
Liu and Duan Journal of Inequalities and Applications  (2015) 2015:8 
DOI 10.1186/s13660-014-0525-z

R E S E A R C H Open Access

Two spectral gradient projection methods for
constrained equations and their linear
convergence rate
Jing Liu1? and Yongrui Duan2*?

*Correspondence: yrduan@163.com
2School of Economics and
Management, Tongji University,
Siping Street, Shanghai, 200092,
P.R. China
?Equal contributors
Full list of author information is
available at the end of the article

Abstract
Due to its simplicity and numerical efficiency for unconstrained optimization
problems, the spectral gradient method has received more and more attention in
recent years. In this paper, two spectral gradient projection methods for constrained
equations are proposed, which are combinations of the well-known spectral gradient
method and the hyperplane projection method. The new methods are not only
derivative-free, but also completely matrix-free, and consequently they can be
applied to solve large-scale constrained equations. Under the condition that the
underlying mapping of the constrained equations is Lipschitz continuous or strongly
monotone, we establish the global convergence of the new methods. Compared
with the existing gradient methods for solving such problems, the new methods
possess a linear convergence rate under some error bound conditions. Furthermore,
a relax factor γ is attached in the update step to accelerate convergence. Preliminary
numerical results show that they are efficient and promising in practice.

Keywords: constrained equations; spectral gradient method; projection method;
global convergence

1 Introduction
In this paper, we consider the problems of finding a solution of the following constrained
equations, denoted by CES(F , C),

F
(
x∗) =  subject to x∗ ∈ C, ()

where F : C → Rn is a given continuous nonlinear mapping and C is a nonempty closed
convex set of Rn. Obviously, when C = Rn, () reduces to the nonlinear equations, which is
intensively studied by many scholars. The constrained system of equations () appears in
wide variety of problems in applied mathematics, and some important problems, such as
economic equilibrium problems [], power flow equations [], and chemical equilibrium
systems [], can be reformulated as a problem of the kind ().

Among various numerical methods for solving CES(F , C) [–], the gradient projection
methods (GPMs) are the most efficient, especially when the projection onto the feasible
set C is easy to implement. For example, when C is the nonnegative orthant, or a box,
or a ball, GPMs require the lowest computational cost. In addition, the GPMs are also
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the simplest, because they do not need to store any matrix during the iteration process.
Therefore, they are completely matrix-free, and consequently, they can be applied to solve
large-scale CES(F , C).

It is well known that the spectral gradient method [, ] and the conjugate gradient
method [] are two efficient methods for solving large-scale unconstrained optimiza-
tion problems due to their simplicity and low storage. Recently, combined with the pro-
jection technique, they are extended to solve constrained equations CES(F , C) by some
scholars [, ]. In [], Yu et al. proposed a spectral gradient projection method for solv-
ing monotone CES(F , C), which can be applied to nonsmooth constrained equation, and
works quite well even for large-scale CES(F , C). Quite recently, Liu et al. [] developed two
unified frameworks of some sufficient descent conjugate gradient projection methods for
solving monotone CES(F , C), which are also applied to solve large-scale nonsmooth con-
strained equations. However, the convergence rate issue of the methods in [, ] is not
investigated. Therefore, whether they have a linear convergence rate is an open problem.
Can we design a spectral/conjugate gradient projection method with a linear convergence
rate for CES(F , C)? In this paper, we answer this question positively for spectral gradi-
ent projection method. Note that, in [], Dai and Liao proved a nice conclusion for the
spectral gradient method. In fact, they established the R-linear convergence of the spec-
tral gradient method for strongly convex quadratics of any number of dimensions, and
they also proved the locally R-linear convergence for the general objective function. Ob-
viously, the general minimization problem discussed in [] is equivalent to the system of
nonlinear equations under some mild conditions. However, for the system of constrained
nonlinear equations, we shall establish the locally R-linear convergence of the spectral gra-
dient method in this paper. Therefore, our result extends the conclusion in [] in some
sense.

In fact, in this paper, motivated by the projection methods in [, ] and the spectral
gradient method in [], we propose two spectral gradient projection methods for solv-
ing nonsmooth constrained equations, which can be viewed as combinations of the well-
known spectral gradient method and the famous hyperplane projection method, and they
possess a linear convergence rate under some error bound conditions. The remainder of
this paper is organized as follows. In the next section, we describe the new methods and
present their global convergence analysis. The linear convergence rates of the new meth-
ods are established in Section . Numerical results are reported in Section . Finally, some
final remarks are included in Section .

