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Abstract

Background: While the importance of gene-gene interactions in human diseases has been well recognized, identifying
them has been a great challenge, especially through association studies with millions of genetic markers and thousands
of individuals. Computationally efficient and powerful tools are in great need for the identification of new gene-gene
interactions in high-dimensional association studies.

Result: We develop C++ software for genome-wide gene-gene interaction analyses (GWGGI). GWGGI utilizes tree-based
algorithms to search a large number of genetic markers for a disease-associated joint association with the consideration
of high-order interactions, and then uses non-parametric statistics to test the joint association. The package includes two
functions, likelihood ratio Mann–Whitney (LRMW) and Tree Assembling Mann–Whitney (TAMW). We optimize the data
storage and computational efficiency of the software, making it feasible to run the genome-wide analysis on a personal
computer. The use of GWGGI was demonstrated by using two real data-sets with nearly 500 k genetic markers.

Conclusion: Through the empirical study, we demonstrated that the genome-wide gene-gene interaction analysis
using GWGGI could be accomplished within a reasonable time on a personal computer (i.e., ~3.5 hours for LRMW
and ~10 hours for TAMW). We also showed that LRMW was suitable to detect interaction among a small number of
genetic variants with moderate-to-strong marginal effect, while TAMW was useful to detect interaction among a
larger number of low-marginal-effect genetic variants.
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Background
The recent genome-wide association studies (GWAS)
have made significant progress in finding single genetic
variants associated with common complex diseases, with
disclosure of regions of interest. Nonetheless, it is likely
that a substantial proportion of genetic variants remain
uncovered. Common complex diseases are likely caused
by the interplay of multiple genetic variants, each with
relatively modest marginal effects. A comprehensive
genome-wide gene-gene interactions analysis (GWGGI)
will take this complexity into account. By fully exploring
all available genetic variants on the entire genome,
GWGGI could yield novel interaction findings that can
be investigated through later bench science research and
clinical application for their functional importance and
clinical usefulness.
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Software, such as the commonly used multifactor
dimensionality reduction software (MDR) [1], has been
developed for high-dimensional genetic association ana-
lyses considering high-order interactions. Nevertheless,
only a few statistical packages, such as BOOST [2],
Random Jungle [3] and Plink [4], can be directly applied
to genome-wide data. In order to detect interactions on a
genome-wide scale, researchers commonly use a filter
algorithm to pre-select a relative small set of genetic
markers prior to the use of gene-gene interactions
software (e.g. MDR) or constrain the interaction search
to two-way interactions (e.g. Plink). These strategies limit
the search space and substantially reduce the computa-
tional burden. The trade-off is that important findings,
such as high-order interactions and interactions among
low-marginal-effect genetic markers, could be missed. To
facilitate high-dimensional gene-gene interaction ana-
lyses, we developed a C++ package, GWGGI. Similar as
several other packages (e.g., MDR), GWGGI evaluates
joint association of multiple genetic markers
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considering their possible interactions rather than
evaluates interaction-only effects. The package comprises
of two modules, the Likelihood Ratio Mann–Whitney
(LRMW) module and Tree Assembling Mann–Whitney
(TAMW) module. In GWGGI, we further optimize the
algorithms and memory storage, making genome-wide
analyses feasible on a personal computer with an affordable
time.

Implementation
The advance of high-throughput technologies generates
millions of single-nucleotide polymorphisms (SNPs) that
can be extensively explored for gene-gene interactions.
Nevertheless, the search of interactions among millions
SNPs is a daunting challenge and requires more compu-
tationally efficient and powerful statistical tools. We im-
plement two modules, LRMW and TAMW, into GWGGI,
for high-dimensional gene-gene interaction analyses in-
volves thousands or even millions of SNPs.
Both LRMW and TAMW utilize the Mann–Whitney

