Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

Geom Dedicata (2012) 157:227-237
DOI 10.1007/s10711-011-9607-y

ORIGINAL PAPER

Conformality of a differential with respect
to Cheeger-Gromoll type metrics

Wojciech Kozlowski - Kamil Niedziatlomski

Received: 25 September 2008 / Accepted: 10 April 2011 / Published online: 23 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We investigate conformality of the differential of a mapping between Riemann-
ian manifolds if the tangent bundles are equipped with a generalized metric of Cheeger-
Gromoll type.

Keywords Conformal mappings - Cheeger-Gromoll type metrics -
Second standard immersion

Mathematics Subject Classification (2000) 53C07 - 53A30

1 Introduction and preliminaries

Generalized metrics of Cheeger-Gromoll type or (p, g)-metrics &, 4, being a generalization
of Sasaki metric 25 [5] and Cheeger-Gromoll metric 2c¢ [4], have been recently introduced
by Benyounes et al. in [1] in the context of harmonic sections. In [2], the same authors studied
the geometry of the tangent bundle equipped with this kind of metric. It is worth noticing that
Munteanu in [7] investigated independently the geometry of tangent bundle equipped with a
certain deformation of Cheeger-Gromoll metric other that in [1]. Yet in [6], Walczak and the
first named author considered (p, ¢)-metrics in the context of Riemannian submersions and
Gromov-Hausdorft topology.

In this paper we introduced (p, ¢, o)-metrics which are more general than (p, g)-metrics.
(In contrast to [1] we do not assume that p, g and « are constant). We investigate relations
between conformality of a map ¢ : (M, g) — (M’, g’) between Riemannian manifolds and
its differential ® = ¢, : (TM,h) — (TM’, h’) between their tangent bundles equipped
with (p, ¢, a)-metric h and (r, s, 8)-metric /', respectively.
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Interesting enough, there is essential difference between the cases dim M =2 and
dim M > 3.

We prove that in the second case (Theorem 1) @ is conformal if and only if ¢ is a homothety
and totally geodesic immersion and some special relations between triples (p, g, «) and
(r, s, B) hold. In this case @ is also a homothety with the same dilatation as ¢.

However, in the first case it may happen that @ is conformal, although ¢ is not a totally
geodesic immersion (Theorem 2). Then @ is no longer a homothety. An example of such a
map is given.

1.1 Cheeger-Gromoll type metrics

Consider a Riemannian manifold (M, g), and let & : TM — M be its tangent bundle. The
Levi-Civita connection V of g, gives a natural splitting T(TM) = H @ V of the second
tangent bundle 7, : T(T M) — T M, where the vertical distribution V is the kernel of m,,
and the horizontal distribution is the kernel of, so called, connectionmap K. If X, Z € T, M
then by X%, we denote the vertical lift of X to the point Z, i.e., X is a tangent vector to the
curvet > Z+tX att = 0.Every A € Tz(T M) can be uniquely written as A = HA + VA,
where HA € Hz and VA € Vz denote its horizontal and vertical part respectively. The
vertical part of A is given by (K A)?Y,.
Recall that K is a smooth R-linear bundle morphism determined by the conditions:

(K1) Forevery Z € TM,K : Tz(TM) — Ty(z)M is the canonical isomorphism, i.e.,
K(X%) =X.
(K2) For every vector field X on M and every v € Ty M, K (X,v) = V, X.

Notice that (K1) and (K2) imply the following properties

(K3) For every Riemannian manifold (M’, g’) and every X, Z € T, M and every map
o:M— M, ‘P**X% = (W*X)Z*(Z)-
(K4) For every curve y in M and every vector field £ along y, K é) = V€.

