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Abstract

Background: A heat shock response model of Escherichia coli developed by Srivastava, Peterson, and Bentley (2001)
has multiscale nature due to its species numbers and reaction rate constants varying over wide ranges. Applying the
method of separation of time-scales and model reduction for stochastic reaction networks extended by Kang and
Kurtz (2012), we approximate the chemical network in the heat shock response model.

Results: Scaling the species numbers and the rate constants by powers of the scaling parameter, we embed the
model into a one-parameter family of models, each of which is a continuous-time Markov chain. Choosing an
appropriate set of scaling exponents for the species numbers and for the rate constants satisfying balance conditions,
the behavior of the full network in the time scales of interest is approximated by limiting models in three time scales.
Due to the subset of species whose numbers are either approximated as constants or are averaged in terms of other
species numbers, the limiting models are located on lower dimensional spaces than the full model and have a simpler
structure than the full model does.

Conclusions: The goal of this paper is to illustrate how to apply the multiscale approximation method to the
biological model with significant complexity. We applied the method to the heat shock response model involving 9
species and 18 reactions and derived simplified models in three time scales which capture the dynamics of the full
model. Convergence of the scaled species numbers to their limit is obtained and errors between the scaled species
numbers and their limit are estimated using the central limit theorem.

Keywords: Multiscale, Markov chains, Chemical reaction, Reaction networks, Heat shock

Background
Stochasticity may play an important role in biochemical
systems. For example, stochasticity may be beneficial to
give variability in gene expression, to produce population
heterogeneity, and to adjust or respond to fluctuations in
environment [1]. We are interested in local dynamics of
biochemical networks involving some species with a small
number of molecules so that the system is assumed to
be well-mixed and relative fluctuations of small species
numbers may play a role in the system dynamics.
The conventional stochastic model for the well-stirred

biochemical network is based on the chemical master
equation. The chemical master equation governs the evo-
lution of the probability density of species numbers and
is expressed as the balanced equation between influx and
outflux of the probability density. When the biochemical
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network involves many species or bimolecular reactions,
it is rarely possible to obtain an exact solution of the mas-
ter equation in a closed form. Instead of searching for
the solution of the master equation, stochastic simulation
algorithms are used to obtain the temporal evolution of
the species numbers. For example, Gillespie’s Stochastic
Simulation Algorithm (SSA, or the direct method) is well
known [2,3] and provides a realization of the exact tra-
jectory of the sample path for the species numbers. As
the biochemical network has more species and reactions,
SSA becomes computationally expensive and more effi-
cient algorithms were suggested by many authors [4-6].
The detailed review of stochastic simulation methods,
stochastic approximations, and hybrid simulation meth-
ods is given in [7]. For models with well-separated time
scales, numerous authors suggested stochastic simula-
tion algorithms for biochemical reaction networks by
assuming that “fast” subnetworks have reached a “par-
tial equilibrium” [6] or a “quasi-steady state” [4]. Using
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these assumptions, the approximate stochastic simula-
tion algorithms involve a reduced number of species or
reactions.
On the other hand, Ball et al. [8] described the state

of the biochemical reaction network in the well-stirred
system directly using stochastic equations for species
numbers, and suggested an approximation of the reac-
tion network via limiting models derived using different
scalings for the species numbers and for the reaction
rate constants. Kang and Kurtz [9] extended this multi-
scale approximation method and gave a systematic way to
obtain limiting models in the time scales of interest. Con-
ditions are given to help identify appropriate values for a
set of scaling exponents which determine the time scale
of each species and reaction. Using this method, nonsta-
tionary behavior of biochemical systems can be analyzed.
Moreover, application of the method is flexible in the
sense that the method does not require the exact param-
eter values but gives approximations valid for a range of
parameter values. More recently, Crude et al. [10] also
proposed a reduction method to derive simplified mod-
els with preserving stochastic properties and with key
parameters using averaging and hybrid simplification.
The multiscale approximation method in [9] requires

consideration of magnitude of both species numbers and
rate constants of the reactions involving the correspond-
ing species. When a moderately fast reaction involves two
species, one with a small number of molecules and the
other with a large number of molecules, the effects of
this reaction on these species are different. Net molecule
changes of species with large numbers due to the reac-
tion is less noticeable than those of species with small
numbers. Therefore, though the same reaction governs
these species, their time scales may be different from each
other. Letting N0 be a fixed constant and choosing a large
value for N0, for example N0 = 100, we express magni-
tudes of species numbers and reaction rate constants in
terms of powers of N0 with different scaling exponents.
For instance, 1 to 10 molecules are expressed as 1 × N0

0
to 10 × N0

0 molecules, 500 to 800 molecules are rewritten
as 5 × N0 to 8 × N0 molecules, and 0.0002 sec becomes
2×N−2

0 sec. AssumingN0 is large, we replaceN0 by a large
parameter N and stochastic equations for species num-
bers are expressed in terms of N. Then, N is an analogue
of 1/ε where ε is a small parameter in perturbation theory.
A specific time scale of interest is expressed in terms

of a power of N, and its exponent contributes to reac-
tion rates due to change of variables in time. For each
species (or linear combination of species), we compare a
power of N for the species number and those for reac-
tion rates involving this species. Consider a case when
the power for the species number is larger than those for
the rates of all reactions where the species is involved.
Then net molecule changes due to the reactions are not

large enough to be noticeable in this time scale, and the
species number is approximated as constant. Next, con-
sider a case when the power for the species number is
smaller than those for some reaction rates involving the
species. In this case, the species number fluctuates very
rapidly due to the fast reactions in this time scale, and the
averaged behavior of the species number can be described
in terms of other species numbers. The method of averag-
ing is similar to approximation of one variable in terms of
others using a quasi-steady state assumption. Last, when
the power for the species number is equal to those for
the rates of reactions where the species is involved, the
scaled species number is approximated by a nondegener-
ate limit describing nonstationary behavior of the species
number in the specific time scale of interest. The limit
could be described in various kinds of variables: a con-
tinuous time Markov chain, a deterministic model given
by a system of ordinary differential equations, or a hybrid
model with both discrete and continuous variables. Since
some of the scaled species numbers are approximated as
constants or the averaged behavior of some species num-
bers is expressed in terms of other variables, dimension of
species in the approximation of the biochemical network
is reduced.
In the multiscale approximation method, scaling expo-

nents for species numbers and for reaction rate constants
are not uniquely determined, since the choice of values for
the exponents is flexible. For example, 0.005 sec can be
expressed as 0.5×N−1

0 or 5×N−1.5
0 when N0 = 100. The

goal in this method is to find an appropriate set of scaling
exponents to obtain a nondegenerate limit of the scaled
species numbers. Orders of magnitude of species numbers
in the propensities affect reaction rates, and reaction rates
contribute to determining rates of netmolecule changes of
the species involved in the reactions. Since species num-
bers and reaction rates interact, it is not easy to determine
scaling exponents for all species numbers and reaction
rate constants so that the limits of the scaled species
numbers become balanced.
Kang and Kurtz [9] introduced balance conditions for

the scaling exponents, which help to determine values
for a set of exponents. The key idea in these condi-
tions is that for each species (or linear combination of
species) the maximum of scaling exponents in the rates
of the reactions where this species is produced should
be the same as that in the rates of the reactions where
this species is consumed, i.e. maximal production and
consumption rates of the species should be balanced in
the order of magnitude. In case the maximums of scal-
ing exponents for productions and consumptions are not
balanced for some species, an increase or decrease of
the scaled species number can be described by its limit
during a certain time period. However after this time
period, the scaled species number will either become zero
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or blow up to infinity. Therefore, if some of the scaled
species numbers are not balanced due to a difference
between orders of magnitude of production and con-
sumption rates, the chosen scaling is valid up to a certain
time scale. After this time scale, we need to choose dif-
ferent values for scaling exponents. In each time scale of
interest we derive a limiting model including a subset of
species and reactions, which is used to approximate the
state of the full reaction network. The multiscale approx-
imation method is applicable in case some of reaction
rates are not known accurately, since the chosen scaling
is applicable in some ranges of the parameters. There-
fore, based on the behavior of the limiting models, we
may be able to estimate behavior for a range of parameter
values without performing a huge number of stochastic
simulations.
The paper [9] included several simple examples of bio-

chemical networks involving two to four species, and
derived limiting models in each time scale of interest.
To apply this method, more scaling exponents must be
determined as the biochemical network involves more
species or reactions. Therefore, it is challenging to apply
the method to complex biochemical systems and to deter-
mine appropriate values for scaling exponents so that
the corresponding limiting models preserve important
dynamical features of the full system. One of the goals of
this paper is to illustrate how to apply this method to an
example with significant complexity. In this paper, using a
significantly complicated biochemical network, we derive
limiting models, show convergence of the scaled species
numbers to their limit, and estimate the error analytically
between the scaled species numbers and their limit. We
analyze a heat shock response model of Escherichia coli
(E. coli) developed by Srivastava, Peterson, and Bentley
in [11]. The model involves 9 species and 18 reactions
with significant complexity as shown in Figure 1, and it
has various time scales due to wide ranges of species
numbers and reaction rate constants. Because of various
scales involved, this model has been used as an exam-
ple to show accuracy of the stochastic simulation algo-
rithms which are developed to increase computational
efficiency using themultiscale nature of the chemical reac-
tion network [12,13]. Another version of a heat shock
response model of E. coli is studied in [6] using an accel-
erated SSA that also exploits the multiscale nature of the
system.
Applying the multiscale approximation method to the

heat shock response model of E. coli, we derive limiting
models in three time scales of our interests, which approx-
imate the full network given in Figure 1. Denote ∅ as
species we are not interested in. Let Si represent the ith
species and S23 be addition of species S2 and S3. A → B
denotes a reaction where onemolecule of speciesA is con-
verted to one molecule of species B. In the early stage

Figure 1 A chemical reaction network in the heat shock response
model of E. coli. A dotted line represents the effect of the species
acting as catalysts. κ ′

k ’s represent stochastic reaction rate constants.

of time period of order 1 sec, we obtain the following
reduced network:

∅ → S2 � S3,

∅ → S8.

The reduced network in the early stage has very sim-
ple structure without any bimolecular reactions, and all
reactions involved are either production from a source
or conversion. Moreover, the reduced network is well
separated into two due to independence of S8 from S2
and S3.
In the medium stage of time period of order 100 sec, the

full network is reduced to

∅ → S23,

∅ → S6
S8→ ∅, ∅ S23→ S6,

S7 → S6,

∅ → S8,

where a species over the arrow accelerates or inhibits
the corresponding reaction. The reaction does not change
this species number, but the propensity of the corre-
sponding reaction is a function of this species num-
ber. In this time scale, conversion between S2 and S3
occurs very frequently and S2 and S3 play a role as
a single “virtual” species rather than separate species.
The species numbers of S23 and S8 are described as
two independent birth processes and the species num-
ber of S7 is governed by conversion. In this time scale,
the species number of S8 is normalized and treated as
a continuous variable. The interesting thing is that the
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behavior of the species S8 which rapidly increases in
time is well approximated in both first and second time
scales.
In the late stage of time period of order 10,000

sec, we get a reduced network with more species
involved than those in the previous time scales. How-
ever, the reduced network is still much simpler than
the full network in Figure 1. At this time scale,
we get

∅ → S1 → ∅,

∅ S1→ S23
S8,S9→ ∅,

∅ S23→ S4 → ∅,

∅ S23→ S5 → ∅,

∅ → S8 → ∅, S8
S23→ ∅,

∅ S23→ S9.

