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Abstract We investigate conformality of the differential of a mapping between Riemann-
ian manifolds if the tangent bundles are equipped with a generalized metric of Cheeger-
Gromoll type.
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1 Introduction and preliminaries

Generalized metrics of Cheeger-Gromoll type or (p, q)-metrics h p,q , being a generalization
of Sasaki metric hS [5] and Cheeger-Gromoll metric hCG [4], have been recently introduced
by Benyounes et al. in [1] in the context of harmonic sections. In [2], the same authors studied
the geometry of the tangent bundle equipped with this kind of metric. It is worth noticing that
Munteanu in [7] investigated independently the geometry of tangent bundle equipped with a
certain deformation of Cheeger-Gromoll metric other that in [1]. Yet in [6], Walczak and the
first named author considered (p, q)-metrics in the context of Riemannian submersions and
Gromov-Hausdorff topology.

In this paper we introduced (p, q, α)-metrics which are more general than (p, q)-metrics.
(In contrast to [1] we do not assume that p, q and α are constant). We investigate relations
between conformality of a map ϕ : (M, g) → (M ′, g′) between Riemannian manifolds and
its differential Φ = ϕ∗ : (T M, h) → (T M ′, h′) between their tangent bundles equipped
with (p, q, α)-metric h and (r, s, β)-metric h′, respectively.
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Interesting enough, there is essential difference between the cases dim M = 2 and
dim M ≥ 3.

We prove that in the second case (Theorem 1)Φ is conformal if and only ifϕ is a homothety
and totally geodesic immersion and some special relations between triples (p, q, α) and
(r, s, β) hold. In this case Φ is also a homothety with the same dilatation as ϕ.

However, in the first case it may happen that Φ is conformal, although ϕ is not a totally
geodesic immersion (Theorem 2). Then Φ is no longer a homothety. An example of such a
map is given.

1.1 Cheeger-Gromoll type metrics

Consider a Riemannian manifold (M, g), and let π : T M → M be its tangent bundle. The
Levi-Civita connection ∇ of g, gives a natural splitting T (T M) = H ⊕ V of the second
tangent bundle π∗ : T (T M) → T M , where the vertical distribution V is the kernel of π∗,
and the horizontal distribution is the kernel of, so called, connection map K . If X, Z ∈ Tx M
then by XvZ we denote the vertical lift of X to the point Z , i.e., XvZ is a tangent vector to the
curve t 	→ Z + t X at t = 0. Every A ∈ TZ (T M) can be uniquely written as A = HA +V A,
where HA ∈ HZ and V A ∈ VZ denote its horizontal and vertical part respectively. The
vertical part of A is given by (K A)vZ .

Recall that K is a smooth R-linear bundle morphism determined by the conditions:

(K1) For every Z ∈ T M, K : TZ (T M) → Tπ(Z)M is the canonical isomorphism, i.e.,
K (XvZ ) = X .

(K2) For every vector field X on M and every v ∈ Tx M, K (X∗v) = ∇vX .

Notice that (K1) and (K2) imply the following properties

(K3) For every Riemannian manifold (M ′, g′) and every X, Z ∈ Tx M and every map
ϕ : M → M ′, ϕ∗∗ XvZ = (ϕ∗ X)vϕ∗(Z).

(K4) For every curve γ in M and every vector field ξ along γ, K (ξ̇ ) = ∇γ̇ ξ .

Let p, q, α be smooth functions on M . Assume q is non-negative and α is positive. Define
(p, q, α)-metric h = h p,q,α on T M as follows: For every A, B ∈ TZ (T M), Z ∈ Tx M ,

h(A, B) = g(π∗ A, π∗ B)+ ωα(Z)
p (g(K A, K B)+ qg(K A, Z)g( K B, Z)),

where ωα(Z) = (1 + αg(Z , Z))−1. Here all functions p, q, α are evaluated at x . For any
p, q, α, the Riemannian metric h p,q,α is a special case of a metric considered in [7]. Notice
that if p, q, α are constants and α = 1 then h p,q,α becomes a metric from [1]. In particular,
h0,0,1 (resp. h1,1,1) is Sasaki metric hS [5] (resp. Cheeger-Gromoll metric hCG [4]).

