200 Island

13 80055594 cg14777817 0.134 0.153 -2.90 -2.69 5.17×10-8 4.87×10-3 NDFIP2 1stExon Island

10 135088451 cg25526061 0.147 0.164 -2.79 -2.56 1.30×10-7 7.64×10-3 ADAM8 Body N_Shore

17 27224823 cg04266864 0.133 0.151 -2.97 -2.73 1.42×10-7 7.64×10-3 FLOT2;DHRS13 TSS200;3'UTR Island

16 12142335 cg10475689 0.606 0.576 0.82 0.63 2.09×10-7 9.38×10-3 RUNDC2A Body

16 23568708 cg05742564 0.192 0.215 -2.30 -2.08 2.48×10-7 9.38×10-3 UBFD1;EARS2 TSS200;TSS200 Island

1 228604037 cg02931001 0.263 0.280 -1.62 -1.49 2.49×10-7 9.38×10-3 TRIM17 5'UTR Island

13 28024472 cg08209163 0.147 0.165 -2.73 -2.54 3.45×10-7 0.0118 MTIF3 TSS200;5'UTR Island

12 50017361 cg10727759 0.147 0.165 -2.74 -2.54 4.51×10-7 0.0139 PRPF40B TSS200 Island

22 24236284 cg12738349 0.290 0.304 -1.40 -1.30 4.80×10-7 0.0139 MIF TSS1500 Island

3 197409980 cg08942682 0.830 0.848 2.06 2.28 6.05×10-7 0.0163 KIAA0226 Body

6 170597377 cg05228964 0.602 0.580 0.71 0.59 7.23×10-7 0.0172 DLL1 Body Island

12 4381997 cg08553284 0.316 0.330 -1.20 -1.11 7.57×10-7 0.0172 CCND2 TSS1500 Island

1 155164676 cg03425468 0.215 0.240 -2.10 -1.88 7.78×10-7 0.0172 MIR92B TSS1500 Island

22 38202626 cg11029475 0.202 0.219 -2.23 -2.02 8.43×10-7 0.0176 GCAT;H1F0;H1F0 TSS1500;1stExon;3'UTR N_Shore

16 2732724 cg02205746 0.295 0.311 -1.36 -1.26 9.40×10-7 0.0182 KCTD5 1stExon Island

17 44270511 cg10256219 0.116 0.103 -2.71 -2.93 9.64×10-7 0.0182 Island

3 50375496 cg09386807 0.236 0.256 -1.86 -1.70 1.14×10-6 0.0204 RASSF1 TSS1500;Body;5'UTR Island

8 28243934 cg13411962 0.168 0.181 -2.46 -2.31 1.25×10-6 0.0211 ZNF395 5'UTR;1stExon Island

4 4861398 cg01959412 0.325 0.339 -1.17 -1.07 1.29×10-6 0.0211 MSX1 5'UTR;1stExon Island

11 61197477 cg03342113 0.264 0.278 -1.58 -1.48 1.53×10-6 0.0230 CPSF7;SDHAF2 TSS200;TSS200 Island

17 42293627 cg24247482 0.556 0.557 0.50 0.39 1.53×10-6 0.0230 UBTF Body N_Shelf

17 80189962 cg17932802 0.358 0.366 -0.92 -0.85 1.65×10-6 0.0239 SLC16A3 TSS200;5'UTR Island

1 204159498 cg13065121 0.233 0.250 -1.89 -1.73 1.84×10-6 0.0253 KISS1 3'UTR N_Shore

6 32055370 cg26997880 0.225 0.247 -1.98 -1.79 1.95×10-6 0.0253 TNXB Body Island

12 121148158 cg19464320 0.123 0.107 -2.58 -2.83 2.26×10-6 0.0284 UNC119B 1stExon;5'UTR N_Shore

9 87284706 cg13965062 0.230 0.243 -1.85 -1.75 2.39×10-6 0.0290 NTRK2 5'UTR;1stExon Island