As we see in Figure 1, the full network involves reac-
tions with more than two reactants or products. However,
all reactions in the reduced network at the times of order
10,000 sec consist of either production or degradation of
each species, though most of the species (6 species out of
9) are involved in the reduced model. As in the medium
stage of time period, S2 and S3 play a role as a single
species. In the early and medium stages of time period
propensities are in a form following the law ofmass action,
while in the late stage of time period the propensity for
degradation of S23 is a nonlinear function of the species
numbers similar to the reaction rate appearing in the
Michaelis-Menten approximation for an enzyme reaction.
The nonlinear function involves the species numbers of
S23, S8, and S9, which come from averaging of the species
numbers of S2 and S6 which fluctuate rapidly in the third
time scale. Similarly, the propensity of catalytic degrada-
tion of S8 is not proportional to the number of molecules
of S8.
In the late stage of time period of order 10,000 sec,

we study the error between the scaled species num-
bers and their limit analytically using the central limit
theorem derived in [14] and show that the error is of
order 10−1.

Methods
In the next several sections, we apply the multiscale
approximation to the heat shock response model of E. coli
and derive the limiting models. The multiscale approxi-
mationmethod is described in terms of the following steps
so that the method can be applied to the general cases.

1. Write a chemical reaction network involving s0
species and r0 reactions in the form of

s0∑
i=1

νikSi −→
s0∑
i=1

ν′
ikSi, k = 1, · · · , r0,

where νik and ν′
ik are nonnegative integers. Rearrange

the reactions so that the reaction rate constants are
decreasing monotonically as k gets large.

2. Derive a system of stochastic equations for species
numbers.

(a) Letting Xi(t) be the number of molecules of
species Si at time t, the corresponding
stochastic equation is

Xi(t) = Xi(0)+
r0∑
k=1

Rt
k(λk(X))(ν′

ik−νik), i = 1, · · · s0,

where Rt
k(·) counts the number of times that

the kth reaction occurs up to time t.
(b) λk(x) is determined by a stochastic version of

mass action kinetics, and is expressed as a
product of the rate constant and the numbers
of molecules of reactants. If the k th reaction
is second-order (

∑s0
i=1 νik = 2) with different

types of reactants, λk(x) = κ ′
kxpxq. When the

reactants are two molecules of the same
species, λk(x) = κ ′

kxp(xp − 1).

3. Derive a system of stochastic equations for the
normalized species numbers after a time change,
ZN ,γ (t).

(a) In the equation for Xi(t) obtained in Step 2
(a), replace Xi by ZN ,γ

i and divide reaction
terms by Nαi . In the kth reaction term, put
Nγ+ρk in the propensity and replace λk(X)

by λ̂k(ZN ,γ ). Then, we have

ZN ,γ
i (t) = ZN ,γ

i (0) + N−αi
r0∑
k=1

Rt
k(N

γ+ρk λ̂k(ZN ,γ ))

× (ν′
ik − νik), i = 1, · · · s0.

(b) In the equation in Step 3 (a),
ρk = βk + ∑s0

j=1 αjνjk .
(c) In the most reactions, λ̂k is obtained by

replacing κ ′
k by κk in λk . In case the kth

reaction is second-order with reactants of the
same species, λk(x) = κ ′

kxp(xp − 1) is
replaced by λ̂k(z) = κkzp(zp − N−αp).

4. Write a set of species balance equations and their
time-scale constraints.
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(a) Define 
+
i and 
−

i as subsets of reactions
where the species number of Si increases or
decreases every time the reaction occurs.
Comparing ρk ’s for k ∈ 
+

i and those for
k ∈ 
−

i , set the balance equations as

max
k∈
+

i

ρk = max
k∈
−

i

ρk , i = 1, · · · , s0.

(b) Time-scale constraints are given as

γ ≤ max
k∈
+

i ∪
−
i

ρk , i = 1, · · · , s0.

5. Find a minimum set of linear combinations of species
whose maximum of collective production (or
consumption) rates may be different from that of one
of any species. We construct a minimum set of linear
combinations of species by selecting a linear
combination of species if any reaction term involving
the species consisting of the linear combination is
canceled in the equation for the linear combination
of species.

6. For each selected linear combination of species, write
a collective species balance equation and its
time-scale constraint. They are obtained similarly to
the ones in Step 4 using subsets of reactions where
the number of molecules of linear combinations of
species either increases or decreases instead of using

+
i and 
−

i .
7. Select a large value for N0 and choose an appropriate

set of αi’s and βk ’s so that

(a) the species number Xi and the reaction rate
constant κ ′

k are approximately of orders Nαi
0

and Nβk
0 ;

(b) the normalized species number ZN ,γ
i and the

scaled reaction rate constant κk are of order 1;
(c) most of the balance equations obtained in

Steps 4 and 6 are satisfied;
(d) βk ’s are monotone decreasing among each

class of reactions which have the same
number of molecules of reactants.

8. Plugging the chosen values for αi’s and βk ’s in the
time-scale constraints obtained in Steps 4 and 6,
compute an upper bound (denoted as γ0) for a
time-scale exponent. Then, the chosen set of
exponents αi’s and βk ’s can be used for γ satisfying
γ ≤ γ0. For γ > γ0, select another set of exponents
αi’s and βk ’s using Steps 7 and 8.

9. Using each set of values for αi’s and βk ’s, identify a
natural time scale exponent of each species (denoted
as γi for species Si) so that γi satisfies

max
k∈
+

i ∪
−
i

(γi + ρk) = αi, i = 1, · · · , s0.

We collect γi’s with the same values, whose species
are in the same time scales in the approximation.

10. Modify αi’s and βk ’s so that the conditions in Step 7
are satisfied and that γi’s are divided into appropriate
number of values, which gives the number of time
scales, Nγ = Nγi , we are interested in.

11. For each chosen γ , derive a limiting equation for each
species Si with γi = γ . Using the stochastic equation
obtained in Step 3 (a), we let N go to infinity.

(a) For k ∈ 
+
i ∪ 
−

i , the k th reaction term
converges to zero if αi > γ + ρk .

(b) If αi = γ + ρk , the k th reaction term appears
as a limit in the limiting equation. The limit
of the kth reaction term is discrete if αi = 0,
while it is a continuous variable with the limit
of its propensity if αi > 0.

(c) There is no k satisfying αi < γ + ρk in the
equation for species Si with γ = γi due to the
definition of γi given in Step 9.

12. In the limiting equation for each species Si with
γi = γ , we approximate propensities in the reaction
terms. Suppose that the normalized species number
for Sj appears in the propensities.

(a) If γj > γ , the limit of the normalized species
number for Sj is its initial value.

(b) If γj = γ , the limit of the normalized species
number for Sj appears as a variable in the
propensities in the limiting equation.

(c) If γj < γ , the limit of the normalized species
number for Sj is expressed as a function of
the limits of the normalized species numbers
for Si with γi = γ . The function for Sj is
obtained by dividing the equation for Sj by

N
max

k∈

+
j ∪


−
j

(γ+ρk)−αj

and letting N go to
infinity.

13. If a limiting model is not closed, consider limiting
equations for some linear combinations of species
selected in Step 5 whose natural time scale exponents
are equal to the chosen γ .

The method for multiscale approximation described
above can be applied to general chemical reaction net-
works containing different scales in species numbers and
reaction rate constants. We can apply the method in case
the rates of chemical reactions are determined by law of
mass action and when there is no species whose number
is either zero or infinity at all times. As given in [9], in the
reaction network involving ∅ → S1, ∅ → S2, ∅ → S3,
S1 + S2 → ∅, and S1 + S3 → ∅, convergence of the limit
for the scaled species numbers may not be guaranteed at
some time scales. Suppose that production rate of S1 is
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larger than that of S2 but with the same order of magni-
tude, and that production rate of S3 is much smaller than
those of S1 and S2. Then,X1(t)may blow up to infinity and
X2(t) may go to zero at some time scales. In this case, the
method is not applicable.

Results and discussion
Model description
We analyze a heat shock response model of E. coli
developed by Srivastava, Peterson, and Bentley [11]. The
heat shock response model gives a simplified mechanism
occurring in the E. coli to respond to high temperature.
Heat causes unfolding, misfolding, or aggregation of pro-
teins, and cells overcome the heat stress by producing
heat shock proteins, which refold or degrade denatured
proteins. In E. coli, σ 32 factors play an important role
in recovery from the stress under the high temperature.
σ 32 factors catalyze production of the heat shock proteins
such as chaperon proteins and other proteases. In this
model, J denotes a chaperon complex, FtsH represents a
σ 32-regulated stress protein, andGroEL is a σ 32-mediated
stress response protein.

σ 32 factors are in three different forms, free σ 32 pro-
tein, σ 32 combined with RNA polymerase (Eσ 32), and
σ 32 combined with a chaperon complex (σ 32-J). Under
the normal situation without stress, most of the σ 32 fac-
tors combine with chaperon complexes and form σ 32-J.
A chaperon complex J keeps σ 32 factors in an inactive
form, and σ 32 factors can directly respond to the stress by
changing into different forms. When there exist σ 32 fac-
tors combined with chaperon complexes, FtsH catalyzes
degradation of σ 32 factors. Thus, if enough σ 32-regulated
stress proteins are produced, σ 32 factors are degraded.
Not only σ 32 factors, but recombinant proteins also

require chaperon complexes to form a complex so that
denatured protein can be fixed. Therefore, σ 32 factors and
recombinant proteins compete to bind chaperon com-
plexes, and different levels of binding affinity of recombi-
nant proteins to chaperon complexes change the evolution
of the system state. In the model, we assume that σ 32 fac-
tors and recombinant proteins have the same affinity to
bind to chaperon complexes. The system is sensitive to the
amount and forms of σ 32 factors: a small decrease of σ 32

factors causes a large reduction of production of chaperon
complexes and σ 32-regulated stress proteins, and the ratio
of three different forms of σ 32 factors determines system
dynamics in the stress response [11]. The total initial num-
ber of molecules of σ 32 factors in each cell is small [11]
(also see initial values for S2, S3, and S7 which are 1, 1, and
7 in Table 1), and the stochastic model is appropriate to be
considered.
The model involves 9 species and 18 reactions. Denote

s0 as the number of species and r0 as the number of reac-
tions. Let X(t) be a state vector whose ith component

Table 1 Species in the heat shock responsemodel of E. coli
and their initial values

X1 = # of S1 σ 32 mRNA X1(0) = 10

X2 = # of S2 σ 32 protein X2(0) = 1

X3 = # of S3 Eσ 32 X3(0) = 1

X4 = # of S4 FtsH X4(0) = 93

X5 = # of S5 GroEL X5(0) = 172

X6 = # of S6 J X6(0) = 54

X7 = # of S7 σ 32-J X7(0) = 7

X8 = # of S8 Recombinant protein X8(0) = 50

X9 = # of S9 J-Recombinant protein X9(0) = 0

represents the number of molecules of species Si at time t
for i = 1, · · · , s0. Define a random process which counts
the number of times that the kth reaction occurs by time
t as

Rt
k (λk(X)) ≡ Yk

(∫ t

0
λk(X(s)) ds

)
, k = 1, · · · , r0,

where λk(X) is the propensity of the kth reaction and
the Yk ’s are independent unit Poisson processes. There-
fore, Rt

k(·) is a nonnegative integer-valued random pro-
cess increasing by 1. As λk(·) gets large, the moment
when Rt

k(λk(·)) increases becomes more frequent. Let
νik (ν′

ik) be the number of molecules of Si that are con-
sumed (produced) in the kth reaction. Define νk (ν′

k) as
an s0-dimensional vector whose ith component is νik (ν′

ik).
Then, X(t) is given as

X(t) = X(0) +
r0∑
k=1

Rt
k (λk(X)) (ν′

k − νk). (1)

