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Host-dependent morphology of Isthmiophora
melis (Schrank, 1788) Luhe, 1909 (Digenea,
Echinostomatinae) – morphological variation vs.
molecular stability
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Abstract

Background: Echinostomes are cosmopolitan digenean parasites which infect many different warm-blooded hosts.
Their classification is extremely confused; the host spectrum is wide, and morphological similarities often result in
misidentification. During our long-term studies on the helminth fauna of rodents and carnivores we have collected
27 collar-spined echinostomes which differ in morphology to an extent that suggests the presence of more than
one species. Here, we describe this material, and the extent of host-related variation in this parasite.

Methods: Specimens of Isthmiophora isolated from four host species (badger, American mink, hedgehog, striped
field mouse) were subject to morphological and molecular examination; the data were statistically analysed.

Results: Our results show that genetically all the Isthmiophora specimens obtained from all the examined hosts are
conspecific and represent I. melis. On the other hand, the individuals isolated from Apodemus agrarius are
morphologically distinct and, based on this criterion alone, should be described as a new species.

Conclusions: The morphological traits of Isthmiophora melis are much variable and host-dependent; without
molecular analysis they would suggest a necessity to describe a new species or even genus. Such a high level of
intraspecific variability may be affected by the host’s longevity.
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Background
Since molecular techniques became commonly used in
taxonomic studies, the list of valid taxa in different
groups of organisms has been changing, and in many
cases the results of molecular investigations are radically
different from those obtained with classical methods.
However, while museum collections dating from the
pre-molecular period remain the cornerstone of tax-
onomy, morphology must continue to provide a starting
point for molecular studies [1]. Molecular taxonomy has
also contributed to revealing the common occurrence of
cryptic species in nature, in virtually all major taxa.

Although such species are genetically distinct from each
other, they are morphologically very similar [2, 3].
On the other hand, free-living organisms and parasites

can adjust their life-history strategies and a given geno-
type may produce a variety of phenotypes under
different environmental conditions [4]. Due to their
exposure to widely differing environmental conditions
(i.e. different host species, host’s immune system), para-
sites often display a phenotypic plasticity which is
expressed as differences in body size or fecundity [4]. In
the case of Digenea, most species-diagnostic features are
the body proportions or the shape and location of in-
ternal organs. Phenotypic variation may be induced by
differences in the intensity of infection (“crowding effect”)
and in the host’s identity (“host-induced variation”) [5].
These phenotypic effects may lead to species-specific
variation resulting in misidentification [6].
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Echinostomes are cosmopolitan digenean parasites
which mainly infect many different warm-blooded hosts
[7]. The taxonomy and classification of the echinostomes
is highly confused. The wide host spectrum of echinos-
tomes is a result of phylogenetic, physiological, and
ecological adjustments between the parasite and the
host in a dynamic evolutionary process, where the main
factor influencing the host specificity is the host’s be-
haviour, particularly the feeding habits of vertebrate
hosts [7]. Species misidentifications have arisen because
of similarities in morphology and because of the lack of
isolates in molecular databases [8]. Most studies have
focused on the genus Echinostoma, especially the “revo-
lutum” group, e.g. [7–14], see Kostadinova and Gibson
[11] for review. Despite numerous studies, two recent pa-
pers [15, 16] showing that even by the use of molecular
tools the taxonomy of this group is still not straightfor-
ward. However, taxonomic difficulties are also known in
other groups of the Echinostomatinae [17, 18]. One of
the remaining interesting issues concerns the 27-collar-
spined echinostomes of the genus Isthmiophora Luhe,
1909. The type-species, I. melis, is a parasite reported
mainly from European, Asian and American carnivores.
However, Radev et al. [19], in his review of literature,
lists c. 30 species as definitive hosts of this parasite.
Host-induced morphological variation within this di-
genean, which apparently lacks host specificity, should
be clearly visible.
During our long-term studies on the helminth fauna

of rodents and carnivores we have collected 27 collar-
spined echinostomes which differ in morphology to an
extent suggesting the presence of more than one species.
Molecular studies, on the other hand, suggested that
these worms belong to Isthmiophora. Here we describe
this material, and the extent of host-related variation in
this parasite.