1 245316477 cg07124903 0.102 0.088 -2.88 -3.14 2.47×10-6 0.0290 N_Shore

19 11074303 cg08315613 0.574 0.570 0.59 0.48 2.54×10-6 0.0290 SMARCA4 5'UTR S_Shore

2 242254519 cg13009927 0.196 0.214 -2.22 -2.05 3.28×10-6 0.0353 SEPT2;HDLBP TSS1500;5'UTR Island

2 217559020 cg03222971 0.233 0.251 -1.90 -1.73 3.42×10-6 0.0357 IGFBP5 Body N_Shore

1 206223719 cg26795730 0.196 0.215 -2.23 -2.05 3.53×10-6 0.0357 AVPR1B TSS1500 Island

2 73144353 cg15921587 0.302 0.318 -1.33 -1.21 3.69×10-6 0.0357 EMX1 TSS1500 Island

13 25621328 cg18098400 0.132 0.150 -2.96 -2.74 3.83×10-6 0.0357 Island

15 66993412 cg25048202 0.290 0.306 -1.41 -1.30 3.84×10-6 0.0357 SMAD6 TSS1500 N_Shore

2 27718181 cg04015759 0.250 0.267 -1.71 -1.58 3.89×10-6 0.0357 FNDC4 TSS200 Island

15 101690195 cg24378951 0.753 0.728 1.80 1.61 4.53×10-6 0.0406

2 44059266 cg15889012 0.194 0.213 -2.25 -2.07 4.74×10-6 0.0415 ABCG5 Body S_Shore

Abbreviation: CHR chromosome
TSS, transcription start site
UTR, untranslated region
a Each category of “Relation to CpG island” column defines the following regions: Island, CpG island; N_Shore, 0-2 kb upstream of CpG island; S_Shore, 0-2 kb
downstream of CpG island; N_Shelf, 2–4 kb upstream of CpG island
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For confirmation, we examined the possibility that the
significant associations were influenced by smoking sta-
tus. We checked the distributions of adjusted M values
of the significant CpG sites between smokers and non-
smokers among the PD subjects and found that there
was no effect of smoking for these sites in PD subjects
(Additional file 1: Figure S6).

Pathway analysis
To assess the overall influence of the significant differ-
ences in DNA methylation between the PD and control
subjects, a pathway analysis was performed. Annotation
information on the 40 significantly associated CpG sites
(Table 1) was used for the analysis; in total, 42 genes
were annotated to the CpG sites. Three gene sets
showed significant associations at a FDR of 5% (Table 2)
after we excluded pathways that showed no association
in the GOseq pathway analysis in which gene length
was taken into consideration. The identified pathways
included the “positive regulation of lymphocyte activa-
tion” gene set.

Discussion
In this study, we performed an EWAS of PD using a
DNA methylation array and examined the genome-wide

DNA methylation profiles of PD for the first time, as far
as we know, although replication is necessary in future
studies. This array technology can target 99% of genes
and 95% of CpG island regions [31] and enables us the
analysis of DNA methylation status in a genome-wide
manner [32]. Recently, a number of studies have employed
this platform to identify differentially DNA methylation
sites according to phenotypes. In particular, in the cancer
field, this platform has been used to identify a number of
DMPs accompanying large β value differences in cancer
cells (≥0.2) [28]. DNA methylation is considered to change
according to environmental factors [33, 34]; as such, in
psychiatric disorders, it was predicted that the DNA
methylation levels at specific sites would differ between
patients and healthy subjects [12]. However, in the present
study, no DMP showed a large β value difference (≥0.2)
between the PD and control subjects.
In the psychiatric field, epigenetics has been consid-

ered to play a role in disease pathogenesis and several
recent studies have examined the relationships between
DNA methylation and psychiatric disorders in a genome-
wide manner. For example, an EWAS of major depressive
disorder identified more than 350 CpG sites that were as-
sociated with the disease and all of these CpG sites were
hypomethylated in the major depressive disorder patients8