That is, species numbers at time t are expressed in terms
of their initial values and sum of the number of times that
each reaction occurs multiplied by net molecule changes
in the corresponding reaction. In our model, the system of
equations are derived using a set of reactions in Table 2 as:

X1(t) = X1(0) + Rt
13(κ

′
13) − Rt

14(κ
′
14X1),

X2(t) = X2(0) + Rt
3(κ

′
3X3) + Rt

4(κ
′
4X1) + Rt

5(κ
′
5X3)

+ Rt
6(κ

′
6X3) + Rt

7(κ
′
7X3) + Rt

8(κ
′
8X7) − Rt

2(κ
′
2X2)

− Rt
9(κ

′
9X2X6),

X3(t) = X3(0) + Rt
2(κ

′
2X2) − Rt

3(κ
′
3X3) − Rt

5(κ
′
5X3)

− Rt
6(κ

′
6X3) − Rt

7(κ
′
7X3),

X4(t) = X4(0) + Rt
6(κ

′
6X3) − Rt

18(κ
′
18X4),

X5(t) = X5(0) + Rt
5(κ

′
5X3) − Rt

16(κ
′
16X5),

X6(t) = X6(0) + Rt
7(κ

′
7X3) + Rt

8(κ
′
8X7) + Rt

12(κ
′
12X9)

+ Rt
15(κ

′
15X4X7) − Rt

9(κ
′
9X2X6) − Rt

10(κ
′
10X6X8)

− Rt
17(κ

′
17X6),
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Table 2 Reactions in the heat shock responsemodel of E.
coli

Reaction Transition

R1 ∅
gene−→ S8 Recombinant protein synthesis

R2 S2 −→ S3 Holoenzyme association

R3 S3 −→ S2 Holoenzyme disassociation

R4 ∅
S1−→ S2 σ 32 translation

R5 S3
gene−→ S2 + S5 GroEL synthesis

R6 S3
gene−→ S2 + S4 FtsH synthesis

R7 S3
gene−→ S2 + S6 J-production

R8 S7 −→ S2 + S6 σ 32-J-disassociation

R9 S2 + S6 −→ S7 σ 32-J-association

R10 S6 + S8 −→ S9 Recombinant protein-J association

R11 S8 −→ ∅ Recombinant protein degradation

R12 S9 −→ S6 + S8 Recombinant protein-J disassociation

R13 ∅
gene−→ S1 σ 32 transcription

R14 S1 −→ ∅ σ 32 mRNA decay

R15 S7
S4−→ S6 σ 32 degradation

R16 S5 −→ ∅ GroEL degradation

R17 S6 −→ ∅ J-disassociation

R18 S4 −→ ∅ FtsH degradation

In Reaction 5, 6, and 7, we assume that the number of molecules of each gene is
1 and that these reactions are effectively unimolecular. Similarly, Reactions 1 and
13 are treated as production from a source.

X7(t) = X7(0) + Rt
9(κ

′
9X2X6) − Rt

8(κ
′
8X7) − Rt

15(κ
′
15X4X7),

X8(t) = X8(0) + Rt
1(κ

′
1) + Rt

12(κ
′
12X9) − Rt

10(κ
′
10X6X8)

− Rt
11(κ

′
11X8),

X9(t) = X9(0) + Rt
10(κ

′
10X6X8) − Rt

12(κ
′
12X9).

(2)

κ ′
k represents the stochastic reaction rate constant for
the kth reaction, and their values from [11] are given in
Table 3.
We derive the limiting models in three time scales,

which approximate a full network in a certain time period
involving a subset of species and reactions. In what fol-
lows, Zγ

i is a limit of the scaled species number of Si at
some time scales depending on γ , and as γ gets larger the
times are in the later stage. Note that the exponent γ in
Zγ
i does not imply (Zi)γ but it shows dependence of Zγ

i
on γ . Let κk be a scaled reaction rate constant for the kth
reaction. In the first time scale (when the times are in the
early stage), the subnetwork governed by

Z0
2(t) = Z0

2(0) + Rt
3(κ3Z

0
3) + Rt

4(κ4Z
0
1(0)) − Rt

2(κ2Z
0
2),

Z0
3(t) = Z0

3(0) + Rt
2(κ2Z

0
2) − Rt

3(κ3Z
0
3),

Z0
8(t) = Z0

8(0) + Rt
1(κ1),

(3)

Table 3 Stochastic reaction rate constants in the heat
shock responsemodel of E. coli

Rates Rates

κ ′
1 4.00 × 100 κ ′

10 3.62 × 10−4

κ ′
2 7.00 × 10−1 κ ′

11 9.99 × 10−5

κ ′
3 1.30 × 10−1 κ ′

12 4.40 × 10−5

κ ′
4 7.00 × 10−3 κ ′

13 1.40 × 10−5

κ ′
5 6.30 × 10−3 κ ′

14 1.40 × 10−6

κ ′
6 4.88 × 10−3 κ ′

15 1.42 × 10−6

κ ′
7 4.88 × 10−3 κ ′

16 1.80 × 10−8

κ ′
8 4.40 × 10−4 κ ′

17 6.40 × 10−10

κ ′
9 3.62 × 10−4 κ ′

18 7.40 × 10−11

We convert deterministic rate constants in [11] using the volume of E. coliwhich
is assumed to be 1.5 × 10−15 L.

approximates the network when the times are of order 1
sec. Denote Z1

23 as the limit of the addition of the scaled
species numbers for S2 and S3. In the second time scale
(when the times are in the medium stage), the subnetwork
governed by

Z1
23(t) = Z1

23(0) + Rt
4(κ4Z

1
1(0)),

Z1
6(t) = Z1

6(0) + Rt
7

(
κ2κ7

κ2 + κ3
Z1
23

)
+ Rt

12(κ12Z
1
9(0))

+ Rt
15(κ15Z

1
4(0)Z1

7) − Rt
10(κ10Z

1
6Z

1
8),

Z1
7(t) = Z1

7(0) − Rt
15(κ15Z

1
4(0)Z1

7),

Z1
8(t) = Z1

8(0) + κ1t,

(4)

approximates the network at the times of order 100 sec.
In the third time scale, set the limit of the averaged scaled
species numbers of fast-fluctuating species S2, S3, and S6
as

Z̄2
2(t) ≡ κ3

κ2 + κ3
Z2
23(t),

Z̄2
3(t) ≡ κ2

κ2 + κ3
Z2
23(t),

Z̄2
6(t) ≡ κ7Z̄2

3(s) + κ12Z2
9(s)

κ10Z2
8(s)

.

When the times are in a late stage, the subnetwork gov-
erned by

Z2
1(t) = Z2

1(0) + Rt
13(κ13) − Rt

14(κ14Z
2
1),

Z2
23(t) = Z2

23(0) +
∫ t

0

[
κ4Z2

1(s) − κ3κ9
κ2 + κ3

Z2
23(s)

×
(

κ2κ7
κ2+κ3

Z2
23(s) + κ12Z2

9(s)
κ10Z2

8(s)

)]
ds

≡ Z2
23(0) +

∫ t

0

[
κ4Z2

1(s) − κ9Z̄2
2(s)Z̄

2
6(s)

]
ds,
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Z2
4(t) = Z2

4(0) +
∫ t

0

(
κ2κ6

κ2 + κ3
Z2
23(s) − κ18Z2

4(s)
)

ds

≡ Z2
4(0) +

∫ t

0

(
κ6Z̄2

3(s) − κ18Z2
4(s)

)
ds,

Z2
5(t) = Z2

5(0) +
∫ t

0

(
κ2κ5

κ2 + κ3
Z2
23(s) − κ16Z2

5(s)
)

ds

≡ Z2
5(0) +

∫ t

0

(
κ5Z̄2

3(s) − κ16Z2
5(s)

)
ds,

Z2
8(t) = Z2

8(0) +
∫ t

0

(
κ1 − κ2κ7

κ2 + κ3
Z2
23(s) − κ11Z2

8(s)
)
ds

≡ Z2
8(0) +

∫ t

0

(
κ1 − κ7Z̄2

3(s) − κ11Z2
8(s)

)
ds,

Z2
9(t) = Z2

9(0) +
∫ t

0

κ2κ7
κ2 + κ3

Z2
23(s) ds

≡ Z2
9(0) +

∫ t

0
κ7Z̄2

3(s) ds,

(5)

approximates the network at the times of order 10,000 sec.
Detailed derivation is given in the later sections. Note that
it is possible to identify different numbers of time scales
depending on the scaling of the species numbers and reac-
tion rate constants. In the heat shock response model of E.
coli, it is possible to obtain approximate models with two
or four time scales. However, if the number of time scales
are too many, the limiting model in each time scale may
involve one species and a few number of reactions and the
model in this case may not be interesting to consider.

Derivation of the scaled models
The stochastic equations given in Equations (2) describe
temporal evolution of the species numbers. For example,
the equations for species S2 and S3 are

X2(t) = X2(0) + Rt
3
(
κ ′
3X3

) + Rt
4
(
κ ′
4X1

) + Rt
5
(
κ ′
5X3

)
+ Rt

6
(
κ ′
6X3

) + Rt
7
(
κ ′
7X3

) + Rt
8
(
κ ′
8X7

)−Rt
2
(
κ ′
2X2

)
− Rt

9
(
κ ′
9X2X6

)
,

(6a)

X3(t) = X3(0) + Rt
2
(
κ ′
2X2

) − Rt
3
(
κ ′
3X3

) − Rt
5
(
κ ′
5X3

)
− Rt

6
(
κ ′
6X3

) − Rt
7
(
κ ′
7X3

)
.

(6b)

In Equation (6), species numbers of S2 and S3 are deter-
mined by the times when reactions occur and by the
number of times that reactions happen. On the other

hand, reaction time and frequency are determined by
propensities which are some functions of species num-
bers. Therefore, reaction rates and species numbers inter-
act one another. Reaction rates vary from O(10−11) to
O(1) as we see in Table 3, and species numbers in this
model are fromO(1) toO(104) as we see later in the simu-
lation of the full network.We express each species number
and rate constant in terms of powers of a common num-
ber with different weights on exponents. Define N0 = 100
as a fixed unitless constant used to express the magnitude
of the species numbers and the reaction rate constants.
Define αi for i = 1, · · · , s0 and βk for k = 1, · · · , r0 as the
scaling exponent for species Si and for the reaction rate
constant κ ′

k . We express the reaction rate constants in a
form of Nβk

0 κk where κk is of order 1 and is determined so
that κ ′

k = Nβk
0 κk . For example, we have κ ′

6 = 4.88 × 10−3

and we can choose β6 = −1 so that the reaction rate
is expressed as κ ′

6 = 0.488 × Nβ6
0 . Assuming that N0 is

large, we replaceN0 byN and express the process asXN
i (t)

to show dependence of the species numbers on N . Note
that {XN (t)} is a family of processes depending on N and
XN
i (t) = Xi(t) when N = N0. Then, the equation for XN

3
is given as

XN
3 (t)=XN

3 (0) + Rt
2

(
Nβ2κ2XN

2

)
− Rt

3

(
Nβ3κ3XN

3

)

− Rt
5

(
Nβ5κ5XN

3

)
−Rt

6

(
Nβ6κ6XN

3

)
−Rt

7

(
Nβ7κ7XN

3

)
,

where XN
3 (0) is defined later so that XN

3 (0) = X3(0) when
N = N0. Since the numbers of molecules of species are
in different orders of magnitude, we scale the number of
molecules of the ith species by Nαi and set a normalized
species number as

ZN
i (t) = N−αiXN

i (t).