Methods
Parasite sampling
Representatives (N= 148) of Isthmiophora used for the
morphological analysis were collected from four host spe-
cies: striped field mouse (Apodemus agrarius, N= 37),
European badger (Meles meles, N = 13), American mink
(Neovison vison, N = 64) and European hedgehog (Erina-
ceus europaeus, N = 34), all captured during parasitological
and faunistic studies carried out by the Department of
Parasitology in cooperation with the Polish Academy of
Sciences. The rodents were captured in Lower Silesia (Do-
lina Baryczy, Nature Reserve “Stawy Milickie”, 51°31′56″
N/17°20′12″E) in 2010 – permission 46/2008 issued by
the Second Local Commission for Animal Experiments,
worms form the mink (N. Poland; Marzęcino, 54°13′
1.54″N 19°13′20.43″E) captured in 2010 were obtained
from the Polish Academy of Sciences, trematodes from

the hedgehog and badger (2010) were obtained from
the Czech Republic (Zahlinice, 49°17′06″N/17°28′41″
E). After washing in tap water, the worms were fixed in
70 % ethanol. Some of the collected trematodes were
stained in iron-aceto-carmine [20], dehydrated in a
graded ethanol series, cleared in clove oil, mounted in
Canada balsam and identified according to Kostadinova
and Gibson [17]. The voucher specimens of trematodes
obtained from each hostare deposited in the polish hel-
minthological collection of Natural History Museum of
Wroclaw University (MNHW).

Statistical analysis
All the examined specimens of I. melis were subject to
detailed morphological and morphometric analysis, in-
cluding the following measurements: body length (L),
maximum body width (W), body area (BA), maximum
body width as a proportion of body length (BW), forebody
length (FB), forebody as a proportion of body length (FO),
hindbody length (HB), hindbody as a proportion of body
length (H), post-testicular region length (PTR), post-
testicular region length as a proportion of body length
(T), oral sucker area (OSA), ventral sucker area (VSA),
anterior testis area (ATA), posterior testis area (PTA),
ovary area (OA), gonad area/body area (GA/BA), ventral
sucker to ovary distance as a proportion of body length
(U), egg length (EL), egg width (EW). The body and gonad
areas were calculated using the following equations: body
area = π*(body length/2)*(body widith/2); gonads area =π*r2.
All the measurements were expressed in micrometers and
proportions as percentage. Prior to the analysis the data
were log-transformed (log10). The mean (M), minimum/
maximum values and coefficients of variation (CV %; de-
fined as the ratio of standard deviation to the mean) were
calculated for all the variables. One-way analysis of variance
(ANOVA) was carried out to test if the particular morpho-
logical features of Isthmiophora differed between the
host species. In the next step we performed
discriminant analysis. To avoid the size effect of the
worms (Isthmiophora spp. isolated from the badger was
much bigger than those from the other hosts) only
variables expressed as ratios (BW, FO, H, T, U, GA/BA)
were included in this analysis. Moreover, according to
the literature data, the major diagnostic characters in
this taxon are based on ratios (i.e. BW, FO, T and U).
All the analyses were conducted using Statistica 10.0
software.

Molecular analysis
Molecular analysis was performed for I. melis collected
from four host species studied, from which a set of two
worms was used for the analysis (N = 8). DNA was ex-
tracted using the DNeasy Blood and Tissue Kit (Qiagen),
and amplified using PCR specific for 2 nuclear markers
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(internal transcribed spacers 1 and 2 [ITS1, ITS2] and a
fragment of mitochondrial cytochrome oxidase I [CO1]
gene) (Table 1). Two additional molecular markers (SSU
and LSU of rDNA) were amplified for the specimens from
A. agrarius. PCR conditions included initial denaturation
in 95 °C for 5 min, followed by 35 cycles: 45 s denatur-
ation (95 °C), 30 s annealing (52 °C for SSU, LSU, ITS 1,
ITS 2 and 48 °C for COI), 30 s elongation (72°), and a 5
min step of final elongation (72 °C). PCR products were

sequenced using the same primer pairs, and chromato-
grams inspected visually for ambiguities. In order to eluci-
date any homologies with the previously deposited
sequences in GenBank, we conducted a BLAST search
(http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PA-
GE_TYPE = BlastHome). Multiple alignment was done
using CLUSTAL W in MEGA 5.0 package [21]. The se-
quences obtained in this study were deposited in GenBank
under the following accession numbers: [GenBank:
KT359582] and [GenBank: KT359583] for SSU and LSU;
[GenBank: KT359584] for ITS complex; [GenBank:
KT359580] and [GenBank: KT359581] for COI (Table 1).