Let p, g, « be smooth functions on M. Assume ¢ is non-negative and « is positive. Define
(p, q,a)-metrich = hp 4 o on T M as follows: For every A, B € Tz(TM), Z € T, M,

h(A, B) = g(mA, 4 B) + 0o (Z2)" (g(K A, KB) + q8(KA, Z)g(K B, Z)),

where wy(Z) = (1 + ag(Z, Z))~!. Here all functions P, q,« are evaluated at x. For any
P, q, o, the Riemannian metric %, 4 « is a special case of a metric considered in [7]. Notice
that if p, g, o are constants and « = 1 then &, , o becomes a metric from [1]. In particular,
ho,0,1 (resp. h1,1,1) is Sasaki metric hg [5] (resp. Cheeger-Gromoll metric hcg [4]).

1.2 Conformal mappings and metrics

Recall that a map ¢ : (M,g) — (M’, g’) between Riemannian manifolds is conformal
if ¢*g’ = Ag for some positive function A on M. The function X is called a dilatation.
A conformal mapping with constant dilatation is called a homothety. If dim M < dim M’
a conformal mapping ¢ is often called weakly conformal.

Let A be a strictly positive C°-function on M, and g* = Ag. The Levi-Civita connections
V and V* of g and g* are related as follows: V* = V + Si’,})‘ where § = Slgw’)‘ is a symmetric
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(1, 2)-tensor field given by (compare [3], p. 64):
1
SX,¥) = (XY + (Y)X = g(X, Vigrad ), XY € (M, TM).

Suppose ¢ : M — M’ is an immersion, e.g., conformal mapping. Then for every x € M
we may choose an open neighbourhood U, of x such that L,y = ¢(U,) (x' = ¢(x)) is a
regular submanifold of M’. Let j : L, — M’ be the inclusion map, and let g = j*¢’ be the
induced metric tensor on L,/. Moreover, let IT denote the second fundamental form of L.
We say that the immersion ¢ : (M, g) — (M, g') is totally geodesic if for every x € M, L./
is a totally geodesic submanifold of (M’, g’). One can prove the following

Lemma 1 Suppose ¢ : (M, g) — (M', g') is a conformal mapping with a dilatation A.
Choose x € M and put x' = ¢(x). Let y : (—€, €) — L, be a curve in M and & be a vector
field along y. Put y' = ¢ oy and §' = ¢,&. Then

Vit = 0 V€ + 0uS(7. 6).
where S = Si’,})‘, and V and V are the Levi-Civita connections of g and g respectively.

Adopt the notations from Lemma 1. Put Z = £(0), Z' = £/(0), v = y(0) and v = y/(0).
Suppose that a vector A € Tz(T M) is tangent to the curve £ (it is convenient to think
of vector fields along curves as of curves in the tangent bundle), i.e., A = § (0). Next,
let K and K’ denote connection maps induced from V and V' respectively. Moreover put
® = ¢, : TM — TM'. As a direct consequence of Lemma 1, the equation V' = V + IT
and properties of connection map we get

Lemma 2 The vectors K (A) and K' (D, A) are related as follows:
K'(®,A) = 9K (A) + ¢S, 2) + I (V', Z).

In particular, if A is horizontal then K'(®4A) = ¢, S(v, Z) + I (Vv', Z).

Remark 1 1f dim M = dim M’ then the term I7 is omitted.

Let U = Uy and L’ = Ly and let ' : TL' — L’ be a natural projection. Since
@ : U — L' is a conformal diffeomorphism, so is its inverse. In particular @ : TU — TL'
is a diffeomorphism. Therefore we have

Corollary 1 Take A’ € Tz (T L") such that v' = 7’ A. Then
K@ 'A) = ¢ K'(A) + ¢, 18", Z) — o, ', 20),
or equivalently
K@ 'A) = ¢, ' K(A) +¢. 1500, Z),
where S = Sf}“ with uw = (1/A) o 9=\, and K is the connection map induced from V.