The ith species number may have different orders of mag-
nitude at different times so αi may have different values
for different time scales. Now, we set the initial values as

XN
i (0) ≡

⌊(
N
N0

)αi

Xi(0)
⌋
, (7)

so that XN0
i (0) = Xi(0) and limN→∞ ZN

i (0) = limN→∞
N−αiXN

i (0) = N−αi
0 Xi(0).

Next, we scale the propensities of reactions by replac-
ing XN

i byNαiZN
i and replacing κ ′

k byN
βkκk . For example,

consider the 9th reaction term in (6a). Replacing κ ′
9 by

Nβ9κ9, XN
2 by Nα2ZN

2 , and XN
6 by Nα6ZN

6 , the 9th reaction
term becomes

Rt
9(κ

′
9X

N
2 XN

6 ) = Rt
9(N

β9+α2+α6κ9ZN
2 Z

N
6 ). (8)

For simplicity, set ρ9 = β9 + α2 + α6 and define a scaling
exponent in the propensity of the kth reaction term as

ρk ≡ βk + νk · α,
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where α = (α1, · · · ,αs0)
T and νk = (ν1k , · · · , νs0k)T . Here,

νik gives the number of molecules of species Si consumed
in the kth reaction. Then, (8) is rewritten as

Rt
9

(
κ ′
9X

N
2 XN

6

)
= Rt

9

(
Nρ9κ9ZN

2 Z
N
6

)
.

Dividing (6a) by Nα2 and (6b) by Nα3 and scaling the
propensities, we get

ZN
2 (t) = ZN

2 (0) + N−α2
[
Rt
3

(
Nρ3κ3ZN

3

)
+Rt

4

(
Nρ4κ4ZN

1

)

+ Rt
5

(
Nρ5κ5ZN

3

)
+ Rt

6

(
Nρ6κ6ZN

3

)

+ Rt
7

(
Nρ7κ7ZN

3

)
+ Rt

8

(
Nρ8κ8ZN

7

)

−Rt
2

(
Nρ2κ2ZN

2

)
− Rt

9

(
Nρ9κ9ZN

2 Z
N
6

)]
,

(9a)

ZN
3 (t) = ZN

3 (0) + N−α3
[
Rt
2

(
Nρ2κ2ZN

2

)
−Rt

3

(
Nρ3κ3ZN

3

)

− Rt
5

(
Nρ5κ5ZN

3

)
− Rt

6

(
Nρ6κ6ZN

3

)

−Rt
7

(
Nρ7κ7ZN

3

)]
.

(9b)

For each reaction, ρk is given in terms of αi and βk in the
Additional file 1: Table S1.
We are interested in dynamics of species numbers

ZN
2 (t) and ZN

3 (t) in various stages of time period. In
the early stage of time period, normalized species num-
bers of S2 and S3 are very close to their scaled initial
values, since these species numbers have not changed
yet. In the medium stage of time period, the normalized
species numbers of S2 and S3 are asymptotically equal to
non-constant limits. In the late stage of time period, the
normalized species numbers of S2 and S3 fluctuate very
rapidly and their averaged behavior is captured in terms of
some function of other species numbers.
We want to express the time scale of each species in

terms of power of N . First, we express order of magni-
tude of a specific time period of interest as a power of N
with a time scale exponent γ . Applying a time change by
replacing t by Nγ t in ZN

i (t), we define a variable for the
normalized species numbers after a time change as

ZN ,γ
i (t) ≡ N−αiXN

i (tNγ ) = ZN
i (tNγ ). (10)

Then, ZN ,γ
i (t) gives a normalized species number at the

times of order Nγ . A natural time scale of Si is the time
when ZN ,γ

i (t) has a nonzero finite limit which is not
constant and of order 1.

Changing a time variable by replacing t by Nγ t in (9a)
and (9b), the normalized species numbers of S2 and S3
after a time change satisfy

ZN ,γ
2 (t) = ZN ,γ

2 (0) + N−α2
[
Rt
3

(
Nγ+ρ3κ3ZN ,γ

3

)
+ Rt

4

(
Nγ+ρ4κ4ZN ,γ

1

)
+ Rt

5

(
Nγ+ρ5κ5ZN ,γ

3

)
+ Rt

6

(
Nγ+ρ6κ6ZN ,γ

3

)
+ Rt

7

(
Nγ+ρ7κ7ZN ,γ

3

)
+ Rt

8

(
Nγ+ρ8κ8ZN ,γ

7

)
− Rt

2

(
Nγ+ρ2κ2ZN ,γ

2

)
− Rt

9

(
Nγ+ρ9κ9ZN ,γ

2 ZN ,γ
6

)]
,

(11a)

ZN ,γ
3 (t) = ZN ,γ

3 (0) + N−α3
[
Rt
2

(
Nγ+ρ2κ2ZN ,γ

2

)
− Rt

3

(
Nγ+ρ3κ3ZN ,γ

3

)
− Rt

5

(
Nγ+ρ5κ5ZN ,γ

3

)
−Rt

6

(
Nγ+ρ6κ6ZN ,γ

3

)
− Rt

7

(
Nγ+ρ7κ7ZN ,γ

3

)]
,

(11b)

where Nγ in each propensity comes from the change of
the time variable. Here, the initial values may depend on
γ , since we can choose different values for αi for each γ

due to changes in order of magnitude of species numbers
in time. The stochastic equations after scaling and a time
change for all species are given in the Additional file 1:
Section 1.

Balance conditions
Our goal is to approximate dynamics of the full network in
the heat shock response model of E. coli in specific times
of interest in terms of simplified subnetworks preserv-
ing significant biological features. In each time period of
interest, we obtain a nondegenerate limiting model which
is not equal to zero and does not blow up to infinity. In
this section, we introduce balance conditions which help
us to choose appropriate values for the scaling exponents
αi’s and βk ’s so that the limit is nonzero finite. For each
time period of interest of order Nγ

0 where N0 = 100, we
choose values for scaling exponents so that orders of mag-
nitude of the species number for Si and the kth reaction
rate constant are about Nαi

0 and Nβk
0 , respectively. That is,

ZN0,γ
i (t) = XN0

i (tNγ
0 )

Nαi
0

= O(1),

κk = κ ′
k

Nβk
0

= O(1).

It is natural to choose βk ’s in monotone decreasing man-
ner in k, since κ ′

k ’s are in monotone decreasing order
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as shown in Table 3. In Table 3, the production rates
from a source are the rates per second. The unimolecu-
lar reaction rates are the rates per molecule per second
while the bimolecular reaction rates are the rates per a
pair of molecules per second. Since the reaction rates are
expressed in different units, we separate rate constants
into three classes based on the number of reactants and
assume that monotonicity of βk ’s holds in each class of
reactions. In other words, we choose βk ’s so that

β1 ≥ β13,
β2 ≥ β3 ≥ β4 ≥ β5 ≥ β6 ≥ β7 ≥ β8 ≥ β11≥β12≥β14

≥ β16 ≥ β17 ≥ β18, and
β9 ≥ β10 ≥ β15.

Next, in order to make the normalized specie number
ZN ,γ
i (t) balanced, it is required that the rates of produc-

tion and consumption of Si should be in the same order
of magnitude. If the order of magnitude of production
rate is larger than that of consumption, the normalized
species number asymptotically goes to infinity. In the
opposite case, the normalized species number asymptoti-
cally becomes zero. Therefore, for each species Si, we set
the balance equation for αi’s and βk ’s so that the maximal
exponent in the propensities of the reactions producing Si
is equal to that in the propensities of the reactions con-
suming Si. For example, to obtain a balance equation for
species S2, we compare the scaling exponents in propen-
sities of reactions involving S2 using (11a), and set the
maximal exponents of production and consumption of S2
equal. Similarly, using (11b), we set the maximal expo-
nents in the production rates and the consumption rates
of S3 equal. Then, the balance equations for species S2 and
S3 are

max(ρ3, ρ4, ρ5, ρ6, ρ7, ρ8) = max(ρ2, ρ9), (12a)

ρ2 = max(ρ3, ρ5, ρ6, ρ7). (12b)

If the maximal orders of magnitudes of production and
consumption rates for S2 are different from each other, the
species number of S2 should be large enough so that a dif-
ference between production and consumption of Si is not
noticeable. In other words if αi’s and βk ’s do not satisfy
(12a), α2 should be at least as large as the scaling expo-
nents located in all reaction terms in (11a) to prevent the
limit becoming zero or blowing up to infinity. Similarly,
in case (12b) is not satisfied, α3 should be at least as large
as the scaling exponents located in the reaction terms in
(11b) to prevent the limit becoming zero or blowing up to
infinity.

α2 ≥ γ + max(ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9),
α3 ≥ γ + max(ρ2, ρ3, ρ5, ρ6, ρ7),

(13)

Solving (13) for γ , we get the following time-scale
constraints:

γ ≤ α2 −max(ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9) ≡ u2, (14a)

γ ≤ α3 − max(ρ2, ρ3, ρ5, ρ6, ρ7) ≡ u3. (14b)
Inequalities in (14) mean that if maximal production and
consumption rates are not balanced either for S2 or S3,
the chosen set of values for scaling exponents can be used
to approximate the dynamics of the full network up to
times of order Nu2 or Nu3 . For times later than those of
order Nu2 or Nu3 , we need to choose another set of val-
ues for scaling exponents based on the balance equations.
We call the balance equation and the time-scale constraint
for each species as the species balance condition. If either
(12a) or (14a) is satisfied, we say that the species balance
condition for S2 is satisfied.
Even though species balance conditions for S2 and S3

are satisfied, the limit of the normalized species numbers
for S2 or S3 may become degenerate. Consider addition
of species S2 and S3 as a single virtual species, and com-
pare the collective rates of production and consumption
of this species. Recall that S23 denotes addition of species
S2 and S3. Since production of one species is canceled
by consumption of the other species, maximal production
rate of S23 may be different from that of S2 or S3. Sup-
pose that the maximal collective rates of production or
consumption of S23 are slower than the maximal produc-
tion or consumption rates of S2 and S3. Also, suppose that
the maximal collective rates of production and consump-
tion of the complex have different orders of magnitude.
Then, a limit of the normalized species number of S23 can
be zero or infinity, even though the species balance con-
ditions for S2 and S3 are satisfied. Therefore, we need an
additional condition to obtain balance between collective
production and consumption rates for S23. To obtain a bal-
ance equation for S23, we unnormalize (11a) and (11b) by
multiplying Nα2 and Nα3 , respectively. Adding the unnor-
malized equations for species S2 and S3 and dividing it by
Nmax(α2,α3), we get

N−max(α2,α3)
(
Nα2ZN ,γ

2 (t) + Nα3ZN ,γ
3 (t)

)
= N−max(α2,α3)

(
Nα2ZN ,γ

2 (0) + Nα3ZN ,γ
3 (0)

)
+ N−max(α2,α3)Rt

4(N
γ+ρ4κ4ZN ,γ

1 )

+ N−max(α2,α3)Rt
8(N

γ+ρ8κ8ZN ,γ
7 )

− N−max(α2,α3)Rt
9(N

γ+ρ9κ9ZN ,γ
2 ZN ,γ

6 ).
(15)