Results
Molecular analysis
The morphological distinctness of I. melis from the striped
field mouse did not permit unambiguous identification of
the parasite to specific or even generic level. Two markers
18S rDNA (1078 bp) and 28S rDNA (1352 bp) were there-
fore used for preliminary identification. BLAST analysis
showed 99 % similarity with the sequences of I. melis [Gen-
Bank: AY222131] and [GenBank: AF151941] and I. horten-
sis [GenBank: AB189982] for both loci. Amplification of
COI from the four host species generated sequences of

Table 2 Morphology of Isthmiophora melis from various hosts obtained in this study

Apodemus agrarius (N = 37) Erinaceus europaeus (N = 34) Neovison vison (N = 64) Meles meles (N = 13)

M Range CV % M Range CV % M Range CV % M Range CV %

L 2,625 1,075–4,100 32 4,476 3,070–5,675 15 3,778 2,350–5,975 19 6,821 5,950–7,725 8

W 623 260–1,050 34 876 590–1,160 14 762 500–1,250 25 1,389 1,250–1,700 10

BA 1,411 219–2,967 57 3,113 1,422–4,344 24 2,356 1,021–5,863 45 7,468 5,838–10,309 16

BW 24 19–30 11 20 16–26 14 20 15–25 12 20 17–23 8

FB 665 315–950 26 904 630–1,030 10 754 530–1,090 16 1,083 960–1,210 8

FO 26 20–32 11 21 18–33 15 20 15–27 12 17 15–18 7

HB 1,558 550–2,750 39 2,997 1,900–3,925 19 2,487 1,680–4,050 21 4,613 4,225–4,940 6

H 58 31–69 12 67 54–83 7 66 47–80 8 71 69–72 2

PTR 692 293–1,225 33 1,640 1,010–2,060 18 1,486 1,000–2,300 19 2,570 2,100–3,025 11

T 27 20–32 11 37 31–46 8 39 34–46 7 38 35–41 5

OSA 22,566 8,247–53,066 42 35,747 22,687–43,352 12 26,897 15,386–57,227 33 57,060 46,163–70,650 14

VSA 127,434 24,732–277,910 49 266,453 79,133–468,454 29 185,377 54,091–515,036 51 508,892 424,077–653,635 15

ATA 118,293 36,287–250,592 53 152,747 37,994–237,463 32 93,766 35,448–248,379 57 447,761 110,391–671,666 35

PTA 129,210 28,339–296,907 53 167,942 37,994–270,948 28 104,482 39,740–259,541 60 475,179 186,560–671,665 31

OA 26,674 3,190–53,066 55 30,758 13,523–61,544 31 21,441 7,850–68,315 61 84,499 70,650–93,435 9

GA/BA 158 99–267 23 112 63–142 15 90 67–129 18 148 56–192 30

U 4 1–8 36 4 1–7 40 3 1–5 40 4 3–9 50

EL 131 120–140 5 129 120–140 5 121 115–125 4 127 115–140 8

EW 81 70–90 8 79 75–85 5 89 80–95 5 82 75–90 7

All measurements are expressed in micrometers; M mean, Min minimal value, max maximal value, CV % coefficient of variation; L-body length, W-maximum body
width, BA-body area, BW-maximum body width as a proportion of body length, FB-forebody length, FO-forebody as a proportion of body-length, HB-hindbody
length, H-hindbody as a proportion of body length, PTR-post-testicular region length, T-post-testicular region length as a proportion of body length, OSA-oral
sucker area, VSA-ventral sucker area, ATA-anterior testis area, PTA-posterior testis area, OA-ovary area, GA/BA-gonad area/body area, U-ventral sucker to ovary
distance as a proportion of body length, EL-egg length, EW-egg width