1.2 Conformal mappings and metrics

Recall that a map ϕ : (M, g) → (M ′, g′) between Riemannian manifolds is conformal
if ϕ∗g′ = λg for some positive function λ on M . The function λ is called a dilatation.
A conformal mapping with constant dilatation is called a homothety. If dim M < dim M ′
a conformal mapping ϕ is often called weakly conformal.

Let λ be a strictly positive C∞-function on M , and gλ = λg. The Levi-Civita connections
∇ and ∇λ of g and gλ are related as follows: ∇λ = ∇ + Sg,λ

M where S = Sg,λ
M is a symmetric
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(1, 2)-tensor field given by (compare [3], p. 64):

S(X, Y ) = 1

2λ
((Xλ)Y + (Yλ)X − g(X, Y )grad λ) , X, Y ∈ �(M, T M).

Suppose ϕ : M → M ′ is an immersion, e.g., conformal mapping. Then for every x ∈ M
we may choose an open neighbourhood Ux of x such that Lx ′ = ϕ(Ux ) (x ′ = ϕ(x)) is a
regular submanifold of M ′. Let j : Lx ′ → M ′ be the inclusion map, and let ḡ = j∗g′ be the
induced metric tensor on Lx ′ . Moreover, let Π denote the second fundamental form of Lx ′ .
We say that the immersion ϕ : (M, g) → (M ′, g′) is totally geodesic if for every x ∈ M, Lx ′
is a totally geodesic submanifold of (M ′, g′). One can prove the following

Lemma 1 Suppose ϕ : (M, g) → (M ′, g′) is a conformal mapping with a dilatation λ.
Choose x ∈ M and put x ′ = ϕ(x). Let γ : (−ε, ε) → Lx ′ be a curve in M and ξ be a vector
field along γ . Put γ ′ = ϕ ◦ γ and ξ ′ = ϕ∗ξ . Then

∇̄γ̇ ′ξ ′ = ϕ∗∇γ̇ ξ + ϕ∗S(γ̇ , ξ),

where S = Sg,λ
M , and ∇ and ∇̄ are the Levi-Civita connections of g and ḡ respectively.

Adopt the notations from Lemma 1. Put Z = ξ(0), Z ′ = ξ ′(0), v = γ̇ (0) and v′ = γ̇ ′(0).
Suppose that a vector A ∈ TZ (T M) is tangent to the curve ξ (it is convenient to think
of vector fields along curves as of curves in the tangent bundle), i.e., A = ξ̇ (0). Next,
let K and K ′ denote connection maps induced from ∇ and ∇′ respectively. Moreover put
Φ = ϕ∗ : T M → T M ′. As a direct consequence of Lemma 1, the equation ∇′ = ∇ + Π

and properties of connection map we get

Lemma 2 The vectors K (A) and K ′(Φ∗ A) are related as follows:

K ′(Φ∗ A) = ϕ∗K (A)+ ϕ∗S(v, Z)+Π(v′, Z ′).

In particular, if A is horizontal then K ′(Φ∗ A) = ϕ∗S(v, Z)+Π(v′, Z ′).

Remark 1 If dim M = dim M ′ then the term Π is omitted.

Let U = Ux and L ′ = Lx ′ and let π ′ : T L ′ → L ′ be a natural projection. Since
ϕ : U → L ′ is a conformal diffeomorphism, so is its inverse. In particular Φ : T U → T L ′
is a diffeomorphism. Therefore we have

Corollary 1 Take A′ ∈ TZ ′(T L ′) such that v′ = π ′∗ A. Then

K (Φ−1∗ A′) = ϕ−1∗ K ′(A′)+ ϕ−1∗ S′(v′, Z ′)− ϕ−1∗ �(v′, Z ′),

or equivalently

K (Φ−1∗ A′) = ϕ−1∗ K̄ (A′)+ ϕ−1∗ S′(v′, Z ′),

where S′ = Sḡ,μ
L ′ with μ = (1/λ) ◦ ϕ−1, and K̄ is the connection map induced from ∇̄.