Comparing the maximal scaling exponents of production
and consumption of S23 in (15), a balance equation for S23
is given as

max(ρ4, ρ8) = ρ9. (16)
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In case (16) is not satisfied, the order of magnitude of
the species number for S23 should be larger than those
of collective production and consumption rates so that
a difference between production and consumption is not
noticeable. This gives

max(α2,α3) ≥ γ + max(ρ4, ρ8, ρ9). (17)

Solving (17) for γ , we get

γ ≤ max(α2,α3) − max(ρ4, ρ8, ρ9) ≡ u23. (18)

Similarly to the time-scale constraint in the species bal-
ance condition, (18) implies that if maximal collective
production and consumption rates for S23 are not bal-
anced, our choice of values for scaling exponents are valid
up to times of order Nu23 .
We call (16) and (18) the collective species balance con-

dition for S23, that is, either (16) or (18) must hold. The
species balance conditions for all species and the col-
lective species balance conditions for all positive linear
combinations of species should be satisfied to obtain a
nondegenerate limit of ZN ,γ

i (Condition 3.2 in [9]). Con-
dition 3.2 can be reduced by Lemma 3.4-3.8 and Remark
3.9 in [9]. A key idea is to find a minimum subset of lin-
ear combinations of species so that production of one
species is canceled by consumption of the other species
when we combine the species. In that case, maximal
collective production rate of the linear combination of
the species may be different from that of each species.
Therefore, species balance conditions may not imply the
collective species balance condition for the linear com-
bination of the species. For example, a collective species
balance condition for addition of S2 and S3 should be sat-
isfied, since reactions producing S2 or S3 may not increase
the species number of S23. In Table 4, we choose linear
combinations of species whose collective species balance
conditions may not be satisfied by the species balance
conditions. For other linear combinations of species, their
collective species balance conditions are derived from the
ones in Table 4. Satisfying all balance conditions in Table 4
guarantees satisfying balance conditions for all positive
linear combination of species, and these conditions help
to identify scaling exponents which give a nondegenerate
limit of the normalized species numbers in the heat shock
response model of E. coli. In most cases satisfying bal-
ance conditions gives nondegenerate limiting models in
the times of interest, but we can still find counter examples
as given in the last paragraph in the section for methods.
Based on species and collective species balance

equations in Table 4, we choose appropriate values for αi’s
and βk ’s so that most of the balance equations are satisfied.
If some of the balance equations are not satisfied, corre-
sponding time-scale constraints give a range of γ where
the chosen αi’s and βk ’s are valid. The time-scale con-
straint, γ ≤ γ0, implies that the set of scaling exponents

αi’s and βk ’s chosen is appropriate only up to time whose
order of magnitude is equal to Nγ0 . For the times larger
than O(Nγ0), we need to choose a different set of val-
ues for the scaling exponents, αi’s. Assuming that reaction
rate constants do not change in time and that the species
numbers vary in time, we in general use one set of βk ’s
for all time scales and may use several sets of αi’s. A large
change of the species numbers in time requires different
αi’s in different time scales. For the heat shock model we
identify three different time scales as we will see in the
section of limiting models in three time scales, and α1, α2,
α3, α8, and α9 may depend on the time scale. α4, α5, α6,
and α7 are the same for all time scales.
Before we determine scaling exponents for S1, S2, and

S3, we run one realization of stochastic simulation to find
ranges of the species numbers in time. Using initial val-
ues for species S1, S2, and S3, X1(0) = 10 and X2(0) =
X3(0) = 1 as given in Table 1 and using N0 = 100, we set
X1(t) ≈ O(100) = O(Nα1

0 ), X2(t) ≈ O(1) = O(Nα2
0 ), and

X3(t) ≈ O(1) = O(Nα3
0 ) with α1 = 1 and α2 = α3 = 0 in

the early stage of time period. Plugging in αi’s and βk ’s in
the balance equations for S2, S3, and S23, equality holds in
(12a) and (12b) but not in (16). Therefore, (18) gives

γ ≤ max(α2,α3) − max(ρ4, ρ8, ρ9)
= max(0, 0) − max(0,−2,−2) = 0.

Then, the first set of scaling exponents with α1 = 1 and
α2 = α3 = 0 is valid only when γ ≤ 0. Next, based on the
fact that X2(t) ≈ O(10) and X3(t) ≈ O(10) in the medium
stage of time period, we choose α2 = α3 = 0 for γ > 0. At
this stage of time period, we set X1(t) = O(10) ≈ O(Nα1

0 )

with α1 = 0. Then, (12a) and (12b) are satisfied but not
(16). The condition (18) gives γ ≤ 1, and the second set
of scaling exponents with α1 = α2 = α3 = 0 is valid
when γ ≤ 1. Finally, we set α1 = 0 and α2 = α3 = 1 for
γ > 1 based on the fact that the numbers of molecules of
S2 and S3 grow in time and are of order 100. Then, (12a),
(12b), and (16) are all satisfied, and the third set of scaling
exponents with α1 = 0 and α2 = α3 = 1 can be used for
γ > 1.
The three sets of values for the scaling exponents chosen

are given in the Additional file 1: Table S4. With chosen
values for the scaling exponents, we check whether each
balance equation is satisfied and give a time-scale con-
straint in the Additional file 1: Table S6 in case the balance
equation is not satisfied. Different choices of αi’s and βk ’s
from the ones in the Additional file 1: Table S4 give differ-
ent limiting models. As long as the chosen values for αi’s
and βk ’s satisfy balance conditions, the limiting model will
describe nontrivial behavior of the species numbers which
are nonzero and finite in the specific time of interest.
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Table 4 Balance equations and time-scale constraints for each species and for each collective species chosen

Balance equations Time-scale constraints

S1 ρ13 = ρ14 γ ≤ α1 − max(ρ13, ρ14)

S2 max(ρ3, ρ4, ρ5, ρ6, ρ7, ρ8) = max(ρ2, ρ9) γ ≤ α2 − max(ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9)

S3 ρ2 = max(ρ3, ρ5, ρ6, ρ7) γ ≤ α3 − max(ρ2, ρ3, ρ5, ρ6, ρ7)

S4 ρ6 = ρ18 γ ≤ α4 − max(ρ6, ρ18)

S5 ρ5 = ρ16 γ ≤ α5 − max(ρ5, ρ16)

S6 max(ρ7, ρ8, ρ12, ρ15) = max(ρ9, ρ10, ρ17) γ ≤ α6 − max(ρ7, ρ8, ρ9, ρ10, ρ12, ρ15, ρ17)

S7 ρ9 = max(ρ8, ρ15) γ ≤ α7 − max(ρ8, ρ9, ρ15)

S8 max(ρ1, ρ12) = max(ρ10, ρ11) γ ≤ α8 − max(ρ1, ρ10, ρ11, ρ12)

S9 ρ10 = ρ12 γ ≤ α9 − max(ρ10, ρ12)

S2 + S3 + S7 ρ4 = ρ15 γ ≤ max(α2,α3,α7) − max(ρ4, ρ15)

S2 + S3 max(ρ4, ρ8) = ρ9 γ ≤ max(α2,α3) − max(ρ4, ρ8, ρ9)

S2 + S7 max(ρ3, ρ4, ρ5, ρ6, ρ7) = max(ρ2, ρ15) γ ≤ max(α2,α7) − max(ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ15)

S6 + S7 + S9 ρ7 = ρ17 γ ≤ max(α6,α7,α9) − max(ρ7, ρ17)

S6 + S7 max(ρ7, ρ12) = max(ρ10, ρ17) γ ≤ max(α6,α7) − max(ρ7, ρ10, ρ12, ρ17)

S6 + S9 max(ρ7, ρ8, ρ15) = max(ρ9, ρ17) γ ≤ max(α6,α9) − max(ρ7, ρ8, ρ9, ρ15, ρ17)

S8 + S9 ρ1 = ρ11 γ ≤ max(α8,α9) − max(ρ1, ρ11)

In each case, either the balance equation or the time-scale constraint must hold.

Limiting models in three time scales
In the heat shock response model of E. coli, we identify a
time scale of interest using the chosen set of scaling expo-
nents and derive a limiting model which approximates
dynamics of the full chemical reaction network. Each lim-
iting model involves a subset of species and reactions, and
gives features of the full network during the time interval
of interest.
To identify a time scale involving a limiting model with

interesting dynamics (nondegenerate), we first need to
determine a natural time scale of each species. Recall that
a natural time scale of species Si is the time period of order
Nγi when ZN ,γi

i (t) is of order 1. The natural time scale
exponent γi for species Si is rigorously determined by

max
k∈
+

i ∪
−
i

(γi + ρk) = αi, (19)

where 
+
i denotes the collection of reactions where the

species number of Si increases every time the reaction
occurs. Similarly, 
−

i is the subset of reactions where the
species number of Si decreases every time the reaction
occurs. In (19), the left-side term is the maximal order of
magnitude of rates of reactions involving Si and the right-
side term is the order of magnitude of the species number
for Si. If times are earlier than those of order Nγi (γ < γi),
fluctuations of species number of Si due to the reactions
involving Si are not noticeable compared to magnitude
of the species number of Si. Then, the species number
of Si is approximated as its initial value. In the times of
order Nγi (γ = γi), changes of species number of Si due

to the reactions and the species number of Si are simi-
lar in magnitude and behavior of the species number of Si
is described by its nondegenerate limit. If times are later
than those of order Nγi (γ > γi), the species number of
Si fluctuates very rapidly due to the reactions involving Si
compared to the magnitude of the species number of Si.
Then, the averaged behavior of the species number of Si
is approximated by some function of other species num-
bers. Note that γi depends on αi’s and βk ’s, and the time
scale of the ith species may change if we use several sets
of αi’s.
All values of αi’s and ρk ’s for three scalings which are

used to derive limiting models are given in the Additional
file 1: Table S4. The equations for normalized species
numbers and the equation for ZN ,γ

23 which are used later
in this section are given in the Additional file 1: Section 1
and Section 2, respectively.When we derive limitingmod-
els in three time scales, boundedness of the normalized
species numbers is required. For first two time scales, we
define stopping times so that the normalized species num-
bers are bounded up to those times. For the last time scale,
we proved stochastic boundedness of some normalized
species numbers in a finite time interval. For more details,
see Additional file 1: Section 5.
Consider a model with the first set of scaling exponents

including α1 = 1 and α2 = α3 = 0. Note that the first set
of scaling exponents is valid when γ ≤ 0 based on the time
scale constraints given in Table 4. Substituting α2 = 0 and
ρk ’s for the first scaling to the equation for ZN ,γ

2 given in
(11a), we have
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ZN ,γ
2 (t) = ZN ,γ

2 (0) + Rt
3

(
Nγ κ3ZN ,γ

3

)
+ Rt

4

(
Nγ κ4ZN ,γ

1

)

+ Rt
5

(
Nγ−1κ5ZN ,γ

3

)
+ Rt

6

(
Nγ−1κ6ZN ,γ

3

)

+ Rt
7

(
Nγ−1κ7ZN ,γ

3

)
+ Rt

8

(
Nγ−2κ8ZN ,γ

7

)

− Rt
2

(
Nγ κ2ZN ,γ

2

)
− Rt

9

(
Nγ−2κ9ZN ,γ

2 ZN ,γ
6

)
.

(20)

When γ = γ2, the maximal scaling exponent in the
propensities of all reaction terms in (20) should be equal
to the scaling exponent for the species number of S2.
Therefore, γ2 satisfies

max(γ2, γ2 − 1, γ2 − 2) = 0 = α2, (21)

and we get γ2 = 0. Similarly, we get γ3 = γ8 = 0.
Next, we plug α1 = 1 and ρk ’s for the first scaling in the

equation for ZN ,γ
1 and get

ZN ,γ
1 (t) = ZN ,γ

1 (0) + N−1Rt
13

(
Nγ−2κ13

)
− N−1Rt

14

(
Nγ−1κ14ZN ,γ

1

)
.