Corollary 2 Suppose ¢ : (M, g) — (M’, g') is a conformal mapping and M is connected.
@, maps horizontal vectors onto horizontal vectors if and only if ¢ is a totally geodesic
homothety.
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Proof (=) If @, maps horizontal vectors onto horizontal vectors then by Lemma 2, ¢,
S + IT vanishes identically. Since ¢, S and IT are always orthogonal and a conformal
mapping is an immersion it follows that S and I7 vanish identically. Applying the
definition of S with X = Y = grad A, we get that grad X is the zero vector field.
Consequently, X is constant and therefore ¢ is a homothety. Since I7 vanishes, ¢ is
totally geodesic.

(«) Obvious. O

1.3 Algebraic lemmas

Suppose two finite dimensional real vector spaces V and W equipped with inner products
(,)v and (, ) are given. Let B : V xV — W be a symmetric, bilinear form on V. Moreover,
let C > 0. Consider a condition

(B(X,Z2),B(Y,Z))w =C(X,Y)v(Z,Z)y. (D
forevery X, Y, Z € V. Then, if X, Y are orthogonal
(B(X, X), B(Y,Y))w = —C{X, X)y(Y,Y)y. 2)

Lemma 3 Assume that B satisfies the condition (1). I[fdim V > 3 then C = 0. In particular,
B vanishes.

Proof Suppose that C # 0. Take an orthonormal pair X, Y. Let £ = B(X, X) and ¢ =
B(Y,Y).By (1) we have

(£.6)=(,5)=C=>0. (3)
In particular, £ # 0 and ¢ # 0. Applying (2) we see that
($,0)=—-C.
Using above and (3) one can obtain that £ = —¢. Next, since dim V > 3 we may find
Z € V such that X, Y, Z is an orthonormal triple. Let n = B(Z, Z). Then, by above
& = —¢ = n = —&, which contradicts the fact that £ #~ 0. O

Notice that the assumption dim V > 3 is essential. Namely we have

Lemma 4 (a) A symmetric bilinear form B : R x R?2 — RZ satisfies (1) if and only if there
exists an angle 6 such that

B(X,Y)=+J/Ce'?XY or B(X,Y)=+V/Ce?XY, )

where we identify R* with C.

(b) If dim V' = 2 and a non-zero symmetric bilinear form B : 'V x V. — W satisfies the
condition (1) then there exists a 2-dimensional subspace U of W such that the image of B is
equal to U and with respect to orthonormal bases of V and U, B is of the form (4).

Proof (a) Elementary exercise. (b) Take an orthonormal basis X, Y of V. Since B # 0, we

have C # 0. Consequently, £ = B(X, X),¢ = B(Y,Y) and n = B(X,Y) are nonzero
vectors of W of length +/C. By (1) we see that (&, ) = (¢, ) = 0. Moreover, (&, 7) = —C,
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by (2). It follows thaté = —¢. Consequently, the image U of B is a two-dimensional subspace
spanned by &, 1.

Now taking orthonormal bases of V and U, e.g., X, Y and E/\/a n/«/f, we reduce (b)
to (a). ]

2 Conformality of a differential

In this section all manifolds are connected. Let (M, g) and (M’, g’) be Riemannian manifolds
of dimensions m and m’, respectively. We assume that m, m’ > 2. Denote by V and V' the
Levi-Civita connections of g and g’, respectively. Equip their tangentbundles 7 : TM — M
and 7’ : TM' — M’ with (p, ¢, @)-metric h and (r, s, B)-metric h’, respectively.

Letog : M —> M and ® = ¢, : TM — TM'.Putg = (,) and g’ = (,)’. Denote by | - |
and | - |" the norms induced by g and g/, respectively. Moreover, denote by || - || and || - ||’ the
norms induced by & and 4, respectively.

In the paper we use the following notation: If ¢ (resp. @) is conformal mapping then its
dilatation will be always denoted by A (resp. A).