2 Algorithm and convergence analysis
First, we denote ‖x‖ =

√
x�x as the Euclidean-norm. Let C∗ denote the solution set of

CES(F , C). Throughout this paper, we assume that:
(A) The solution set C∗ is nonempty.
(A) The mapping F(·) is monotone on C, i.e.,

〈
F(x) – F(y), x – y

〉 ≥ , for all x, y ∈ C.

(A) The mapping F(·) is Lipschitz continuous on C, i.e., there is a positive constant L
such that

∥
∥F(x) – F(y)

∥
∥ ≤ L‖x – y‖, for all x, y ∈ C.
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(A) The mapping F(·) is strongly monotone on C, i.e., there is a positive constant η

such that

〈
F(x) – F(y), x – y

〉 ≥ η‖x – y‖, for all x, y ∈ C. ()

Obviously, (A) implies (A), and from () and the Cauchy-Schwartz inequality, we have

∥∥F(x) – F(y)
∥∥ ≥ η‖x – y‖, for all x, y ∈ C. ()

Then let PC(·) denote the projection mapping from Rn onto the convex set C, i.e.,

PC(x) = argmin
{‖x – y‖|y ∈ C

}
,

which has the following nonexpansive property:

∥∥PC(x) – PC(y)
∥∥ ≤ ‖x – y‖, ∀x, y ∈ Rn. ()

Now, we review the spectral gradient method for the unconstrained minimization prob-
lem:

min f (x), x ∈ Rn, ()

where f : Rn → R is smooth and its gradient is available. The spectral gradient for solving
() is an iterative method of the form

xk+ = xk – αk∇f (xk),

where αk is a step size defined by (see [])

αI
k =

s�
k–yk–

y�
k–yk–

or αII
k =

s�
k–sk–

s�
k–yk–

, ()

in which sk– = xk – xk–, yk– = ∇f (xk) – ∇f (xk–). The step sizes () are called Barzilai-
Borwein (BB) step sizes, and the corresponding gradient methods are spectral gradient
methods. The spectral gradient with step size αII

k has been extended to solve the con-
strained equations () by Yu et al. [], however, as discussed in the Introduction, we do
not know whether the method in [] possesses the linear convergence rate. In the follow-
ing, we will extend the spectral gradient with step size αI

k and αII
k to solve constrained

equations () by some new type Armijo line searches, and we propose two spectral gra-
dient projection methods, which are not only globally convergent, but also have a linear
convergence rate.

The spectral gradient projection methods are stated as follows.

Algorithm .
Step . Set an arbitrary initial point x ∈ C, the parameters  < ρ < ,  < σ < r < ,

 < γ < , and  < βmin < βmax. Set the initial step size β =  and set k := .
Step . If F(xk) = , then stop; otherwise, go to Step .
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Step . Compute dk by

dk =

{
–F(xk), if k = ,
–θkF(xk), if k ≥ ,

()

where

θk =
s�

k–yk–

y�
k–yk–

, ()

which is similar to αI
k defined in (), yk– = F(xk) – F(xk–), but sk– is defined by

sk– = xk – xk– + ryk–,

which is different from the standard definition of sk–. Stop if dk = ; otherwise, go to
Step .

Step . Find the trial point zk = xk + αkdk , where αk = βkρ
mk with mk being the smallest

nonnegative integer m such that

–
〈
F(xk + αkdk), dk

〉 ≥ σ
∥∥F(xk)

∥∥. ()

Step . Compute

xk+ = PC
[
xk – γ ξkF(zk)

]
, ()

where

ξk =
〈F(zk), xk – zk〉

‖F(zk)‖ . ()

Choose an initial step size βk+ such that βk+ ∈ [βmin,βmax]. Set k := k +  and go to Step .

Algorithm .
Step . Set an arbitrary initial point x ∈ C, compute L, the Lipschitz constant of F(·),

choose the parameters  < ρ < ,  < r < ,  < σ < r/(L + r),  < γ < , and  < βmin < βmax.
Set the initial step size β =  and set k := .

Step . If F(xk) = , then stop; otherwise, go to Step .
Step . Compute dk by

dk =

{
–F(xk), if k = ,
–ϑkF(xk), if k ≥ ,

where

ϑk =
s�

k–sk–

s�
k–yk–

,

which is similar to αII
k defined in (), sk– = xk – xk–, but yk– is defined by

yk– = F(xk) – F(xk–) + rsk–,
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which is different from the standard definition of sk–. Stop if dk = ; otherwise, go to
Step .