Corollary 2 Suppose ϕ : (M, g) → (M ′, g′) is a conformal mapping and M is connected.
Φ∗ maps horizontal vectors onto horizontal vectors if and only if ϕ is a totally geodesic
homothety.
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Proof (⇒) If Φ∗ maps horizontal vectors onto horizontal vectors then by Lemma 2, ϕ∗
S +Π vanishes identically. Since ϕ∗S andΠ are always orthogonal and a conformal
mapping is an immersion it follows that S and Π vanish identically. Applying the
definition of S with X = Y = grad λ, we get that grad λ is the zero vector field.
Consequently, λ is constant and therefore ϕ is a homothety. Since Π vanishes, ϕ is
totally geodesic.

(⇐) Obvious. ��

1.3 Algebraic lemmas

Suppose two finite dimensional real vector spaces V and W equipped with inner products
〈, 〉V and 〈, 〉W are given. Let B : V ×V → W be a symmetric, bilinear form on V . Moreover,
let C ≥ 0. Consider a condition

〈B(X, Z), B(Y, Z)〉W = C〈X, Y 〉V 〈Z , Z〉V . (1)

for every X, Y, Z ∈ V . Then, if X, Y are orthogonal

〈B(X, X), B(Y, Y )〉W = −C〈X, X〉V 〈Y, Y 〉V . (2)

Lemma 3 Assume that B satisfies the condition (1). If dim V ≥ 3 then C = 0. In particular,
B vanishes.

Proof Suppose that C �= 0. Take an orthonormal pair X, Y . Let ξ = B(X, X) and ζ =
B(Y, Y ). By (1) we have

〈ξ, ξ 〉 = 〈ζ, ζ 〉 = C > 0. (3)

In particular, ξ �= 0 and ζ �= 0. Applying (2) we see that

〈ξ, ζ 〉 = −C.

Using above and (3) one can obtain that ξ = −ζ . Next, since dim V ≥ 3 we may find
Z ∈ V such that X, Y, Z is an orthonormal triple. Let η = B(Z , Z). Then, by above
ξ = −ζ = η = −ξ , which contradicts the fact that ξ �= 0. ��
Notice that the assumption dim V ≥ 3 is essential. Namely we have

Lemma 4 (a) A symmetric bilinear form B : R
2 ×R

2 → R
2 satisfies (1) if and only if there

exists an angle θ such that

B(X, Y ) = ±√
Ceiθ XY or B(X, Y ) = ±√

Ceiθ X̄ Ȳ , (4)

where we identify R
2 with C.

(b) If dim V = 2 and a non-zero symmetric bilinear form B : V × V → W satisfies the
condition (1) then there exists a 2-dimensional subspace U of W such that the image of B is
equal to U and with respect to orthonormal bases of V and U, B is of the form (4).

Proof (a) Elementary exercise. (b) Take an orthonormal basis X, Y of V . Since B �= 0, we
have C �= 0. Consequently, ξ = B(X, X), ζ = B(Y, Y ) and η = B(X, Y ) are nonzero
vectors of W of length

√
C . By (1) we see that 〈ξ, η〉 = 〈ζ, η〉 = 0. Moreover, 〈ξ, ζ 〉 = −C ,
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by (2). It follows that ξ = −ζ . Consequently, the image U of B is a two-dimensional subspace
spanned by ξ, η.

Now taking orthonormal bases of V and U , e.g., X, Y and ξ/
√

C, η/
√

C , we reduce (b)
to (a). ��

2 Conformality of a differential

In this section all manifolds are connected. Let (M, g) and (M ′, g′) be Riemannian manifolds
of dimensions m and m′, respectively. We assume that m,m′ ≥ 2. Denote by ∇ and ∇′ the
Levi-Civita connections of g and g′, respectively. Equip their tangent bundles π : T M → M
and π ′ : T M ′ → M ′ with (p, q, α)-metric h and (r, s, β)-metric h′, respectively.