(22)

By comparing the maximal scaling exponent in the
propensities of all reaction terms in (22) and the scaling
exponent for the species number of S1, γ1 satisfies

max(γ1 − 2, γ1 − 1) = 1 = α1, (23)

and we get γ1 = 2. Similarly, we get γi > 0 for i =
4, 5, 6, 7, 9. Among all natural time scale exponents of
species, we choose the smallest one, γ = 0, and set t ∼
O(N0) = O(1) as the first time scale we are interested in.
Since γ1 > 0, ZN ,0

1 (t) → Z0
1(0) as N → ∞. Similarly,

ZN ,0
i (t) → Z0

i (0) = N−αi
0 Xi(0) for i = 4, 5, 6, 7, 9 as N →

∞. To sum up, in this time scale with γ = 0, the species
numbers of Si’s for i = 1, 4, 5, 6, 7, 9 change more slowly
than other species numbers, and the species numbers with
slow time scales are approximated as constant.
To derive the limiting equation for S2, we set γ = 0

in (20). Since the 2nd, 3rd, and 4th reaction terms have
propensities with N0 = 1 and the species number of S2 is
of order 1, these reaction terms converge to nonzero limits
in the limiting equation. On the other hand, the propen-
sities of the 5th, 6th, 7th, 8th and 9th reaction terms are
of order N−1 or N−2 which are smaller than the species
number for S2 of order 1. Therefore, these reaction terms
converge to zero asN → ∞ at least in the finite time inter-
val. In the 2nd and 3rd reaction terms in (20), ZN ,0

2 (s) →
Z0
2(s) and ZN ,0

3 (s) → Z0
3(s) as N → ∞ since γ2 = γ3 = 0.

Then, using ZN ,0
1 (s) → Z0

1(0) asN → ∞, the limit of ZN ,0
2

satisfies

Z0
2(t) = Z0

2(0)+Rt
3
(
κ3Z0

3
)+Rt

4
(
κ4Z0

1(0)
)−Rt

2
(
κ2Z0

2
)
.

Similarly, we get a limiting model with Z0
2, Z

0
3, and Z0

8 for
γ = 0 as given in (3).
Next, consider a model with the second set of scaling

exponents including α1 = α2 = α3 = 0. Note that the sec-
ond set of scaling exponents is valid when γ ≤ 1 based on
the time scale constraints given in Table 4. To determine
the natural time scale of S6, substitute α6 = 0 and ρk ’s for
the second scaling in the equation for ZN ,γ

6 , and we have

ZN ,γ
6 (t) = ZN ,γ

6 (0) + Rt
7

(
Nγ−1κ7ZN ,γ

3

)
+ Rt

8

(
Nγ−2κ8ZN ,γ

7

)
+ Rt

12

(
Nγ−1κ12ZN ,γ

9

)
+ Rt

15

(
Nγ−1κ15ZN ,γ

4 ZN ,γ
7

)
− Rt

9

(
Nγ−2κ9ZN ,γ

2 ZN ,γ
6

)
− Rt

10

(
Nγ−1κ10ZN ,γ

6 ZN ,γ
8

)
− Rt

17

(
Nγ−2κ17ZN ,γ

6

)
.

(24)

Comparing the exponents inside and outside of the reac-
tion terms in (24), γ6 satisfies

max(γ6 − 1, γ6 − 2) = 0 = α6, (25)

and we get γ6 = 1. Similarly, we get γ7 = γ8 = 1, γi < 1
for i = 2, 3, and γi > 1 for i = 1, 4, 5, 9. We already get
the temporal behavior of species numbers of S2, S3, and
S8 through the limiting model when γ = 0. Thus, we set
t ∼ O(N1) as the second time scale we are interested
in, and derive a limiting model for S6, S7, and S8 when
γ = 1. Note that species S8 is involved in the limiting
models for both γ = 0 and γ = 1, since we use different
sets of scaling exponents in these models. For i = 1, 4, 5, 9
ZN ,1
i (t) → Z1

i (0) as N → ∞, since γi > 1. Thus, in the
12th and 15th reaction terms in (24), ZN ,1

9 (s) → Z1
9(0) and

ZN ,1
4 (s) → Z1

4(0) as N → ∞. Since the propensities of
the 8th, 9th, and 17th reaction terms in (24) are of order
Nγ−2 = N−1 for γ = 1 and the species number of S6 is
of order 1, these reaction terms go to zero as N → ∞. In
the 10th and 15th reaction terms in (24), ZN ,1

6 (s), ZN ,1
7 (s),

andZN ,1
8 (s) are asymptoticallyO(1) and converge toZ1

6(s),
Z1
7(s), and Z1

8(s) as N → ∞ since γ6 = γ7 = γ8 = 1.
Now, consider the asymptotic behavior of the 7th reac-

tion term in (24) when γ = 1. Since γ3 < 1, ZN ,1
3 (t)

fluctuates very much, and there exists no functional limit
as N → ∞. However,

∫ t
0 Z

N ,1
3 (s) ds still converges, which

gives the averaged behavior of the normalized species
number of S3. To get the limit of

∫ t
0 Z

N ,1
3 (s) ds, we plug the

second set of scaling exponents in the equation for ZN ,γ
3

and obtain
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ZN ,1
3 (t) = ZN ,1

3 (0) + Rt
2

(
Nκ2ZN ,1

2

)
− Rt

3

(
Nκ3ZN ,1

3

)
− Rt

5

(
κ5ZN ,1

3

)
− Rt

6

(
κ6ZN ,1

3

)
− Rt

7

(
κ7ZN ,1

3

)
.

(26)

The law of large numbers of Poisson processes gives an
asymptotic limit of the scaled reaction terms as

lim
N→∞ sup

u≤u0

∣∣∣∣Yk(Nαiu)

Nαi
− u

∣∣∣∣ = 0, u0 > 0 (27)

where the Yk ’s are unit Poisson processes and αi > 0. For
example, the 2nd reaction term in (26) divided by N is
approximated as

Rt
2(Nκ2ZN ,1

2 )

N
= Y2(

∫ t
0 Nκ2ZN ,1

2 (s) ds)
N

≈
∫ t

0
κ2ZN ,1

2 (s) ds.

Dividing (26) by N and using the law of large numbers for
Poisson processes, we get∫ t

0

(
κ2ZN ,1

2 (s) − κ3ZN ,1
3 (s)

)
ds −→ 0, (28)

as N → ∞.
We introduce an auxiliary variable to make the limiting

model closed and define

ZN ,γ
23 (t) ≡ ZN ,γ

2 (t) + ZN ,γ
3 (t).

Plugging α2 = α3 = 0 and ρk ’s in the second scaling in the
equation for ZN ,γ

23 , we get

ZN ,γ
23 (t) = ZN ,γ

23 (0)+Rt
4

(
Nγ−1κ4ZN ,γ

1

)
+Rt

8

(
Nγ−2κ8ZN ,γ

7

)
− Rt

9

(
Nγ−2κ9ZN ,γ

2 ZN ,γ
6

)
.

(29)

Since ZN ,γ23
23 (t) ∼ O(1) where γ23 denotes a natural time

scale exponent of S23, we compare the scaling exponents
ofN in the reaction terms in (29) and the scaling exponent
of N outside the reaction terms. Then γ23 satisfies

max(γ23 − 1, γ23 − 2) = 0 = max(α2,α3),

and we get γ23 = 1. Since these reaction terms have
Nγ−2 = N−1 in their propensities when γ = 1, which
is smaller than the species number for S23 of order 1,
these reaction terms converge to zero as N → ∞. Using
ZN ,1
1 (s) → Z1

1(0), the limit of ZN ,1
23 satisfies

Z1
23(t) = Z1

23(0) + Rt
4
(
κ4Z1

1(0)
)
.

Adding and subtracting terms in (28) and dividing the
equation by −(κ2 + κ3), we get∫ t

0

(
ZN ,1
3 (s) − κ2

κ2 + κ3
ZN ,1
23 (s)

)
ds −→ 0,

as N → ∞, and this is used to obtain the limit of the
7th reaction term in (24). Letting N → ∞, the limiting
equation for ZN ,1

6 is given as

Z1
6(t) = Z1

6(0) + Rt
7

(
κ2κ7

κ2 + κ3
Z1
23

)
+ Rt

12
(
κ12Z1

9(0)
)

+ Rt
15

(
κ15Z1

4(0)Z1
7
) − Rt

10
(
κ10Z1

6Z
1
8
)
.

(30)

In (30), note that Rt
12(κ12Z

1
9(0)) = 0 since X9(0) = 0 as

given in Table 1. Limiting equations for ZN ,1
7 and ZN ,1

8 can
be derived similarly, and a limiting model with Z1

23, Z1
6, Z1

7,
and Z1

8 for γ = 1 is given in (4).
Last, consider a model with the third scaling expo-

nents with α1 = 0 and α2 = α3 = 1. To derive a limiting
equation for ZN ,2

23 , we plug ρk ’s and α2 = α3 = 1 for the
third scaling in the equation for ZN ,γ

23 and get

ZN ,2
23 (t) = ZN ,2

23 (0) + N−1
[
Rt
4

(
Nκ4ZN ,2

1

)
+ Rt

8

(
κ8ZN ,2

7

)
− Rt

9

(
Nκ9ZN ,2

2 ZN ,2
6

)]
.

(31)

In (31), the 8th reaction term is asymptotically zero, since
the term is of order N−1. Using the law of large numbers
for Poisson processes in (27), the 4th and the 9th terms in
(31) are asymptotically equal to∫ t

0

(
κ4ZN ,2

1 (s) − κ9ZN ,2
2 (s)ZN ,2

6 (s)
)
ds. (32)

Since γ1 = 2, ZN ,2
1 (s) → Z2

1(s) as N → ∞. On the other
hand, since γ2, γ6 < 2, both ZN ,2

2 (s) and ZN ,2
6 (s) in (32)

fluctuate rapidly and we must identify the averaged limit.
ZN ,2
3 is also averaged, since γ3 < 2. We actually show con-

vergence of the fast-fluctuating species numbers of S2 and
S3 to some limits in the Additional file 1: Section 5.1. For
any ε > 0 and for any t such that ε < t ≤ τ 2∞,

ZN ,2
2 (t) −→ Z̄2

2(t), (33)

ZN ,2
3 (t) −→ Z̄2

3(t), (34)
uniformly as N → ∞.
On the other hand, since γ6 < 2,

∫ t
0 Z

N ,2
6 (s) ds converges

to a limit which gives averaged behavior of the normalized
species number of S6. Using the equation for ZN ,γ

6 , we get

ZN ,2
6 (t) = ZN ,2

6 (0) + Rt
7(N

2κ7ZN ,2
3 ) + Rt

8(κ8Z
N ,2
7 )

+ Rt
12(N

2κ12ZN ,2
9 ) + Rt

15(Nκ15ZN ,2
4 ZN ,2

7 )

− Rt
9(Nκ9ZN ,2

2 ZN ,2
6 ) − Rt

10(N
2κ10ZN ,2

6 ZN ,2
8 )

− Rt
17(κ17Z

N ,2
6 ).