Fig. 2 Results of the EWAS comparing between the PD and control subjects. Log-transformed P values of all the probes were plotted. The
horizontal axis represents average adjusted β value differences (Δβadjusted = average βadjusted (PD) − average βadjusted (control)) between PD and
control subjects. Significant probes at 5% FDR correction are shown in red dots

Table 2 Result of the pathway analysis

Gene sets Number of genes
in pathways

P value FDR Number of genes
in the data

Associated genes in the data

Epidermis development 426 1.5 × 10−4 0.017 5 DLL1, FLOT2, IGFBP5, MIF, SMARCA4

Positive regulation of cell cycle 493 3.3 × 10−4 0.019 5 CCND2, AVPR1B, MIF, RASSF1, MSX1

Positive regulation of lymphocyte activation 469 1.9 × 10−3 0.037 5 MIF, ADAM8, IGFBP5, AVPR1B, FLOT2

FDR false discovery rate
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[35] Other EWASs of suicidal behavior or early life stress-
associated depression found that the DNA methylation
status differed globally between the patients and control
subjects [36–38]. In addition, EWASs of schizophrenia
identified numerous DMPs associated with the disease; a
part of these DMPs were annotated in gene regions previ-
ously reported as candidate genes of schizophrenia or
psychiatric diseases [39–42]. The results of these previous
studies suggest the possibility that in psychiatric disorders,
multiple DMPs with small effects (β value difference ≤ 0.1)
might be associated with diseases together. This would be
one explanation for an inflation of P values of the regres-
sion analysis observed in this study (Additional file 1:
Figure S6), although it cannot be denied that several fac-
tors other than age, sex ,and proportions of leukocyte
subsets potentially confounded the result.
In this study, 40 CpG sites were found to be signifi-

cantly associated with PD. Among these, 27 CpG sites
were located upstream of genes and with the exception
of two CpG sites, they were all hypomethylated in PD
subjects when compared with control subjects. According
to previous studies, DNA hypomethylation of upstream
gene regions is often associated with a higher level of gene
expression [11, 43, 44]. Therefore, such DNA methylation
differences upstream of genes may be related to a higher
expression level of the annotated genes. We further per-
formed pathway analyses to evaluate the overall influence
of the DNA methylation differences. Among the detected
gene sets, “positive regulation of lymphocyte activation,”
which reflected the significant probes annotated to MIF or
ADAM8, IGFBP5, AVPR1B, and FLOT2, was particularly
intriguing. We previously reported the associations of the
immune pathways and the specific HLA allele, HLA-
DRB1*13:02, with PD [45]. Furthermore, the most signifi-
cant probe, cg25270498, located upstream of METRNL,
which was reported to possibly act as a cytokine and to
exert effects on immune process [46].
In the current study, we also examined the DNA

methylation around candidate genes of which DNA
methylation statuses were previously reported to be asso-
ciated with anxiety disorders. The gene regions of OXTR,
GAD1, SLC6A4, SLC6A2, and MAOA were individually
examined. As a result, with our sample set, no significant
differences between PD and healthy subjects were ob-
served in these candidate gene regions (Additional file 2:
Tables S1–S5). None of the genes annotated to the signifi-
cant CpG sites in this study have been identified in previ-
ous studies of PD, including GWASs [8, 47]. This might
have been partly due to the relatively small sizes of the
samples analyzed, or because the CpGs examined using
the array were not sufficient in density. Therefore, future
detailed studies with larger samples are necessary to fur-
ther investigate the relationship between the PD candidate
genes and DNA methylation.