Let ϕ : M → M ′ and Φ = ϕ∗ : T M → T M ′. Put g = 〈, 〉 and g′ = 〈, 〉′. Denote by | · |
and | · |′ the norms induced by g and g′, respectively. Moreover, denote by ‖ · ‖ and ‖ · ‖′ the
norms induced by h and h′, respectively.

In the paper we use the following notation: If ϕ (resp. Φ) is conformal mapping then its
dilatation will be always denoted by λ (resp. �).

2.1 Technical lemmas

Lemma 5 Suppose that ϕ and Φ are conformal mappings. Then for any Z ∈ Tx M and
x ′ = ϕ(x),

�(Z) = λ(x)

(
1 + α(x)|Z |2)p(x)

(
1 + λ(x)β(x ′)|Z |2)r(x ′) , (5)

q(x) = λ(x)s(x ′). (6)

Proof Let X, Z ∈ Tx M . Applying conformality of Φ and (K3) we have: ‖(ϕ∗ X)vϕ∗ Z ‖′2 =
‖�∗ XvZ ‖′2 = �(Z)‖XvZ ‖2. Using now the definitions of h and h′ and conformality of ϕ,
one can easily get

λ(x)
|X |2 + λ(x)s(x ′)〈X, Z〉2

(
1 + λ(x)β(x ′)|Z |2)r(x ′) = �(Z)

|X |2 + q(x)〈X, Z〉2

(
1 + α(x)|Z |2)p(x)

. (7)

Taking nonzero vector X orthogonal to Z , (7) becomes (5). Next, let Z �= 0. Putting
X = Z in (7) and comparing the result with (5) we get (6). ��
Lemma 6 If Φ is conformal then so is ϕ. Moreover λ(x) = �(0x ), x ∈ M.

Proof Let x ∈ M and Z = 0x ∈ Tx M . By (K3) and conformality ofΦ, for every X, Y ∈ Tx M

〈ϕ∗ X, ϕ∗Y 〉′ = h′ ((ϕ∗ X)vϕ∗ Z , (ϕ∗Y )vϕ∗ Z

)

= �(Z)h
(
XvZ , Y vZ

) = �(Z)〈X, Y 〉.
��

Lemma 7 Adopt the notation from Sect. 1.2. Suppose that ϕ andΦ are conformal mappings.
Then

(a) ϕ is a homothety.
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(b) For every x ∈ M one of the following conditions holds:

p(x) = r(x ′) = 0, (8)

p(x) = r(x ′) �= 0 and λβ(x ′) = α(x), (9)

p(x) = r(x ′) = 1 and λβ(x ′) �= α(x), (10)

p(x) = 1 and r(x ′) = 0. (11)

(c) If for every x ∈ M either (8) or (9) holds then� is also a homothety with the dilatation
� = λ. Moreover, ϕ is totally geodesic.

(d) If (10) or (11) holds globally then for every v,w, Z ∈ Tx M

〈Π(ϕ∗v, ϕ∗ Z),Π(ϕ∗w, ϕ∗ Z)〉′ = C〈v,w〉〈Z , Z〉, (12)

where C = λ(α(x) − λβ(x ′)) �= 0 in the case (10), and C = λα(x) �= 0 in the case
(11). In particular, ϕ is not totally geodesic.

Proof Assume that v �= 0. Take vectors A ∈ TZ (T M) and A′ ∈ TZ ′(T L ′) as in Lemma 1
and Corollary 1. Moreover we may assume that A and A′ are horizontal with respect to ∇
and ∇̄, respectively, i.e., K (A) = 0 and K̄ (A′) = 0.