Table 1 The list of host species used for molecular
identification of I. melis with the Gen Bank accession numbers
of newly obtained sequences

Host
species

Locality Target genes/primers reference

18S rDNA/
[33]

28S rDNA/
[34]

ITS rDNA/
[12]

COI mtDNA/
[13]

Apodemus
agrarius

Poland KT359582 KT359583 KT359584 KT359580

Erinaceus
europaeus

Czech
Republic

Nevison
vison

Poland KT359581

Meles meles Czech
Republic
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222–261 bp. Two haplotypes were observed, one for the
sequences from N. vison and another for the sequences
from A. agrarius, M. meles and E. europaeus. The overall
variation between these haplotypes amounted to 1.4 % (3
nucleotides out of 219). In the case of ITS, amplification
and sequencing generated four sequences of 1029–1042
bp. However, a 1014 bp alignment revealed that all the se-
quences from each host species were identical.

Morphological analysis
The means, ranges and CV % values of I. melis from the
four host species are shown in Table 2. The observed
values of the analysed parameters demonstrate a high
level of both intra- and between-host variation in the
morphometric characters of the worms. The CV %
values calculated for the variables expressed as ratios
(BW, FO, H, T, U, GA/BA) were at the same level and
did not show any statistically significant differences be-
tween the host species (F = 0.01; df = 3; p = 0.998). How-
ever, one-way analysis of variance (ANOVA) showed
that host species played an important role in shaping the
characteristics of I. melis (F = 20.3; df = 51; p < 0.001).
The results of post hoc Tukey test showed that the dif-
ferences were mostly associated with the trematodes
from A. agrarius (Table 3). These specimens were char-
acterised by a relatively smaller body size, higher values
of maximum body width, expressed as proportion of
body length (BW), a very short post-testicular region
and therefore low values of the post-testicular region as
a proportion of body length (T) (Fig. 1). The worms
from A. agrarius displayed the highest values of relative
gonad area/body area (GA/BA) (Fig. 1). In discriminant
analysis (Table 4) the model was generated by the use of
6 variables. The chi-square test showed that the first
three roots were required to separate I. melis among the
four host species. The roots accounted for 91.5 % (Root
1), 96.6 % (Root 2) and 100 % (Root 3) of the overall
variation. Root 1 separated the worms from A. agrarius
based on the following variables, in order of descending
importance: GA/BA, T, FO and U. The analysis also
revealed that according to these criteria all the speci-
mens of I. melis from A. agrarius were classified cor-
rectly (Table 5). Roots 2 and 3 separated trematodes
from M. meles based on GA/BA and U, however this
explained only 8.5 % of the variation. These results are
also visible in the plot of canonical scores (Fig. 2) where
I. melis from the striped field mouse are clearly
separated from those isolated from the remaining hosts.

Discussion
The history of the genus Isthmiophora Luhe, 1909, espe-
cially in relation to the genus Euparyphium Dietz, 1909, is
long and complicated, but both genera were established as
valid by Kostadinova and Gibson [17]. The main

characteristic features of Isthmiophora are: anterior pos-
ition of the testes (proportion of length of post-testicular
region to body length = 30–50 %), short forebody (FO =
10–20 %), presence of an armed cirrus, small head collar
with 27 collar spines, varied size of dorsal spines (oral lon-
ger than aboral), short uterus and large eggs [17]. The life
cycle of Isthmiophora includes lymnaeid snails, tadpoles
and fish as intermediate hosts and carnivores as definitive
hosts. Six species (I. melis, I. hortensis (= Echinostoma hor-
tense), I. beaveri, I. citellicola, I. inermis, I. lukjanovi) are
currently regarded as valid [17]. I. melis is widespread in
Europe, Asia and North America and uses more than 30
species of vertebrates as definitive hosts [19], including
humans and rodents: Apodemus agrarius, A. sylvaticus,
Rattus norvegicus and Mus musculus [22–24]. In Poland
the species has been reported from fox, marten, badger,
hedgehog and rodents [22, 24].
The specimens of I. melis from A. agrarius collected in