Step . Find the trial point zk = xk + αkdk , where αk = βkρ
mk with mk being the smallest

nonnegative integer m such that

–
〈
F(xk + αkdk), dk

〉 ≥ σ‖dk‖. ()

Step . See Step  of Algorithm ..

The discussions of the global convergence and linear convergence rate of Algorithm .
are similar to those of Algorithm .. Therefore, in the following, we discuss Algorithm .
in detail, and we only give the corresponding results of Algorithm ..

Remark . For Algorithm ., by (), we have

s�
k–yk– = 〈xk – xk– + ryk–, yk–〉

≤ 
η
‖yk–‖ + r‖yk–‖

=
(


η

+ r
)

‖yk–‖.

In addition, by the monotonicity of F(·), we also have

s�
k–yk– ≥ r‖yk–‖.

So we have from the above two inequalities and ()

r
∥∥F(xk)

∥∥ ≤ ‖dk‖ ≤
(


η

+ r
)∥∥F(xk)

∥∥, ()

from which we can get ‖F(xk)‖ =  if ‖dk‖ = , which means xk is a solution of CES(F , C).
Thus, Algorithm . can also terminate when ‖dk‖ = . Similarly, for Algorithm ., by the
Lipschitz continuity and monotonicity of F(·), we can deduce that

‖F(xk)‖
L + r

≤ ‖dk‖ ≤ ‖F(xk)‖
r

.

In what follows, we assume that ‖F(xk)‖ �=  and ‖dk‖ �= , for all k, i.e., Algorithm . or
Algorithm . generates an infinite sequence {xk}.

Remark . In (), we attach a relax factor γ ∈ (, ) to F(zk) based on numerical expe-
riences.

Remark . The line search () is different from that of [, ], which is well defined by
the following lemma.

Lemma . For all k ≥ , there exists a nonnegative number mk satisfying ().
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Proof For the sake of contradiction, we suppose that there exists k ≥  such that () is
not satisfied for any nonnegative integer m, i.e.,

–
〈
F
(
xk + βkρ

mdk

)
, dk

〉
< σ

∥∥F(xk )
∥∥, ∀m ≥ .

Letting m → ∞ and using the continuity of F(·) yield

–
〈
F(xk ), dk

〉 ≤ σ
∥
∥F(xk )

∥
∥. ()

On the other hand, by () and (), we obtain

–
〈
F(x), d

〉
=

∥∥F(x)
∥∥ > r

∥∥F(x)
∥∥

and

–
〈
F(xk), dk

〉
= θk

∥∥F(xk)
∥∥ ≥ r

∥∥F(xk)
∥∥, ∀k ≥ ,

which together with () means that σ ≥ r, however, this contradicts the fact that σ < r.
Therefore the assertion of Lemma . holds. This completes the proof. �

For the line search (), we have a similar result, in the following lemma.

Lemma . For all k ≥ , there exists a nonnegative number mk satisfying ().

Proof The lemma can be proved by contradiction as that of Lemma ., and we omit the
proof for concision. This completes the proof. �

The step length αk and the norm of the function F(xk) satisfy the following property,
which is an important result for proving the global convergence of Algorithm ..

Lemma . Suppose that F(·) is strongly monotone and let {xk} and {zk} be the sequences
generated by Algorithm ., then {xk} and {zk} are both bounded. Furthermore, we have

lim
k→∞

αk
∥∥F(xk)

∥∥ = . ()

Proof From (), we have

〈
F(zk), xk – zk

〉 ≥ σαk
∥
∥F(xk)

∥
∥ > . ()

For any x∗ ∈ C∗, from (), we have

∥∥xk+ – x∗∥∥

=
∥
∥PC

[
xk – γ ξkF(zk)

]
– x∗∥∥

≤ ∥
∥xk – γ ξkF(zk) – x∗∥∥

=
∥
∥xk – x∗∥∥ – γ ξk

〈
F(zk), xk – x∗〉 + γ ξ 

k
∥
∥F(zk)

∥
∥. ()
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By the monotonicity of the mapping F(·), we have

〈
F(zk), xk – x∗〉

=
〈
F(zk), xk – zk

〉
+

〈
F(zk), zk – x∗〉

≥ 〈
F(zk), xk – zk

〉
+

〈
F
(
x∗), zk – x∗〉

=
〈
F(zk), xk – zk

〉
. ()