Put U = Ux and L ′ = Lx ′ . Let J : T L ′ → T M ′ be the inclusion map. Put h̄ = J ∗h′.
Since ϕ : (U, g) → (L ′, ḡ) and Φ : (T U, h) → (T L , h̄) are conformal diffeomorphisms,
so are ϕ−1 : (L ′, ḡ) → (U, g) andΦ−1 : (T L ′, h̄) → (T U, h). Dilatations of ϕ−1 andΦ−1

are equal to μ = (1/λ) ◦ ϕ−1 and μ̂ = (1/�) ◦Φ−1, respectively. Thus we have

‖Φ∗ A‖′2 = �(Z)‖A‖2,

‖Φ−1∗ A′‖2 = μ̂(Z ′)‖A′‖′2.

Put for a while S = S(v, Z), S′ = S′(v′, Z ′) and Π ′ = Π(v′, Z ′). Since π∗ A = v,
π ′∗ A′ = v′, K (A) = 0, K ′(A′) = K̄ (A′)+Π ′ = Π ′ and Z ′ is orthogonal to Π ′, we have

‖A‖2 = |v|2,
‖A′‖′2 = |v′|′2 + ωβ(Z

′)r |Π ′|′2

Next applying Lemma 1 and Corollary 1, the equalities π ′∗Φ∗ A = v′ and π∗Φ−1∗ A′ = v,
and the fact that ϕ∗S is orthogonal to Π ′ we get

‖Φ∗ A‖′2 = |v′|′2 + ωβ(Z
′)r

(
λ(x)|S|2 + sλ2(x)〈S, Z〉2 + |Π ′|′2

)

‖Φ−1∗ A′‖2 = |v|2 + ωα(Z)
p
(
μ(x ′)|S′|′2 + qμ2(x ′)〈S′, Z ′〉′2

)

Combining now above equalities and using the definitions of μ and μ̂ we get

�|v|2 = |v′|′2 + ωβ(Z
′)r

(
λ|S|2 + λ2〈S, Z〉2 + |Π ′|′2

)
, (13)

1

�

(
|v′|′2 + ωβ(Z

′)r |Π ′|′2
)

= |v|2 + ωα(Z)
p
(

1

λ
|S′|′2 + 1

λ2 〈S′, Z ′〉′2
)
, (14)

where λ = λ(x) and � = �(Z). Multiplying equations (13) and (14) side by side we
conclude that

0 = ωβ(Z
′)rλ|v|2|S|2 + non-negative expression.
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Since v �= 0, S(v, Z) = 0. Since x ∈ M, v, Z ∈ Tx M were arbitrary the tensor field
S vanishes identically. Therefore, λ is a constant function and thus ϕ is a homothety. Hence
(a) is proved.

Substituting S = 0 in (13) we get

|Π(v′, Z ′)|′2 = �(Z)− λ

ωβ(Z ′)r
|v|2.

Applying Lemma 5 we get

|Π(ϕ∗v, ϕ∗ Z)|′2 = λ((1 + α|Z |2)p − (1 + λβ|Z |2)r )|v|2. (15)

Using the facts that the map (v, Z) 	→ |Π(ϕ∗v, ϕ∗ Z)|′2 is non negative and symmetric with
respect to v, Z , we conclude (b).

If (8) or (9) holds then by (5) it follows that� = λ. Moreover, in these cases (15) becomes
|Π(ϕ∗v, ϕ∗ Z)|′2 = 0. This proves (C).

If (10) or (11) holds then it is an elementary computation to check that Π satisfies (12),
proving (d). ��
Lemma 8 Suppose that dim M ≥ 3 or dim M ′ ≤ dim M + 1. Then under the assumptions
of Lemma 7 we have: ϕ is totally geodesic homothety, Φ is a homothety and its dilatation
� is equal to λ.