Lower Silesia did not fully correspond to the description
of I. melis [17], and two of the key features: forebody as
a proportion of body length (FO) and post-testicular
field as a proportion of body length (T), were distinct.
According to Kostadinova [18], Isthmiophora possessed
an intestinal bifurcation just anterior to the ventral
sucker, the cirrus was armed and T = 30–50 % while
Euparyphium was characterised by the intestinal bifur-
cation located halfway between the pharynx and the

Table 3 Results of post hoc Tukey test of one-way analysis of
variance (ANOVA)

Aa/Ee Aa/Nv Aa/Mm Ee/Nv Ee/Mm Nv/Mm

L + + + + + +

W + n/s + + + +

BA + + + + + +

BW + + + n/s n/s n/s

FB + n/s + + + +

FO + + + n/s + +

HB + + + + + +

H + + + n/s n/s n/s

PTR + + + n/s + +

T + + + + n/s n/s

OSA + n/s + + + +

VSA + n/s + + + +

ATA n/s n/s + + + +

PTA n/s n/s + + + +

OA n/s n/s + + + +

U n/s + n/s + n/s n/s

GA/BA + + n/s + + +

The data are presented pairwise for particular host species (Aa – A. agrarius,
Ee – E. europaeus, Nv – N. vison, Mm – M. meles) and indicate statistical
significance (+) or its lack (n/s)
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ventral sucker, unarmed cirrus and T = 20–30 %. The
worms from A. agrarius had a short post-testicular field
as a proportion of body length (T = 26.6 %), an armed
cirrus and the intestinal bifurcation situated halfway be-
tween the pharynx and the ventral sucker. These fea-
tures did not permit unambiguous identification of the
trematodes as Isthmiophora. Additionally, Radev et al.
[19] showed that in experimental infections of ham-
sters, specimens of I. melis still corresponded to the
general description of the species, and the key features
did not change significantly. Molecular identification,
based on SSU and LSU of rDNA, of I. melis from the
striped field mouse definitively confirmed their identity
as Isthmiophora, while the less conservative markers
(ITS1/ITS2 of rDNA and COI of mtDNA) pointed to a
specific identity as I. melis. Additional specimens of I.
melis, isolated from different hosts (M. meles, N. vison
and E. europaeus), shared this molecular identity, with

minimal (1.4 %) variation within the COI gene. Based
on this molecular analysis, we must conclude that the
echinostomatids collected from A. agrarius did repre-
sent I. melis. Nolan and Cribb [6] presented an exten-
sive discussion of the role of ITS sequences in digenean
taxonomy. Internal transcribed spacers in this group in
general showed a small intraspecific variation, which
was however sufficient to explore the validity of species
boundaries in the group [6]. Morgan and Blair [12] also
investigated the taxonomic position of eight 37-collar-
spined echinostomatid species using ITS sequences and
found that these spacer regions provided sufficient vari-
ation to distinguish 5 of the 8 nominal species exam-
ined, and the level of interspecific variation ranged
between 1.1 % and 19.2 %. The remaining three species
had identical ITS sequences and were indistinguishable.
The same authors [13] also re-examined the same ma-
terial using mitochondrial markers (CO1 and ND1),

Fig. 1 Morphology and body proportions of Isthmiophora melis. a – M. meles, scale bar – 1 mm; b – N. vison, scale bar – 0.5 mm; c – E. europaeus,
scale bar – 0.6 mm; d – A. agrarius, scale bar – 0.3 mm
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which allowed for unambiguous identification of the
analysed material. Based on the reliability of the com-
bination of nuclear and mitochondrial markers in these
studies [6, 12, 13], we are confident that our specimens
from A. agrarius do indeed represent I. melis.
The observed morphological variation must therefore