The proportions of leukocyte subset estimated with
the DNA methylation array data were compared be-
tween the PD and healthy subjects in this study. As a
result, a higher proportion of CD4+ T cells (P = 0.0034)
was found in the PD subjects. A higher tendency of the
abundance measure of naive CD4+ T cell was also
observed in PD subjects. As major histocompatibility
complex class II molecules, including HLA-DR, interact
mainly with CD4+ T cells, an increase in CD4+ T cells
might be a part of an immune abnormality in PD
patients. However, results of previous studies on surface
immune phenotypes of lymphocytes did not report
consistent results on the up- and down-regulation of
leukocyte subsets [48–51]. Additionally, lymphocytes
can be affected by environmental factors and/or infec-
tion status. Further, the comparisons for leukocyte
subsets in this study were not based on cell count or
abundance and they were not independent; therefore,
further analysis of surface markers by flow cytometry
with larger samples is needed to validate the association
of CD4+ T cells with PD.
There are several limitations to this study: lack of

validation and replication studies, use of blood, po-
tential confounding of other factors, and small sample
size. First, the current study lacks replication analysis
using other DNA methylation measurement such as
pyrosequencing. Although replication with pyrose-
quencing makes the results more reliable, almost all
the significant CpG sites in this study are located in
or around CpG islands. Consequently, it is difficult to
design the primers for pyrosequencing. Second, we
used DNA extracted from peripheral blood rather
than brain samples. Several studies have reported that
disease-associated DNA methylation abnormalities can
be detected across tissues [39, 42, 52, 53], but there
are clear tissue-specific differences in DNA methyla-
tion profiles [54, 55]. We checked the blood-brain
correlations of the significant CpG sites of this study,
using Blood Brain DNA Methylation Comparison
Tool [55]. We found that nine out of 40 significant
CpG sites showed the blood-brain correlation >0.3, in
at least one region of the four examined brain regions
(Additional file 3: Table S6). However, we consider
that there is a possibility that biological processes in
blood such as immune abnormalities are associated
with PD [45]. A previous study of multiple sclerosis,
an autoimmune disease of the central nervous system,
has reported an association of DNA methylation sta-
tus of a CpG site in blood with the disease [56], sup-
porting our hypothesis. Nevertheless, detailed studies
using brain samples are needed to find additional
and/or tissue-specific DNA methylation differences
associated with PD. Moreover, DNA methylation was
found to be influenced by SNP genotypes [55, 56].
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The DNA methylation status of a CpG site in mul-
tiple sclerosis, which we have mentioned above, is
also affected by SNP genotypes [56]. As for the 40
significant probes, two probes, cg07124903 and
cg20340149, have previously been reported to be
methylation QTLs (meQTLs) in developing brain and
are influenced by genetic variations (Additional file 3:
Table S7) [57]. We also checked meQTLs identified
with blood samples and found that only one probe
cg07124903 was reported to be meQTLs (Additional
file 3: Table S7) [58]. Additional studies combining the
GWAS SNP data and EWAS data might provide new
knowledge on the relationships among DNA methyla-
tion, SNPs, and PD. Finally, we were unable to take into
account the effects of medication for PD and smoking.
A previous study reported that long-term medication
for schizophrenia decreased DNA methylation of the
GAD1 promoter, which was hypermethylated in a
mouse model of schizophrenia [59]. Most of the PD
patients in the present study were prescribed psycho-
tropic medications. As such there is a possibility that
the drugs affected the DNA methylation differences be-
tween the PD and healthy subjects. In addition, some
DNA methylation sites have been reported to be influ-
enced by smoking [60]. In this study, we could not ad-
just for such smoking effects as we did not have data
on the smoking status of the healthy control subjects.
However, when we examined the distributions of M
values of the significant CpG sites between smokers
and non-smokers among the PD subjects, we found
that there was no effect of smoking for these sites
(Additional file 1: Figure S8).
In conclusion, there might not be any CpG sites

with DNA methylation differences that have a large
effect on PD. However, we obtained some intriguing
results: the hypomethylated CpG sites annotated to
genes associated with the leukocyte activation path-
way and the higher proportion of CD4+ T cells in PD.
There is a possibility that several CpG sites with
small effects, especially those that are related to im-
munity, are associated, together as a group, with PD.
Further replication studies with larger number of
samples are necessary to confirm the findings of this
study.