Proof It suffices to show that under the assumptions the conditions (10) and (11) cannot
hold. Then the assertion follows from Lemma 7 (a) and (c). Suppose that (10) or (11) holds.
Then by Lemma 7 (d) it follows that the symmetric bilinear form B : Tx M × Tx M → Tx ′ M ′
given by B(v,w) = Π(ϕ∗v, ϕ∗w) satisfies the condition (1) with C �= 0. If dim M ≥ 3 then
we have a contradiction with Lemma 3, if dim M ′ ≤ dim M +1 then we have a contradiction
with Lemma 4. ��

2.2 Main results

We begin with some definitions. Suppose M̄ is a submanifold of a Riemannian manifold
(M ′, g′). Suppose that a real-valued non-negative function C on M̄ is given. We say that M̄
is optimal with a coefficient C if for every x ′ ∈ M̄ the second fundamental form Π of M̄ at
x ′ satisfies (1) with the constant C(x ′) that is

〈Π(u, w),Π(v,w)〉 = C(x ′)〈u, v〉〈w,w〉, u, v, w ∈ Tx ′ M̄ .

In particular, every totally geodesic submanifold is optimal with the coefficient 0. By
Lemma 3 and Lemma 4 it follows that if dim M̄ ≥ 3 or codim M̄ ≤ 1 then each optimal
submanifold is totally geodesic.

Remark 2 Observe that if ϕ : M → M̄ is a conformal diffeomorphism such that (12) holds
then M̄ is optimal with the coefficient C/(λ ◦ ϕ−1)2.

Proposition 1 Suppose dim M̄ = 2. Denote by κ ′ and κ̄ the sectional curvatures of M ′ and
M̄, and let σ = Tx ′ M̄. If M̄ is optimal submanifold of M ′ with a coefficient C then M̄ is
minimal submanifold of M ′ and κ̄(σ ) = κ ′(σ )− 2C(x ′). In particular, if C is constant and
M ′ is a space of constant curvature then so is M̄.
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Proof The fact that M̄ is minimal follows immediately from Lemma 4: it suffices to calculate
the trace of the bilinear form given by (4). The second statement follows from (1), (2) and
the Gauss Equation. ��

Suppose now that two Riemannian manifolds (M, g) and (M ′, g′) are given and dim M ≤
dim M ′. Equip their tangent bundles T M and T M ′ with (p, q, α)-metric h and (r, s, β)-met-
ric h′ respectively. Suppose next that the functions p, q, r, s, α, β are constant, and ϕ : M →
M ′ is an imbedding (injective immersion). Let M̄ = ϕ(M).

Theorem 1 Let dim M ≥ 3 or dim M ′ ≤ dim M + 1.

(I) Suppose that ϕ is a conformal mapping with a dilatation λ. Then � = ϕ∗ : T M →
T M ′ is conformal if and only if q = λ(s ◦ ϕ−1), ϕ is a homothety, M̄ is totally
geodesic and for every x ∈ M(x ′ = ϕ(x)) one of the conditions (8) or (9) holds.

(II) If Φ is a conformal mapping then ϕ and Φ are homotheties and � = λ.

Theorem 2 Let dim M = 2 and dim M ′ ≥ dim M + 2.

(III) Suppose that ϕ is a conformal mapping with a dilatation λ. Then Φ = ϕ∗ : T M →
T M ′ is conformal if and only if ϕ is a homothety, q = λ(s ◦ ϕ−1), M̄ is optimal with
the coefficient

C = 1

λ

(
(pα) ◦ ϕ−1 − λβr

)

and for every x ∈ M(x ′ = ϕ(x)) one of the properties (8)–(11) is satisfied.
(IV) Suppose Φ is a conformal mapping. Then ϕ a homothety and

(IV1) If for every x ∈ M one of the conditions (8) or (9) holds then Φ is also a
homothety and � = λ.

(IV2) If one of the conditions (10) or (11) holds globally then ϕ is a minimal immer-
sion and for every plane σ = ϕ∗(Tx M), x ∈ M, the Gauss curvature κ(σ ) of
M is

κ(σ ) = λκ ′(σ )− 2C(ϕ(x))λ, (16)

where κ ′(σ ) is the Gauss curvature of M ′. Moreover, Φ is not a homothety.
Its dilatation � is

�(Z) = λ
1 + α(x)g(Z , Z)

1 + λβ(x ′)r(x ′)g(Z , Z)
, Z ∈ Tx M, x ′ = ϕ(x). (17)