(35)

Dividing (35) by N2, using the law of large numbers for
Poisson processes in (27), and using the stochastic bound-
edness of the propensities of the 8th, 9th, 15th, and 17th
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reaction terms in the finite time interval shown in the
Additional file 1: Section 5.1, we get∫ t

0

(
κ7ZN ,2

3 (s)+κ12ZN ,2
9 (s)−κ10ZN ,2

6 (s)ZN ,2
8 (s)

)
ds −→ 0,

(36)

as N → ∞. Therefore, a difference between the 10th and
12th reaction terms is approximated in terms of∫ t

0
κ7ZN ,2

3 (s) ds, (37)

which converges to
∫ t
0 κ7Z̄2

3(s) ds from (34). Therefore, we
get∫ t

0

(
κ10ZN ,2

6 (s)ZN ,2
8 (s)−κ12ZN ,2

9 (s)
)
ds−→

∫ t

0
κ7Z̄2

3(s) ds,

(38)

as N → ∞.
Now, from the equations for ZN ,γ

8 and ZN ,γ
9 , we get

ZN ,2
8 (t) = ZN ,2

8 (0) + N−2
[
Rt
1
(
N2κ1

) + Rt
12

(
N2κ12ZN ,2

9

)

− Rt
10

(
N2κ10ZN ,2

6 ZN ,2
8

)
− Rt

11

(
N2κ11ZN ,2

8

)]
,

(39a)

ZN ,2
9 (t) = ZN ,2

9 (0) + N−2
[
Rt
10

(
N2κ10ZN ,2

6 ZN ,2
8

)
− Rt

12

(
N2κ12ZN ,2

9

)]
.

(39b)

Using the law of large numbers of Poisson processes in
(27), the reaction terms in (39a) and (39b) are asymptoti-
cally equal to

N−2
[
Rt
1
(
N2κ1

)+Rt
12

(
N2κ12ZN ,2

9

)
−Rt

10

(
N2κ10ZN ,2

6 ZN ,2
8

)
− Rt

11

(
N2κ11ZN ,2

8

)]
≈

∫ t

0

(
κ1 + κ12ZN ,2

9 (s) − κ10ZN ,2
6 (s)ZN ,2

8 (s)

−κ11ZN ,2
8 (s)

)
ds,

(40a)

N−2
[
Rt
10(N

2κ10ZN ,2
6 ZN ,2

8 ) − Rt
12(N

2κ12ZN ,2
9 )

]
≈

∫ t

0

(
κ10ZN ,2

6 (s)ZN ,2
8 (s) − κ12ZN ,2

9 (s)
)

ds.
(40b)

Using (40a), (40b), and (38), the limiting equations of (39a)
and (39b) are given as

Z2
8(t) = Z2

8(0) +
∫ t

0

(
κ1 − κ7Z̄2

3(s) − κ11Z2
8(s)

)
ds,

Z2
9(t) = Z2

9(0) +
∫ t

0
κ7Z̄2

3(s) ds. (41)

In (41), note that Z2
9(0) = 0 since X9(0) = 0 as given in

Table 1.
Since ZN ,2

8 (0) > 0 and balance conditions are satisfied,
ZN ,2
8 (t) 
= 0 in the finite time interval. Since γ8 = 2,

1
κ10ZN ,2

8 (t)
−→ 1

κ10Z2
8(t)

. (42)

Using (38) and (42),
∫ t
0 Z

N ,2
6 (s) ds is averaged as∫ t

0
ZN ,2
6 (s) ds −→

∫ t

0

κ7Z̄2
3(s) + κ12Z2

9(s)
κ10Z2

8(s)
ds. (43)

From (33) and (43), we get∫ t

0
κ9ZN ,2

2 (s)ZN ,2
6 (s) ds −→

∫ t

0
κ9Z̄2

2(s)

×
(

κ7Z̄2
3(s) + κ12Z2

9(s)
κ10Z2

8(s)

)
ds.

(44)

For more details used in (43) and (44), see Lemma 1.5 and
Theorem 2.1 in [15]. Finally, we get the limiting equation
of ZN ,2

23 as

Z2
23(t) = Z2

23(0) +
∫ t

0

[
κ4Z2

1(s) − κ9Z̄2
2(s)

×
(

κ7Z̄2
3(s) + κ12Z2

9(s)
κ10Z2

8(s)

)]
ds.

Theorem 1. For γ = 0, {ZN ,0
2 ,ZN ,0

3 ,ZN ,0
8 } converges

to the solution of (3) for t ∈[ 0, τ 0∞). For γ = 1,
{ZN ,1

23 ,ZN ,1
6 ,ZN ,1

7 ,ZN ,1
8 } converges to the solution of (4)

for t ∈[ 0, τ 1∞). In (3), Z0
8 is a discrete process, while

Z1
8 is a deterministic process in (4). For γ = 2,

{ZN ,2
1 ,ZN ,2

23 ,ZN ,2
4 ,ZN ,2

5 ,ZN ,2
8 ,ZN ,2

9 } converges to the solu-
tion of (5) for t ∈[ 0, τ 2∞).

Conditional equilibrium distributions
In the previous section, we derived limiting models in
three different time scales. Except for the subset of species
in the limiting model, the remaining species are approx-
imated as constants in the first time scale, since their
natural time scale exponents (γi) are larger than γ = 0,
i.e., species with γi > γ = 0 did not start to fluctuate at
these times yet. In the second and third time scales, there
are subsets of species whose natural time scale exponents
are smaller than γ = 1 and 2, respectively. Normalized
species numbers with γi < γ fluctuate very rapidly at
these times and their averaged behavior is approximated
in terms of other variables which converge to a nonde-
generate limit. For those species, the normalized species
numbers do not converge to a limit in a functional sense,
but still we can find a limit in a probabilistic sense (i.e.
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convergence in distribution) and their distribution. Con-
ditioned on the normalized species numbers which con-
verge to a nondegenerate limit in the time scale of interest,
we can find the conditional equilibrium (or the local
averaging) distributions of species numbers whose natu-
ral time scale exponents are smaller than the time scale
exponents of interests. Conditioning on the normalized
species numbers which converge to a nondegenerate limit
is similar to fixing slowly-moving variables and describ-
ing behavior of the fast-fluctuating variables in terms of
slowly-moving variables treating them as constants. In
the next remark, we give a conditional equilibrium dis-
tribution of the subset of species with natural time scale
exponents smaller than γ = 1 and γ = 2.

Remark 2. For γ = 1, for each t > 0,
(
ZN ,1
2 (t),ZN ,1

3 (t)
)

converges in distribution to
(
Ẑ1
2(t), Ẑ1

3(t)
)

such that(
Ẑ1
2(t), Ẑ1

3(t)
)
conditioned on Z1

23(t) has a binomial dis-
tribution with parameter

κ3
κ2 + κ3

,
κ2

κ2 + κ3
,

respectively, that is,

P
{
Ẑ1
2(t) = z2, Ẑ1

3(t) = m − z2|Z1
23(t) = m

}

= C(m, z2)
(

κ3
κ2 + κ3

)z2 (
κ2

κ2 + κ3

)m−z2
.

For γ = 2, for each t > 0,
(
ZN ,2
6 (t),ZN ,2

7 (t)
)
converges

in distribution to
(
Ẑ2
6(t), Ẑ

2
7(t)

)
where Ẑ2

6(t) and Ẑ2
7(t) are

independent Poisson distributed random variables with
parameters

κ2κ7
κ2+κ3

Z2
23(t) + κ12Z2

9(t)
κ10Z2

8(t)
,

and
κ3κ9

κ2+κ3
Z2
23(t)

κ15Z2
4(t)

·
κ2κ7

κ2+κ3
Z2
23(t) + κ12Z2

9(t)
κ10Z2

8(t)
.

The detailed method to compute conditional equilibrium
distributions is given in Section 6 in [9].

Mean value of the random variable with a binomial dis-
tribution, B(n, p), is equal to np. Therefore, for γ = 1,
we treat Z1

23(t) as constant and get a limit of the averaged
values for ZN ,1

2 (t) and ZN ,1
3 (t) as

Z̄1
2(t) = Z1

23(t) × κ3
κ2 + κ3

,

Z̄1
3(t) = Z1

23(t) × κ2
κ2 + κ3

.

Mean value of the random variable with a Poisson distri-
bution, Pois(λ), is equal to λ, and we obtain a limit of the
averaged values for ZN ,2

6 (t) and ZN ,2
7 (t) as the parameters

given in Remark 2.

Simulation results
Recall that the normalized species numbers after a time
change are defined as

ZN ,γ
i (t) = N−αiXN

i (tNγ ).

Using the limiting models in the three time scales given
in (3)-(5), we approximate the species numbers in the
full model by unnormalizing the species numbers and
applying time change backward as

Xi(t) = XN0
i (t) ≈ lim

N→∞

(
N0
N

)αi

XN
i

(
t
(
N
N0

)γ )
= Nαi

0 Zγ
i (tN−γ

0 ),

using a real valueN0 = 100 for the parameter. In Figures 2,
3, 4 and Figure 5(a)-(d), the panels located in the left col-
umn give mean and standard deviation from the mean
of stochastic simulation for Xi(t) and the panels located
in the right column give mean and standard deviation
from the mean of simulation for Nαi

0 Zγ
i (tN−γ

0 ) using the
limiting models. The mean and standard deviation of
species numbers are computed from 3000 realizations of
the sample path of the stochastic simulation.
In Figure 2, we compare the simulation for the full

model and for the approximation using the limiting model
in the first scaling. The first scaling (γ = 0) is for the times
of order N0

0 = 1 sec, and we look at the evolution of mean
and standard deviation of the species numbers up to 100
sec. The full model and the limiting model for γ = 0 are
stochastic, and the limiting model approximates the evo-
lution of statistics of the species numbers quite precisely.
As shown in Figure 2(f ) Z0

8(t) overestimates X8(t), since
the limiting model does not include reactions consuming
S8. Therefore, consumption of S8 may not be captured well
in the approximation.
In Figure 3, we compare the simulation for the full

model and for the approximation using the limiting model
in the second scaling. Since the second scaling (γ = 1) is
for the times of order N1

0 = 100 sec, we observe the evo-
lution of the species numbers up to 1000 sec. In this time
scale, the evolution of S8 shown in Figure 3(h) is approx-
imated by a deterministic variable. The evolution of the
species number of S8 in the full model given in Figure 3(g)
is stochastic, but its standard deviation is very small. As
in the previous time scale, N0Z1

8(tN
−1
0 ) slightly overes-

timates X8(t), since the limiting model does not include
any consumptions of S8. The remaining three species, S23,
S6, and S7 are approximated by stochastic variables. The
increasing species number of S23 in time and the rapid
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Figure 2 Simulation results when γ = 0. Simulation of the full model (left) and that of approximation using the limiting model (right) when the
time is of order N0

0 (= 1).

decrease in species number of S6 are well captured by the
limiting model. The species numbers of S7 are described
by stochastic variables both in the full model and in the
limiting model. The behavior of S7 in two models is not
exactly the same, and discrepancy of the mean species
numbers of S7 comes from the approximation of X4(t)
in terms of its initial value. In the limiting model, S7
is approximated as a stochastic process decreasing by 1
with the propensity proportional to Z1

4(0). However, X4(t)
increases during the times in [0,1000] sec in the full model,
and this difference gives slower decreasing rate of the
mean number of S7 in the limiting model than that in the
full model.
In Figure 4 and Figure 5(a)-(d), we compare the simula-

tion for the full model and for the approximation obtained
from the limiting model in the third scaling. Since the
third scaling (γ = 2) is for the times of order N2