2.1 Technical lemmas

Lemma 5 Suppose that ¢ and @ are conformal mappings. Then for any Z € TyM and
x'=g(x),

(1+ a(x)lzlz)p(x)
(1 4+ 1(x)BGNZR) ™
g(x) = A(x)s(x). ©6)
% =

A(Z) = A(x) Q)

Proof Let X, Z € TyM. Applying conformality of @ and (K3) we have: || (¢« X );* 71

||d>*X%||’2 = A(Z)||X%||2. Using now the definitions of 4 and 4’ and conformality of ¢,
one can easily get

A X124+ 0(0)s () (X, Z)? IX1> +q(x)(X, Z)* N
(1 4+ 1()BGNIZ2) ) (1+a)z)2)"™
Taking nonzero vector X orthogonal to Z, (7) becomes (5). Next, let Z # 0. Putting
X = Z in (7) and comparing the result with (5) we get (6). m]

Lemma 6 If @ is conformal then so is ¢. Moreover A(x) = A(0y), x € M.
Proof Letx € Mand Z = 0, € Ty M.By(K3) and conformality of @, forevery X, Y € T, M
(0 X, 0:Y) =1 (((P*X);*Zy (W*Y);*Z)
= A2Dh (XY, Yy) = AZ)(X.Y).
O

Lemma 7 Adopt the notation from Sect. 1.2. Suppose that ¢ and ® are conformal mappings.
Then

(@) @ is a homothety.
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(b) Forevery x € M one of the following conditions holds:

p(x) =r@x") =0, ()]
px) =r) #0 and AB(x) = ox), )
p) =r(x) =1 and AB(x') # o), (10
p(x)=1 and r(x) =0. (11)

(c) Ifforevery x € M either (8) or (9) holds then ® is also a homothety with the dilatation
A = A Moreover, ¢ is totally geodesic.
(d) If (10) or (11) holds globally then for every v, w, Z € Ty M

(H(w*v5(p*z)7n((p*w’ W*Z)y = C<vs w><Z’ Z>s (12)

where C = M(a(x) — AB(x")) # 0 in the case (10), and C = la(x) # 0 in the case
(11). In particular, ¢ is not totally geodesic.

Proof Assume that v # 0. Take vectors A € Tz(TM) and A’ € Tz/(TL’) as in Lemma 1
and Corollary 1. Moreover we may assume that A and A’ are horizontal with respect to V
and V, respectively, i.e., K(A) = 0 and K (4) = 0.

Put U = Uyand L' = L. Let J : TL' — T M’ be the inclusion map. Put i = J*h'.
Since ¢ : (U, g) — (L', g) and @ : (TU, h) — (TL, h) are conformal diffeomorphisms,
soare ! : (L', 8) — (U,g)and @' : (T'L', h) — (TU, h). Dilatations of ¢! and &~!
are equal to . = (1/A) o9~ ' and L = (1/A) o &', respectively. Thus we have

2
DAl = A2)IIANI2,
_ N 2
o tA1F = iz AN

Put for a while § = S(v, Z), S_’ = S, Z") and IT" = M1V, Z'). Since m,A=v,
7'yA' =V, K(A)=0,K'(A") = K(A") + IT" = IT" and Z’ is orthogonal to IT’, we have

2 2
A" = vl

12

iz 12
AT = [v']

+wp(Z)" ||

Next applying Lemma 1 and Corollary 1, the equalities 7/, @, A = v’ and 7, @ 'A’ = v,
and the fact that ¢, S is orthogonal to IT" we get

72

10 A1 = 17 + 0p(Z) (RISP +532(0)1S. 2)* +117'1?)

72

127 A1 = 0P+ 0u (207 (RGNS + g2 @S’ 2)7)

Combining now above equalities and using the definitions of p and /i we get

72

Aol = 1017 + wp(Z) (MSP 4225, 22 +1117) (13)

1 1
— (17 + 0p@ Y 117) = 0P + 0 (2)7 (X|S’|’2

1
- +5(8, Z’>’2) )

where A = A(x) and A = A(Z). Multiplying equations (13) and (14) side by side we
conclude that

0= a)/g(Z’)r)\|v|2|.S’|2 + non-negative expression.
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Since v # 0,S(v,Z) = 0. Since x € M,v,Z € Ty M were arbitrary the tensor field
S vanishes identically. Therefore, A is a constant function and thus ¢ is a homothety. Hence
(a) is proved.