Proof of Theorem 1 and Theorem 2 (I, III ⇒) Suppose ϕ and Φ are conformal mappings.
By Lemma 7, ϕ is a homothety and for every x ∈ M (x ′ = ϕ(x)) one of the conditions
(8)-(11) holds. By Lemma 5, q = λ(s ◦ ϕ−1). If dim M ≥ 3 or dim M ′ ≤ dim M + 1,
by Lemma 7 (d) and Lemma 8 conditons (10) and (11) cannot hold. Therefore Lemma 7 (c)
implies that M̄ is totally geodesic. Moreover, if (10) or (11) is satisfied then by Lemma 7 (d)
and Remark 2, M̄ is optimal with the coefficient C = (1/λ)((pα) ◦ ϕ−1 − λβr).

(I, III ⇐) Taking horizontal (resp. vertical) A ∈ TZ T M , computing h′(Φ∗ A, Φ∗ A) and
applying relations between p, q, r, s, α, β and λ one can conclude that Φ is con-
formal.

(II) Suppose Φ is conformal. By Lemma 6, ϕ is also conformal. Therefore (I) and
Lemma 5 imply that Φ and ϕ are homotheties and � = λ.

(IV) As above we conclude that ϕ is conformal.
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(IV1) It is a consequence of Lemma 7 (c).
(IV2) Suppose for every x ∈ M one of the conditions (10) or (11) holds. By Propo-

sition 1, (I) and the fact that the curvature under the action of a homothety with
dilatation λ is scaled by 1/λ, ϕ is a minimal immersion and (16) holds. Conditions
(10), (11) and equation (5) imply (17). ��

As a direct consequence of of Theorem 1 we obtain

Corollary 3 Suppose dim M ≥ 3 or dim M ′ ≤ dim M + 1. Let ϕ : (M, g) → (M ′, g′) be
an imbedding. Then we have:

(a) Φ : (T M, hS) → (T M ′, h′
S) is conformal if and only ifϕ is totally geodesic homothety.

(b) Φ : (T M, hCG) → (T M ′, h′
CG) is conformal if and only if ϕ is totally geodesic

isometric imbedding.
(c) Φ : (T M, hCG) → (T M ′, h′

S) is never conformal.

2.3 An example to Theorem 2

It is important to show that there is essential difference between Theorems 1 and 2. To do
this we give an example of 2-dimensional manifold M, 4-dimensional manifold M ′ and an
immersion ϕ : M → M ′ such that M̄ = ϕ(M) is optimal but not totally geodesic.

Let Σd(ρ) denote Euclidean d-dimensional sphere of radius ρ centred at the origin in
R

d+1. Recall (see [3], Chapter 4 §5 page 139) that the second standard immersion ofΣ2(1)
it is a map ϕ : Σ2(1) → Σ4(1/

√
3) defined as follows: Consider harmonic homogeneous

polynomials ui , i = 1, . . . , 5, in R
3 given by

u1 = x2x3, u2 = x1x3, u3 = x1x2,

u4 = 1

2

(
x2

1 − x2
2

)
, u5 =

√
3

6

(
x2

1 + x2
2 − 2x2

3

)
,

and let u = (u1, . . . , u5). We define ϕ to be the restriction u|Σ2(1). Then ϕ : Σ2(1) →
Σ4(1/

√
3) is an isometric immersion (but not imbedding). Nevertheless, M̄ = ϕ(Σ2(1)) is a

minimal submanifold ofΣ4(1/
√

3). We show that M̄ is optimal with the constant coefficient
C = 1.

Lemma 9 Suppose (M, g) is a Riemannian manifold and u : M → R
d+1. Assume that the

image M̄ = u(M) is contained in Σ = Σd(ρ) and u : M → Σ is an imbedding. Denote
byΠ and Π̄ the second fundamental form of M̄ inΣ and M̄ in R

d+1, respectively. Then for
every x ′ ∈ Σ and for every basis (ei ) of Tx ′ M̄

〈Π(ei , ek),Π(e j , el)〉 = 〈Π̄(ei , ek), Π̄(e j , el)〉 − 1

ρ2 〈ei , ek〉〈e j , el〉,

where 〈, 〉 is the canonical inner product in R
d+1.