0 =
10, 000 sec, we look at the simulation up to 20,000 sec.
In this time scale, the limiting model is stochastic. The
species number of S1 in the limiting model is approx-
imated by a stochastic discrete variable increasing and
decreasing by 1, and the remaining species numbers in
the limiting model satisfy stochastic equations driven by
the stochastic discrete variable Z2

1. As we have seen in
the proof of Theorem 1 in the Additional file 1: Section
5.1, the processes for S1 in the full model and in the lim-
iting model are exactly the same. Therefore, we use a
same series of random numbers, when we simulate the full

and limiting models. In Figure 4(b), the process for S1 is
random, but its standard deviation is very small. There-
fore, in one realization of simulation of the limiting model,
behavior of S1 appears as constant. Since all the remain-
ing variables in the limiting model are governed by the
variable for S1 and they satisfy the stochastic differential
equations, evolution of one sample path of the species
numbers for S23, S4, S5, S8, and S9 in the limiting model
looks like a solution of the system of ordinary differential
equations.
In Figure 5, (e)-(h) are the species numbers for S6 and

S7 in the full model and their averaged values in the lim-
iting model. Note that the species numbers for S6 and
S7 do not appear in the limiting model, since their val-
ues are approximated in terms of other species numbers.
Therefore, the difference between mean species numbers
for S6 and S7 in the full model and those in the approx-
imation does not affect the error directly. For γ = 2,
ZN ,2
6 and ZN ,2

7 are asymptotically averaged out by the vari-
ables in the limiting model as given in Remark 2. Since
the averaged value for S6 plays an important role in the
evolution of Z2

23 in the limiting model and since the aver-
aged value for S7 gives the conditional mean value for
S7 in the limiting model, we compare the species num-
bers of S6 and S7 in the full model and the approximated
averaged values in the limiting model. In Figure 5(f ) and
(h), we plot the mean and standard deviation from the
mean for
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Figure 3 Simulation results when γ = 1. Simulation of the full model (left) and that of approximation using the limiting model (right) when the
time is of order N0 (= 100).

Z̄2
6

(
tN−2

0

)
=

κ2κ7
κ2+κ3

Z2
23

(
tN−2

0

)
+κ12Z2

9

(
tN−2

0

)
κ10Z2

8

(
tN−2

0

) ,

Z̄2
7

(
tN−2

0

)
=

κ9
(

κ3
κ2+κ3

Z2
23

(
tN−2

0

))(
κ2κ7
κ2+κ3

Z2
23

(
tN−2

0

)
+κ12Z2

9

(
tN−2

0

)
κ10Z2

8

(
tN−2

0

)
)

κ15Z2
4

(
tN−2

0

) ,

in time. They are stochastic variables determined by the
ones in the limiting model with very small fluctuations.
Since Z̄2

6(tN
−2
0 ) and Z̄2

7(tN
−2
0 ) describe averaged behavior

of S6 and S7, X6(t) and X7(t) in Figure 5(e) and (g) have
more fluctuations than the averaged species numbers in
Figure 5(f ) and (h).
In Figure 5(e)-(h) there is a discrepancy between the

species numbers and their averaged values in the very
early time, and the discrepancy comes from a disagree-
ment in initial values of the species numbers in the full
model and those of the averaged values in the limiting
model. The integrated species numbers for S6 and S7 up
to times of order 10, 000 are supposed to be approxi-
mated by the integrated averaged values over the time

interval, and the initial difference is due to a boundary
layer phenomenon.

Error estimates
In the previous sections, we scaled species numbers and
derived their limit to approximate temporal behavior of
the species numbers in the full network. Among three lim-
iting models given in (3)-(5), the first two are systems with
discrete variables (except for Z1

8) which change by integer
values. On the other hand, the last one is a hybrid system
with both discrete and continuous variables. A discrete
variableZ2

1 increases or decreases by one and stochasticity
of all other variables comes from howmuch Z2

1 fluctuates.
Since Z2

1 rarely changes at the times of our interest, the
rest of the variables in (5) behaves such as a solution of
systems of ordinary differential equations. Our choice of
the scaling parameter value, N0 = 100, is not very large
and it is possible that the limiting model does not contain
enough fluctuations as much as the full network actually
has due to our assumption that N0 is replaced by a large
parameter N.
In this section, we estimate an error between the nor-

malized species numbers and their limit given in (5) at the
times of 10,000 sec. Define
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Figure 4 Simulation results when γ = 2. Simulation of the full model (left) and that of approximation using the limiting model (right) when the
time is of order N2

0 (= 10000).

UN (t) = N1/2
(
ZN ,2
23 (t) − Z2

23(t),Z
N ,2
4 (t) − Z2

4(t),Z
N ,2
5 (t)

− Z2
5(t),Z

N ,2
8 (t) − Z2

8(t),Z
N ,2
9 (t) − Z2

9(t)
)T

,

and denote U(t) = (U23(t),U4(t),U5(t),U8(t),U9(t))T as
a limit of UN (t) as N goes to infinity. Note that we do
not consider an error between ZN ,2

1 (t) and Z2
1(t), since

they are exactly the same processes. In the next remark,
we show that UN (t) converges to U(t) in the probabilis-
tic sense and thus the error between ZN ,2

i (t) and Z2
i (t) is

approximately of order N−1/2
0 = 0.1. Since U(t) gives an

explicit form of the error, we have better approximation of
Xi(t) for γ = 2 as

Xi(t) ≈ Nαi
0

(
Z2
i (tN

−2
0 ) + N−1/2

0 Ui(tN−2
0 )

)
,

for S23, S4, S5, S8, and S9.

Remark 3. For γ = 2, for each t > 0, UN (t) converges
in distribution to U(t) which is a solution of

U(t) = U(0)+
∫ t

0
(1, 0, 0, 0, 0)T

√
κ4Z2

1(s)+κ9Z̄2
2(s)Z̄

2
6(s) dW (s)

+
∫ t

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C23(s)U23(s) + C8(s)U8(s) + C9(s)U9(s)
κ2κ6

κ2 + κ3
U23(s) − κ18U4(s)

κ2κ5
κ2 + κ3

U23(s) − κ16U5(s)

− κ2κ7
κ2 + κ3

U23(s) − κ11U8(s)

κ2κ7
κ2 + κ3

U23(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ds,

where W(t) is a standard Brownian motion and

C23(s) = − κ9
κ2 + κ3

(
κ3Z̄2

6(s) + κ2κ7
κ10

· Z̄
2
2(s)

Z2
8(s)

)
,

C8(s) = κ9
Z̄2
2(s)Z̄

2
6(s)

Z2
8(s)

,

C9(s) = −κ9κ12
κ10

· Z̄
2
2(s)

Z2
8(s)

.

The detailed method to compute an error using the central
limit theorem is derived in [14].
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Figure 5 Simulation results when γ = 2 (continued). Simulation of the full model (left) and that of approximation using the limiting model
(right) when the time is of order N2

0. Figures (e), (f), (g), and (h) are simulation results for species 6 and 7. The graphs (f) and (h) give approximation of
the averaged species numbers of S6 and S7.

Estimating order of magnitude of an error is an ana-
logue of that in van Kampen’s system size expansion [16].
A difference is that in the system size expansion, the sys-
tem state representing the species numbers is scaled by
the system size 
 and noise between the scaled process
and its deterministic value is approximated as a random
variable of order 
−1/2. In our approach N is not a sys-
tem size but a parameter for scaling, and species numbers
are scaled by powers of N. Though the limiting model
for γ = 2 is not deterministic, it is still possible to esti-
mate an error analytically due to the fact that Z2

1(t) which
produces stochasticity in the limiting model is an exact
process equal to ZN ,2

1 (t). Another difference between our
approach and van Kampen’s system size expansion is that
a subset of species numbers is averaged in terms of other
species numbers which appear in the limiting model for
γ = 2 due to the various scales involved.
Our estimates of the error is also different from dif-

fusion approximations. In the diffusion approximations,
the reaction terms centered by their propensities in
the stochastic equations for discrete variables of species
numbers are approximated in terms of time-changed
Brownian motion. On the other hand, the noise term

in the error estimates is determined by both the cen-
tered reaction terms in the equations for discrete vari-
ables and a difference between the discrete variables
for the normalized species number and their continuous
limit.
To find the asymptotic order of magnitude of ZN ,2

i (t) −
Z2
i (t), we show convergence of rN

(
ZN ,2
i (t) − Z2

i (t)
)
to a

nonzero finite limit for some rN . Among the species S23,
S4, S5, S8, and S9, the species number of S23 is scaled
with the smallest exponent, and thus noise in the limit
of rN

(
ZN ,2
i (t) − Z2

i (t)
)
is determined dominantly by the

component rN
(
ZN ,2
23 (t) − Z2

23(t)
)
. Since ZN ,2

23 (t) is the
species number scaled byN, we expect that rN = N1/2 and
the error between the scaled species numbers and their
limit is of order N−1/2

0 . For a detailed approach to derive
rN and U(t), see more about the central limit theorem
in [14]. The fact that all components but the first one in
the diffusion term in the equation for U(t) are zero sup-
ports the idea that noise is dominantly determined by the
error between ZN ,2

23 (t) and Z2
23(t). A sketch of the proof of

Remark 3 is given in the Additional file 1: Section 6.
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Conclusions
We considered a stochastic model for a well-stirred bio-
chemical network with small numbers of molecules for
some species. As the biochemical network consists of
more species and reactions, network topology becomes
more complex and it is harder to analyze. Therefore, how
to reduce the biochemical network while preserving its
important biochemical features is a very important issue.
In this paper, we applied the multiscale approximation

method introduced by Ball et al. [8] and extended by Kang
and Kurtz [9] to a heat shock response model of E. coli
developed by Srivastava et al. [11]. Using the fact that the
species numbers and the reaction rate constants in the
model vary over several orders of magnitude, we scaled
them using a scaling parameter with different exponents
both of which contribute to determining the time scales
of species. We derived balance conditions for each species
and for a subset of linear combinations of species explicitly
in this model, and chose appropriate values for the scal-
ing exponents satisfying the balance conditions. Assuming
that initial values of the species numbers are positive,
satisfying the balance conditions is required to get a non-
degenerate limiting model. We assumed that the reaction
rate constants do not change in time, while we may use
several sets of scaling exponents for the species numbers
due to rapid changes in some species numbers in time. In
this analysis, we chose three sets of scaling exponents, and
they are used to derive limiting models in different time
scales.
In each time scale we derived a limiting model, and

used it to approximate the species numbers in the full
network. In the limiting model, species numbers whose
scaling exponents are larger than those of all rates of
reactions involving the species are treated as constants,
since changes of the species numbers due to the reac-
tions are not noticeable at these times. When the scal-
ing exponent of the species number is smaller than the
scaling exponents of the rates of some productions and
consumptions of the species and in case the scaling expo-
nents for both kinds of reactions are equal, the scaled
species number is averaged out and is approximated in
terms of other variables. Therefore, the limiting model
includes a subset of species and reactions and network
topology in it becomes simpler. We derived the con-
ditional equilibrium distributions of the fast-fluctuating
species numbers and studied errors between the scaled
species numbers and their limits in the third time
scale.
Using the limiting models, we approximated the tem-

poral evolution of species numbers in three time scales.
By comparing stochastic simulation of the full model and
approximations using the limiting models, we see that the
main features of evolution of species numbers are well
captured by the limiting models.

Additional file

Additional file 1: Supplementary material for “A multiscale
approximation in a heat shock response model of E. coli.” This is a
supplementary material of the paper including calculations and tables.
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