Substituting S = 0 in (13) we get

AZ)— A
|n(v/’ Z/)l/Z _ (Z) |U|2.
wg(Z)"
Applying Lemma 5 we get
[T (v, 9 2)|”” = M1+ a|ZIP)P — (1 +2BI1ZP)) v (15)

Using the facts that the map (v, Z) — |[IT(@sv, 9+ Z)| % is non negative and symmetric with
respect to v, Z, we conclude (b).

If (8) or (9) holds then by (5) it follows that A = A. Moreover, in these cases (15) becomes
[T (@yv, <,0>,<Z)|’2 = 0. This proves (C).

If (10) or (11) holds then it is an elementary computation to check that I7T satisfies (12),
proving (d). O

Lemma 8 Suppose that dim M > 3 or dim M’ < dim M + 1. Then under the assumptions
of Lemma 7 we have: ¢ is totally geodesic homothety, @ is a homothety and its dilatation
A is equal to A.

Proof 1t suffices to show that under the assumptions the conditions (10) and (11) cannot
hold. Then the assertion follows from Lemma 7 (a) and (c). Suppose that (10) or (11) holds.
Then by Lemma 7 (d) it follows that the symmetric bilinear form B : Tx\M x TyM — T M’
given by B(v, w) = IT(p4v, g,w) satisfies the condition (1) with C # 0. If dim M > 3 then
we have a contradiction with Lemma 3, if dim M’ < dim M + 1 then we have a contradiction
with Lemma 4. ]

2.2 Main results

We begin with some definitions. Suppose M is a submanifold of a Riemannian manifold
(M', g"). Suppose that a real-valued non-negative function C on M is given. We say that M
is optimal with a coefficient C if for every x’ € M the second fundamental form I7 of M at
x' satisfies (1) with the constant C(x’) that is

(T (u, w), (v, w)) = Cx)u, vi(w, w), u,v,we TX/A;[.

In particular, every totally geodesic submanifold is optimal with the coefficient 0. By
Lemma 3 and Lemma 4 it follows that if dim M > 3 or codim M < 1 then each optimal
submanifold is totally geodesic.

Remark 2 Observe thatif ¢ : M — M is a conformal diffeomorphism such that (12) holds
then M is optimal with the coefficient C /(X o e~ hH2.

Proposition 1 Suppose dim M = 2. Denote by k' and i the sectional curvatures of M’ and
M, and let o = Ty M. If M is optimal submanifold of M’ with a coefficient C then M is
minimal submanifold of M’ and k (0) = «'(0) — 2C(x). In particular, if C is constant and
M’ is a space of constant curvature then so is M.
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Proof The fact that M is minimal follows immediately from Lemma 4: it suffices to calculate
the trace of the bilinear form given by (4). The second statement follows from (1), (2) and
the Gauss Equation. O

Suppose now that two Riemannian manifolds (M, g) and (M’, g’) are given and dim M <
dim M’. Equip their tangent bundles T M and T M’ with (p, g, «)-metric h and (r, s, 8)-met-
ric h’ respectively. Suppose next that the functions p, g, r, s, o, 8 are constant, and ¢ : M —
M’ is an imbedding (injective immersion). Let M = o(M).

Theorem 1 LetdimM >3 ordimM’ <dim M + 1.

(I)  Suppose that ¢ is a conformal mapping with a dilatation A. Then ® = ¢, : TM —
TM' is conformal if and only if g = A(s o ¢~ 1), ¢ is a homothety, M is totally
geodesic and for every x € M(x' = ¢(x)) one of the conditions (8) or (9) holds.