Substituting () and () into (), we have

∥∥xk+ – x∗∥∥

≤ ∥
∥xk – x∗∥∥ – γ ξk

〈
F(zk), xk – zk

〉
+ γ ξ 

k
∥
∥F(zk)

∥
∥

=
∥∥xk – x∗∥∥ – γ ( – γ )

〈F(zk), xk – zk〉

‖F(zk)‖

≤ ∥
∥xk – x∗∥∥ – γ ( – γ )

σ α
k‖F(xk)‖

‖F(zk)‖ , ()

which together with γ ∈ (, ) indicates that, for all k,

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥, ()

which shows that the sequence {xk} is bounded. By (), {dk} is bounded and so is {zk}.
Then, by the continuity of F(·), there exists a constant M >  such that ‖F(zk)‖ ≤ M, for
all k. Therefore it follows from () that

γ ( – γ )
σ 

M

∞∑

k=

α
k
∥
∥F(xk)

∥
∥ ≤

∞∑

k=

(∥∥xk – x∗∥∥ –
∥
∥xk+ – x∗∥∥) < ∞,

which implies that the assertion () holds. The proof is completed. �

Lemma . Suppose that F(·) is monotone and Lipschitz continuous and let {xk} and {zk}
be the sequences generated by Algorithm ., then {xk} and {zk} are both bounded. Further-
more, we have

lim
k→∞

αk‖dk‖ = .

Proof The conclusion is a little different from (), which results from the difference of
the right hands of the line searches () and (). In fact, this conclusion can be proved as
that of Lemma ., and we also omit it for concision. This completes the proof. �

Now, we establish the global convergence theorems for Algorithm . and Algorithm ..

Theorem . Suppose that the conditions in Lemma . hold. Then the sequence {xk} gen-
erated by Algorithm . globally converges to a solution of CES(F , C).

Proof We consider the following two possible cases.
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Case : lim infk→∞ ‖F(xk)‖ = , which together with the continuity of F(·) implies that
the sequence {xk} has some accumulation point x̄ such that F(x̄) = . From (), {‖xk – x̄‖}
converges, and since x̄ is an accumulation point of {xk}, {xk} must converge to x̄.

Case : lim infk→∞ ‖F(xk)‖ > . Then by (), it follows that limk→∞ αk = . Therefore,
from the line search (), for sufficiently large k, we have

–
〈
F
(
xk + βkρ

mk –dk
)
, dk

〉
< σ

∥∥F(xk)
∥∥. ()

Since {xk}, {dk} are both bounded, we can choose a sequence and letting k → ∞ in (),
we can obtain

–
〈
F(x̄), d̄

〉 ≤ σ
∥∥F(x̄)

∥∥, ()

where x̄, d̄ are limit points of corresponding subsequences. On the other hand, by (), we
obtain

–
〈
F(xk), dk

〉
= θk

∥∥F(xk)
∥∥ ≥ r

∥∥F(xk)
∥∥, ∀k ≥ .

Letting k → ∞ in the above inequality, we obtain

–
〈
F(x̄), d̄

〉 ≥ r
∥
∥F(x̄)

∥
∥. ()

Thus, by () and (), we get r ≤ σ , and this contradicts the fact that r > σ . Therefore
lim infk→∞ ‖F(xk)‖ >  does not hold. This completes the proof. �

For Algorithm ., we also have the following global convergence.

Theorem . Suppose that the conditions in Lemma . hold. Then the sequence {xk} gen-
erated by Algorithm . globally converges to a solution of CES(F , C).

Proof Following a process similar to the proof for Theorem ., we can get the desired
conclusion. This completes the proof. �

3 Convergence rate
By Theorem . and Theorem ., we know that the sequence {xk} generated by Algo-
rithm . or Algorithm . converges to a solution of CES(F , C). In what follows, we al-
ways assume that xk → x∗ as k → ∞, where x∗ ∈ C∗. To establish the local convergence
rate of the sequence generated by Algorithm . or Algorithm ., we need the following
assumption.

Assumption . For x∗ ∈ C∗, there exist three positive constants δ, c, and L such that

c dist
(
x, C∗) ≤ ∥∥F(x)

∥∥, ∀x ∈ N
(
x∗, δ

)
()

and

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ N

(
x∗, δ

)
, ()
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where dist(x, C∗) denotes the distance from x to the solution set C∗, and

N
(
x∗, δ

)
=

{
x ∈ Rn|∥∥x – x∗∥∥ ≤ δ

}
.