Proof Elementary exercise. ��

Proposition 2 If ϕ is the second standard immersion then the submanifold M̄ = ϕ(Σ2(1))
is optimal with the constant coefficient C = 1.
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Proof Let M = Σ2(1) andΣ = Σ4(1/
√

3). Adopt the notations from Lemma 9. Denote by
ϕ̃ the restriction of ϕ to lower half sphereΣ2−(1). Since ϕ(Σ2(1)) coincides with the closure
of ϕ̃(Σ2−(1)), it suffices to prove that M̄− = ϕ̃(Σ2−(1)) is optimal with the coefficient one.

Let f be the stereographic projectionΣ2(1) → R
2 from the north pole. Putψ = f ◦ ϕ̃−1.

Fix x ′ = ψ−1(t), where t = (t1; t2) ∈ R
2, |t | < 1. Let ei = (∂/∂ψi )(x ′). Put t2 = t2

1 + t2
2

and t4 = (t2)2. Since ϕ is an isometric immersion and f is the stereographic projection we
have

〈ei , e j 〉 = 4δi j

(t2 + 1)2
, i, j = 1, 2,

where δi j is the Kronecker symbol. In the light of Lemma 9 (with ρ = 1/
√

3), to finish the
proof it suffices to show that

〈Π̄(ei , ek), Π̄(e j , ek)〉 = (3δik + 1)
16δi j

(t2 + 1)4

= (3δik + 1)〈ei , e j 〉2, i, j, k = 1, 2. (18)

After elementary but laborious calculations we get

Π̄(e1, e1) = 4

(t2 + 1)4
4t2

(
1 − t2 − 2t2

1

) ; 8t1
(
1 − t2

1

) ; 4t1t2
(
t2
1 − t2

2 − 3
) ;

t4 − 8t2
1 t2

2 + 6t2
2 − 6t2

1 + 1;√
3

(
t4 − 2t2 − 4t2

1 + 1
)

and

Π̄(e2, e2) = 4

(t2 + 1)4
8t2

(
1 − t2

2

) ; 4t1
(
1 − t2 − 2t2

2

) ; 4t1t2
(
t2
2 − t2

1 − 3
) ;

6t2
2 − 6t2

1 + 8t2
1 t2

2 − t4 − 1;√
3

(
t4 − 2t2 − 4t2

2 + 1
)

and

Π̄(e1, e2) = 4

(t2 + 1)4
2t1

(
t2 − 4t2

2 + 1
) ; 2t2

(
t2 − 4t2

1 + 1
) ;

8t2
1 t2

2 − t4 + 1; 4t1t2
(
t2
1 − t2

2

) ;−4
√

3t1t2.

Now one can check that (18) holds. ��
Now let RP2 denote the real 2-dimensional projective space. We treat RP2 as a

Riemannian manifold whose metric g is given by the standard two-sheeted covering map
π̂ : Σ2(1) → RP2. Put ϕ̂(x̂) = ϕ(x) if x̂ = π̂(x). Since ϕ(x) = ϕ(−x), the map ϕ̂ is well
defined. Moreover, ϕ̂ : RP2 → Σ4(1/

√
3) is an imbedding. It is called the first standard

imbedding of RP2 into Σ4(1/
√

3).
Take constants q, α > 0. Suppose Cheeger-Gromoll type metrics h and h′ on T (RP2)

and T (Σ4(1/
√

3)) are given. If

(1) h = h1,q,α+1 and h′ = h′
1,q,α , or

(2) h = h1,q,1 and h′ = h′
0,q,1

then ϕ̂∗ is a conformal mapping, but not a homothety. Its dilatation is �(Z) = (1 + (α+ 1)
g(Z , Z))/(1 + αg(Z , Z)) in the case of (1) and �(Z) = 1 + g(Z , Z) in the case of (2).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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