I) If @ is a conformal mapping then ¢ and ® are homotheties and A = \.

Theorem 2 Letdim M = 2 and dim M’ > dim M + 2.

() Suppose that ¢ is a conformal mapping with a dilatation 1. Then @ = ¢ : TM —
T M’ is conformal if and only if ¢ is a homothety, ¢ = A(s o ¢~ 1), M is optimal with
the coefficient

1
C = x ((pot) o g071 - k,Br)

and for every x € M(x' = @(x)) one of the properties (8)—(11) is satisfied.
(V) Suppose @ is a conformal mapping. Then ¢ a homothety and

(IV1) If for every x € M one of the conditions (8) or (9) holds then ® is also a
homothety and A = A.

(IV2) If one of the conditions (10) or (11) holds globally then ¢ is a minimal immer-
sion and for every plane 0 = ¢, (TyM), x € M, the Gauss curvature k(o) of
M is

k(o) = Ak’ (0) — 2C (p(x))A, (16)

where k'(o) is the Gauss curvature of M'. Moreover, ® is not a homothety.
Its dilatation A is

1+alx)g(Z, 2)
L+ 2B (x)g(Z, 2)’

A(Z) = A ZeT M, x = opx). 17
Proof of Theorem 1 and Theorem 2 (1, 1Il =) Suppose ¢ and @ are conformal mappings.
By Lemma 7, ¢ is a homothety and for every x € M (x’ = ¢(x)) one of the conditions
(8)-(11) holds. By Lemma 5, ¢ = A(s o <p_1). IfdmM > 3ordmM < dmM + 1,
by Lemma 7 (d) and Lemma 8 conditons (10) and (11) cannot hold. Therefore Lemma 7 (c)
implies that M is totally geodesic. Moreover, if (10) or (11) is satisfied then by Lemma 7 (d)
and Remark 2, M is optimal with the coefficient C = (1/A)((pa) o o~ —2Br).

(I, IIT <) Taking horizontal (resp. vertical) A € Tz T M, computing h'(P, A, ®,A) and
applying relations between p, ¢, r, s, «, f and A one can conclude that @ is con-
formal.

(II) Suppose @ is conformal. By Lemma 6, ¢ is also conformal. Therefore (I) and
Lemma 5 imply that @ and ¢ are homotheties and A = A.
(IV) As above we conclude that ¢ is conformal.
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(IV1) Itis a consequence of Lemma 7 (c).

(IV2) Suppose for every x € M one of the conditions (10) or (11) holds. By Propo-
sition 1, (I) and the fact that the curvature under the action of a homothety with
dilatation A is scaled by 1/A, ¢ is a minimal immersion and (16) holds. Conditions
(10), (11) and equation (5) imply (17). ]

As a direct consequence of of Theorem 1 we obtain

Corollary 3 Suppose dim M > 3 ordim M’ <dimM + 1. Let ¢ : (M, g) — (M', g') be
an imbedding. Then we have:

(@) @:(TM,hs) — (TM',h's) is conformal if and only if ¢ is totally geodesic homothety.

(b)y @ : (TM,hcg) — (TM',h cg) is conformal if and only if ¢ is totally geodesic
isometric imbedding.

() @:(TM,hcg) — (TM', I's) is never conformal.

2.3 An example to Theorem 2

It is important to show that there is essential difference between Theorems 1 and 2. To do
this we give an example of 2-dimensional manifold M, 4-dimensional manifold M" and an
immersion ¢ : M — M’ such that M = ¢ (M) is optimal but not totally geodesic.