be host-induced phenotypic variation, and its scale af-
fects the diagnostic features at both generic and specific
level. There is an extensive literature on the influence of
population density on the echinostome morphology (e.g.
the “crowding effect” of Fried and Freeborne [25, 26]),
but we suspect an effect of host longevity as well. In
general, the lifespan of carnivorous species is consider-
ably longer than that of small rodents. The lifespan of A.
agrarius in the wild approximates a few months (5–8)
only, while, for example, the lifespan of M. meles is up
to 15 years. The growth of body size and internal organs
of trematodes is correlated at the initial phase. At a later
period, when the gonads are fully developed, the body
continues to grow with a simultaneous slower growth
rate of gonads. For example, in experimental studies on
the development of E. revolutum, Franco et al. [27] ob-
served that gonads were fully developed 20–25 days post
infection while full body size was only attained 55 days
post infection. In our studies the highest values for the

coefficient of relative gonad area to body area was ob-
served in the trematodes from A. agrarius, indicating
that the growth of the body had ceased; the values of
this coefficient in the striped field mouse were almost
identical as those observed in the badger – the type host
for I. melis.
Genetic markers constitute a powerful tool in the

studies on intraspecific variation in many taxa, including
helminths, but the morphology still plays a crucial part
in species descriptions [28]. However it is evident that
morphology alone may not provide adequate taxonomic
resolution and may lead to misidentifications. The
phenotypic plasticity of helminths has been reported fre-
quently in the literature, e.g. [29–32]. For example,
Boyce et al. [30] explain the differences in the morph-
ology of Notocotylus malhamensis Boyce et al. 2012 as a
result of the presence of young adults in one of the
hosts, i.e. the specimens of N. malhamensis in Microtus
agrestis have not fully developed. The second possible
reason of host-induced morphological differences in N.
malhamensis is crowding effect. The wide host range of
I. melis combined with the very different sizes of the
hosts (e.g. badger vs. field striped mouse) makes the
phenotypic plasticity even more spectacular. Our studies
suggest that species identification is very subjective and,

Table 5 Classification efficiency of Isthmiophora melis from each host species

% correct class. M. vison (p = 0.422) E. europaeus (p = 0.273) M. meles (p = 0.057) A. agrarius (p = 0.248) Root 1 Root 2 Root 3

M. vison 92.2 47 4 0 0 1.825 −0.353 0.225

E. europaeus 72.8 8 24 1 0 0.364 0.256 −0.664

M. meles 71.4 2 0 5 0 1.132 1.919 0.769

A. agrarius 100 0 0 0 30 −3.768 −0.129 0.168

Total 87.6 57 28 6 30

Columns Root 1, Root 2 and Root 3 reflecting the means of canonical values

Table 4 Summary of DFA; the table presents the full list of variables included in the analysis

Roots removed Eigenvalue Canonical R Wilks’ lambda Chi-square df p-value

0 5.207 0.916 0.104 259.857 18 < 0.001

1 0.298 0.479 0.648 49.909 10 < 0.001

2 0.189 0.399 0.841 19.931 4 < 0.001

Wilks’ lambda Partial lambda p-value Root 1 Root 2 Root 3

BW 0.108 0.966 0.274 −0.001 0.079 0.487

FO 0.132 0.794 < 0.001* −0.501 −0.307 −0.698

H 0.111 0.944 0.093 0.282 0.201 0.079

T 0.123 0.854 < 0.001* 0.483 0.275 −0.460

U 0.127 0.824 < 0.001* −0.334 0.230 −0.955

GA/BA 0.137 0.759 < 0.001* −0.541 0.718 −0.063

Eigenvalue 5.207 0.298 0.190

Cumulative proportion 0.915 0.966 1.000

Statistically significant variables are marked with asterisk (*). Chi-square tests with successive roots removed are presented in the upper part of the table. Columns
Root 1, Root 2 and Root 3 present standardized coefficients for canonical variables
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when descriptions of new species or even higher taxa
are based on few specimens, misidentification is very
likely. Thus the combination of morphology with mo-
lecular analysis and studies on life histories is most de-
sirable when identifying parasites.

Conclusions
The morphological traits of Isthmiophora melis are
highly variable and host-dependent, and without mo-
lecular analysis they might lead to a description of a new
species or even genus. Such a high level of intraspecific
variation may be affected by the host’s longevity.
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