Obviously, (A) in Section  implies (). Here, we set the constant c so that

 <
γ ( – γ )σαcη

L(βmaxL( + rη) + η) < . ()

Now, we analyze the convergence rate of the sequence {xk} generated by Algorithm . or
Algorithm . under the conditions () and ().

Lemma . If (A) and the conditions in Assumption . hold, then the sequence {αk} gen-
erated by the line search () has a positive bound from below.

Proof We only need to prove that for sufficiently large k, αk has a positive bound from
below. If αk ≤ βk , then by the construction of αk , we have

–
〈
F
(
xk + βkαkρ

–dk
)
, dk

〉
< σ

∥
∥F(xk)

∥
∥.

In addition, by (), we have

–
〈
F(xk), dk

〉
= θk

∥
∥F(xk)

∥
∥ ≥ r

∥
∥F(xk)

∥
∥.

Then, by the above two inequalities, we can obtain

〈
F
(
xk + βkαkρ

–dk
)

– F(xk), dk
〉 ≥ (r – σ )

∥∥F(xk)
∥∥. ()

On the other hand, from () and (), we have

〈
F
(
xk + βkαkρ

–dk
)

– F(xk), dk
〉 ≤ Lβkαk

ρ
‖dk‖ ≤ Lβkαk( + rη)

ρη

∥
∥F(xk)

∥
∥. ()

By () and (), for k sufficiently large we obtain

αk ≥ ρ(r – σ )η

Lβk( + rη) ≥ ρ(r – σ )η

Lβmax( + rη) .

Therefore, there is a positive constant α, such that

αk ≥ α, ()

for all k. The proof is completed. �

Lemma . If (A), (A), and the conditions in Assumption . hold, then the sequence
{αk} generated by the line search () has a positive bound from below.

Proof The proof is similar to that of Lemma ., and we omit it for concision. This com-
pletes the proof. �



Liu and Duan Journal of Inequalities and Applications  (2015) 2015:8 Page 10 of 13

Theorem . In addition to the assumptions in Theorem ., if conditions () and ()
hold, then the sequence {dist(xk , C∗)} generated by Algorithm . converges locally to  at
the Q-linear rate, hence the sequence {xk} converges locally to x∗ at the R-linear rate.

Proof Let vk ∈ C∗ be the closest solution to xk . That is, ‖xk – vk‖ = dist(xk , C∗). By (), we
have

‖xk+ – vk‖ ≤ ‖xk – vk‖ – γ ( – γ )
〈F(zk), xk – zk〉

‖F(zk)‖ . ()

For sufficiently large k, it follows from () and () that

∥∥F(zk)
∥∥ =

∥∥F(zk) – F(vk)
∥∥

≤ L‖zk – vk‖
≤ L

(‖xk – yk‖ + ‖xk – vk‖
)

≤ L
(
βmax‖dk‖ + ‖xk – vk‖

)

≤ L
(

βmax( + rη)‖F(xk)‖
η

+ ‖xk – vk‖
)

= L
(

βmax( + rη)‖F(xk) – F(vk)‖
η

+ ‖xk – vk‖
)

≤ L
(

βmaxL( + rη)
η

+ 
)

‖xk – vk‖

= L
(

βmaxL( + rη)
η

+ 
)

dist
(
xk , C∗).

Thus, from (), (), and (), for sufficiently large k, we have

〈
F(zk), xk – zk

〉 ≥ σαk
∥
∥F(xk)

∥
∥ ≥ σα

∥
∥F(xk)

∥
∥ ≥ σαc dist(xk , C∗).

Substituting the above two inequalities into () and from (), we have

dist(xk+, C∗) ≤ ‖xk+ – vk‖ ≤
(

 –
γ ( – γ )σαcη

L(βmaxL( + rη) + η)

)
dist(xk , C∗),

which implies that the sequence {dist(xk , C∗)} converges locally to  at the Q-linear rate.
Therefore, the sequence {xk} converges locally to x∗ at the R-linear rate. The proof is com-
pleted. �

Theorem . In addition to the assumptions in Theorem ., if conditions () and ()
hold, then the sequence {dist(xk , C∗)} generated by Algorithm . converges locally to  at
the Q-linear rate, hence the sequence {xk} converges locally to x∗ at an R-linear rate.

Proof The proof is similar to that of Theorem ., and we also omit it for concision. This
completes the proof. �
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4 Numerical results
In this section, we test Algorithm . and Algorithm ., and compare them with the spec-
tral gradient projection method in []. We give the following three simple problems to
test the efficiency of the three methods.