Conclusions
We performed the EWAS of PD and identified 40 CpG
sites of which the levels of DNA methylation were sig-
nificantly different between PD and healthy control
subjects. Some of these CpG sites have the possibility
to be related the “positive regulation of lymphocyte ac-
tivation” pathway. Such CpG sites with small effects
might be associated, together as a group, with PD.

Methods
Subjects
DNA samples for the EWAS were obtained from our PD
and healthy control sample set: patients with PD (N = 48)
and age- and sex-matched healthy control subjects (N =
48) were recruited from among Japanese individuals living
in Tokyo and Nagoya, located in the center of mainland
Japan (Additional file 4: Table S8. These samples other
than one discordant monozygotic twins were from unre-
lated PD patients and healthy control subjects. Each PD
patient was diagnosed according to the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition
(DSM-IV) criteria [61] based on responses to the Mini
International Neuropsychiatric Interview (MINI) [62] and
clinical records. Healthy control subjects were interviewed
by psychiatrists and were asked to fill out a questionnaire,
MINI, in order to exclude those with a history of a major
psychiatric illness, including PD.

Epigenome-wide DNA methylation analysis
Genomic DNA (PD, N = 48; control, N = 48) was extracted
from leukocytes in whole blood by the standard phenol
chloroform method (Wizard genomic DNA purification
kit, Promega Corporation, WI, USA). DNA samples were
first bisulfite-converted using a kit for the bisulfite conver-
sion of DNA (EZ DNA Methylation™ Kit, Zymo Research,
Irvine, CA, USA). For all samples, the DNA methylation
levels of cytosine residues across the genome were exam-
ined with a DNA methylation array (Infinium® Human
Methylation 450K BeadChip, Illumina Inc.) according to
the manufacturer’s protocol. Briefly, the bisulfite-
converted DNA samples underwent whole-genome ampli-
fication and were fragmented and hybridized on Bead-
Chip. After hybridization of the fragmented DNA with
their complementary probe sequences, the DNA methyla-
tion status was determined through a single-base exten-
sion step. The arrays were imaged with a high-precision
scanner (iScan system, Illumina Inc.), and the signal inten-
sities were extracted using a software package (GenomeS-
tudio Software, Illumina Inc.). The DNA methylation
status of each cytosine residue was evaluated with the β
value, which is the ratio of the signal from the methylated
probe divided by the total signal intensity. The β value
ranges from 0 (unmethylated) to 1 (completely
methylated).

Data filtering and normalization
Data filtering and processing were performed for quality
control of the calculated β values. β values with a detec-
tion P value <0.01 were treated as missing values. We
then calculated the ratio of the detected β values to all
of the examined β values (N = 96) for each probe; this
was defined as the probe call rate. Probes that met the
following conditions were used in the subsequent
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analyses: (1) probe call rate >95%; (2) probe not on a sex
chromosome; (3) probe not including a single-nucleotide
polymorphism (SNP) with a minor allele frequency
≥0.05; and (4) probe not reported to be cross-reactive
[63] (Additional file 1: Figure S5). As mentioned in the
last criterion, we excluded cross-reactive probes that
were reported to co-hybridize to alternate sequences
that are highly homologous (<4 base mismatches among
50 bases) to the intended targets [63]. Furthermore, we
created a list of possible cross-reactive probes that have
unintended target sequences identical to the 20-base
sequence from the 5′ end of each intended target
(Additional file 5: Table S9). The 20 bases from the 5′
end of each target were mapped against the reference
sequence (Genome Reference Consortium Human
Reference 37 (GCA_000001405.1)) using BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). In examining
significant probes, we excluded the probes that were
on the list.
After the filtering, data normalization was performed,