Let X9 (p) denote Euclidean d-dimensional sphere of radius p centred at the origin in
R4+ Recall (see [3], Chapter 4 §5 page 139) that the second standard immersion of X 2(1)
itisamap ¢ : >4 - 24(1/ \/§) defined as follows: Consider harmonic homogeneous
polynomials u;,i =1, ..., 5, in R3 given by

Up = Xx2Xx3, Uz = X1X3, U3 = X1X2,

1 V3
u4:§(x12—x%), u5:?(x]2+x22—2x§),
and let u = (uy, ..., us). We define ¢ to be the restriction u|22(1). Then ¢ : 221 —

>4 /ﬁ) is an isometric immersion (but not imbed_ding). Nevertheless, M = ¢(X%(1))isa
minimal submanifold of X4(1/ V/3). We show that M is optimal with the constant coefficient
CcC=1.

Lemma 9 Suppose (M, g) is a Riemannian manifold and u : M — RIHL Assume that the
image M = u(M) is contained in X = Ed(,o_) and u : M — X is an imbedding. Denote
by IT and I1 the second fundamental form of M in X and M in RYHL respectively. Then for
every x' € X and for every basis (e;) of Ty M

_ _ 1
([ (ei, ex), I(ej, e)) = (I1(e;, ex), [1(ej, er)) — ?(ei, ex)lej, er),

where {(, ) is the canonical inner product in R+,
Proof Elementary exercise. O

Proposition 2 If ¢ is the second standard immersion then the submanifold M = ¢(¥ (1)
is optimal with the constant coefficient C = 1.
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Proof Let M = ¥2(1) and ¥ = X*(1/+/3). Adopt the notations from Lemma 9. Denote by
¢ the restriction of ¢ to lower half sphere X 2(1). Since (X 2(1)) coincides with the closure
of @(23(1)), it suffices to prove that M_ = (ZJ(Z‘E(I)) is optimal with the coefficient one.

Let f be the stereographic projection £2(1) — R from the north pole. Puty = fo@~!.
Fix x' = ¢~ 1(r), where t = (t1;0) € R, |t| < 1. Lete; = (3/dV:)(x"). Put 1> = 7 + 13
and r* = (r)2. Since ¢ is an isometric immersion and f is the stereographic projection we
have

46;;

(ei,ej) = @+ 02 i,j=12,
where §;; is the Kronecker symbol. In the light of Lemma 9 (with p = 1/ «/§), to finish the

proof it suffices to show that

_ _ 166;;
(M (ei, ex), (ej, ex)) = (3dik + 1)( 1)4
= B8k + Dieie))®, i, j.k=1,2. (18)
After elementary but laborious calculations we get
_ 4 2 2 2 .
ey, e)) = m% (1—1t —211) 8 (1 —tl) anty (tf —15 —3);
t* — 81} + 665 — 61F + 1; /3 (1 — 207 —def + 1)
and
= 4 22
(e, e2) = WSQ (1—13)54n (1 =12 —263) ;41 (15 — 1f = 3);
613 — 617 + 86703 — 1 — 1; V3 (r* — 2 — 413 +1)
and
> 4 2 2 . 2 2 .
(e, e2) = mzrl (t° =415 +1): 20 (17 — 417 + 1) ;
81763 — 1 + 1 4nn (i — 13) s =431
Now one can check that (18) holds. ]

Now let RP? denote the real 2-dimensional projective space. We treat RP? as a
Riemannian manifold whose metric g is given by the standard two-sheeted covering map
7 X2(1) - RP2. Put (%) = ¢(x) if £ = 7 (x). Since p(x) = ¢(—x), the map ¢ is well
defined. Moreover, ¢ : RP? — X*(1/+/3) is an imbedding. It is called the first standard
imbedding of RP? into X*(1/+/3).

Take constants ¢, o > 0. Suppose Cheeger-Gromoll type metrics 4 and 2’ on T (RP?)
and T(X*(1/+/3)) are given. If

(1) h=higaqrandh’ =h'y 44, or
(2) h=hy4,1and h = th.q,l

then @, is a conformal mapping, but not a homothety. Its dilatation is A(Z) = (1 + (¢ + 1)
g(Z,2))/(1 +ag(Z, 7)) in the case of (1) and A(Z) = 1+ g(Z, Z) in the case of (2).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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