Problem  The mapping F(·) is taken as F(x) = (f(x), f(x), . . . , fn(x))�, where

fi(x) = exi – , for i = , , . . . , n

and C = Rn
+. Obviously, this problem has a unique solution x∗ = (, , . . . , )�.

Problem  The mapping F(·) is taken as F(x) = (f(x), f(x), . . . , fn(x))�, where

fi(x) = xi – sin |xi – |, for i = , , . . . , n

and C = {x ∈ Rn
+|∑n

i= xi ≤ n, xi ≥ , i = , , . . . , n}. Obviously, Problem  is nonsmooth at
x = (, , . . . , )�.

Problem  The problem is adapted from []. The mapping F(·) is taken as F(x) = D(x) +
Mx, where D(x) and Mx are the nonlinear part and linear part of F(x), respectively. Here,
the components of D(x) is defined by Dj(x) = aj arctan(xj), where aj is a random variable
in (, ), and the matrix M = A�A + B, where A is an n × n matrix whose entries are
randomly generated in the interval (–, ) and a skew-symmetric matrix B is generated in
the same way. In addition, C = Rn

+.

The codes are written in Mablab . and run on a personal computer with . GHz
CPU processor. The parameters used in Algorithm . and Algorithm . are set as ρ = .,
r = –, σ = –, and γ = . for Problem  and γ =  for Problems  and . The initial step
size in Step  of Algorithm . or Algorithm . is set to be βk = . We stop the iteration
if the iteration number exceeds , or the inequality ‖F(xk)‖ ≤ – is satisfied. The
method in [] (denoted by CGD) is implemented with the following parameters: ρ = .,
r = ., σ = –, and ξ = .

For Problems  and , the initial point is set as x = ones(n, ), and for Problem , the
initial point is set as x = rand(n, ). Tables - give the numerical results by Algorithm .,
Algorithm ., and CGD with different dimensions, where Iter. denotes the iteration num-
ber, Fn denotes the number of function evaluations, and CPU denotes the CPU time in
seconds when the algorithms terminate.

The numerical results given in Tables - show that: () the three methods can solve
all the tested problems successfully; () for the two easy Problems  and , Algorithm .
performs a little better than Algorithm . for the CPU time, and both methods perform
better than CGD for the three criteria: Iter., Fn, and CPU; () for the difficult Problem ,
Algorithm . performs best among the three methods, and both Algorithm . and Al-
gorithm . perform much better than CGD, especially for the CPU time. From the above
analysis, we conclude that Algorithm . and Algorithm . are better than CGD.
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Table 1 Numerical results with different dimensions of Problem 1

Dimension Method Iter. Fn CPU

1,000 Algorithm 2.1 1 5 0.02
Algorithm 2.2 1 5 0.02
CGD 11 51 0.03

5,000 Algorithm 2.1 1 5 0.03
Algorithm 2.2 1 5 0.03
CGD 12 56 0.16

50,000 Algorithm 2.1 1 5 0.14
Algorithm 2.2 1 5 0.11
CGD 13 60 1.33

100,000 Algorithm 2.1 1 5 0.25
Algorithm 2.2 1 5 0.25
CGD 13 60 2.86

Table 2 Numerical results with different dimensions of Problem 2

Dimension Method Iter. Fn CPU

1,000 Algorithm 2.1 10 59 0.05
Algorithm 2.2 8 52 0.05
CGD 12 59 0.06

5,000 Algorithm 2.1 10 59 0.17
Algorithm 2.2 8 52 0.16
CGD 12 59 0.22

50,000 Algorithm 2.1 11 64 1.58
Algorithm 2.2 10 63 1.47
CGD 12 59 1.55

100,000 Algorithm 2.1 12 69 3.50
Algorithm 2.2 10 63 3.19
CGD 13 69 3.88

Table 3 Numerical results with different dimensions of Problem 3

Dimension Method Iter. Fn CPU

100 Algorithm 2.1 125 479 0.80
Algorithm 2.2 141 743 1.39
CGD 356 5,422 10.00

500 Algorithm 2.1 215 873 19.48
Algorithm 2.2 239 1,475 32.81
CGD 270 2,700 63.13

5 Conclusions
Two spectral gradient projection methods for solving constrained equations have been
developed, which are not only derivative-free, but also completely matrix-free. Conse-
quently, they can be applied to solve large-scale nonsmooth constrained equations. We
established the global convergence without the requirement of differentiability of the
equations, and presented the linear convergence rate under standard conditions. We also
reported some numerical results to show the efficiency of the proposed methods.
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