with the following pipeline, Lumi: quantile normalization
(QN; correction for the distributions of the pooled
probes) + beta-mixture quantile (BMIQ) normalization
(correction for probe design bias) + correction for the
batch effect (ComBat). First, the distributions of the
pooled methylated and unmethylated probes were
quantile normalized using the Lumi package under the
assumption that they were similar between different
samples [64]. A beta-mixture QN method was used to
correct probe design bias with BMIQ normalization
[65]. Finally, an empirical Bayes batch-correction
method, ComBat [66], was employed to control for
batch effects among arrays. In order to detect PD-
associated DMPs, the original β values were converted
to M values via the logit transformation [67] and used
for performing the case control analysis. As for probes
on X chromosome, the data filtering and norma-
lization were performed in the same way separately
only with the female samples (PD, N = 31, control, N = 31)
(Additional file 1: Figure S8).

Prediction of the DNA methylation age and the
distributions of leukocyte subsets
DNA methylation age (DNAm age) was defined as the
age estimated from the DNA methylation status data of
several CpG sites. We predicted the DNAm age to
evaluate the reliability of the assay in both PD and
healthy control subjects. DNAm age was estimated using
the EWAS data following the algorithm reported in a
previous study [24]. As for the analysis of the estimated
DNAm age, the data were normalized according to the
previous report [24], because the probes used in this
analysis were a portion of the total probes and they did
not include any type II probe. The estimated DNAm age

was compared with chronological age by calculating
Pearson’s correlation coefficients.
Furthermore, DNA methylation data were used to

predict the cell mixture distributions of leukocyte sub-
sets [30] to examine the possibility that cell mixture
distributions differ between PD and healthy subjects.
The proportions of leukocyte subsets (natural killer
cells, B cells, CD4+ T cells, CD8+ T cells, monocytes,
and granulocytes) were estimated using a published
algorithm [30] with an R package, Minfi. Briefly, the β
values of CpG sites, which correspond to putative
differentially methylated sites among leukocyte subsets
and that enable them to be distinguished, were selected.
The selected β values were applied to the analysis,
which resembled a regression calibration, as it can be
considered a surrogate measure of the distribution of
leukocyte cell mixtures [30]. The estimated proportions
of leukocyte subsets were compared between the PD
and control subjects. Additionally, we estimated abun-
dance measures of plasmablasts, CD8+CD28−CD45RA− T
cells, naive CD8+ T cells, and naive CD4+ T cells using the
epigenetic clock software [24].

Pathway analysis
A pathway analysis was performed using the MetaCore™
platform (version 6.24 build 67895, Thomson Reuters,
New York, NY, USA). Genes annotated to significant
CpG sites were examined to determine whether they
had any enrichment of gene sets for biological pro-
cesses and molecular functions in the GO database
(http://geneontology.org/) [68]. To be more precise, if
the significant CpG sites were located in regions within
1500 bp from a transcription start site, 5′ UTR, body,
and 3′ UTR of genes, the genes were annotated to the
CpG sites and included in the pathway analysis. Since
gene sets with large numbers of genes have a tendency
to represent broader categories and have no useful bio-
logical meaning, gene sets with more than 500 genes
were disregarded [69]. Gene sets with less than five reg-
istered genes or five consequent genes annotated from
a list of examined genes were also disregarded because
such gene sets are worthy of little attention in a
pathway-based approach. Furthermore, we also used
another method of GO-based pathway analysis, GOseq
[70], in which bias caused by the different numbers of
probes associated with each gene can be corrected [70,
71]. Pathways identified using the MetaCore™ platform,
but not replicated with GOseq analysis, were excluded
from the list of significant pathways.

Statistical analysis
The Wilcoxon rank sum test was employed to compare
the proportions of the leukocyte subsets between the PD
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and control subjects. The Bonferroni correction was
applied to adjust for multiple comparisons.
For the EWAS, significant associations were assessed

by linear regression analysis with adjustments for the
effects of the predicted proportions of leukocyte subsets
using M values at a false discovery rate (FDR) of 5%. To
check the effect of smoking on the significant sites,
adjusted M values were compared between smokers
and non-smokers in PD group using t test.
All analyses were performed using R software.
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