U-statistic (MWU) to evaluate joint association of mul-
tiple genetic variants with the consideration of possible
interactions. Given the multi-locus risk groups formed
based on the selected disease-susceptibility genetic vari-
ants (the detailed algorithm is described below), LRMW
and TAMW assign likelihood ratio (LR) value for each
individual belonging to a particular risk group, where LR
measures the risk of an individual having disease rather
than non-disease [5]. For instance, in LRMW, an indi-
vidual’s LR value is calculated based on his/her genotype

of the selected SNPs, LRi ¼ PðGi Dj Þ
P Gi �Dj Þð , where P(Gi|D) and

P Gi �DÞjð are the probabilities of the genotype, Gi, in
cases and controls, respectively. The MWU can then be
formed based on the LR values,

U ¼ 1
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where ND and N �D denote the number of cases and
controls, respectively. The kernel function is defined as:
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Based on this definition, we can calculate the variance,
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and build the test statistic, Z ¼ U−0:5ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Uð Þp

,
which follows a standard normal distribution under null
hypothesis. The p-value can thus be calculated to evalu-
ate joint association of identified genetic variants with
diseases, considering possible interactions [6,7].
LRMW and TAMW utilize different search algo-

rithms, which make them useful to detect different types
of gene-gene interactions. LRMW uses a forward selec-
tion algorithm to search all available genetic variants
for important interactions among a small number of
moderate-marginal-effect genetic variants [7]. In step
one, the forward selection algorithm searches all avail-
able SNPs for a single SNP to divide samples with different
genotypes into two risk groups (e.g., G1={0}, G2={(1, 2)}),
which gives the highest possible MWU. In step two, it
searches for the second SNP, considering its possible
interaction with the first SNP, to split the two existing
risk groups into four risk groups (e.g., G1={0, (0, 1)},
G2={0, 2}, G3={(1, 2), (0, 1)}, G2={(1, 2), 2}), which
gives the highest possible MWU. The whole splitting
process continues until samples are divided into risk
groups with a small number of samples. The 10-fold
cross-validation is then used to choose the final model with
the optimal number of risk groups. As we demonstrate
elsewhere [7], the forward selection algorithm is computa-
tionally efficient and has the advantage of considering
high-order interactions.
For complex diseases influenced by the interplay of

hundreds genetic variants, LRMW can only identified
those most significant interactions. To consider interac-
tions among hundreds or even thousands genetic vari-
ants, most of which have low marginal effects, we also
developed TAMW [6]. TAMW uses an ensemble algo-
rithm to combine many de-correlated tree models so as
to consider a large ensemble of genetic variants with low
marginal effects. In TAMW, a large number of bootstrap
samples are first generated from the original data. Each
bootstrap sampling creates a bootstrap sample and an
out-of-bag (OOB) sample (i.e., individuals left out by the
bootstrap sampling). We apply the forward selection al-
gorithm described above to each bootstrap sample, and
select a small set of disease-susceptibility genetic vari-
ants from a random subset of all genetic variants to
build a tree model. The model built from the bootstrap
sample is then applied to the corresponding OOB sam-
ples by assigning LR values to the individuals in the
OOB samples. By repeating the process for all bootstrap
samples, we obtain a large number of tree models,
each constructed based on a different set of disease-
susceptibility genetic variants. The assembling LR for
each individual can be calculated by averaging multiple

OOB-based LR values, LRAssem
i ¼

XTi

j¼1

LRi;j=Ti , where LRi,j
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is the LR value assigned to an individual i for the j-th time,
and Ti is the total number of times that the individual i is
included in the OOB samples. The overall MWU stat-
istic can then be formed based on the assembling LR
to test joint association of hundreds or thousands of
genetic variants with diseases. Compared with LRMW,
TAMW is more powerful when the underlying disease
model involves a large number of genetic variants and
their interactions. Nevertheless, it is computationally
more intensive than LRMW, and the results from
TAMW are less interpretable. Both LRMW and TAMW
involve model selection procedure, so the p-value should
be obtained by using permutation test. Alternatively, we
can split the data to training dataset and testing dataset,
and obtain the p-value on testing dataset [6]. Specifically,
we first build the model on the training dataset and then
apply the model to testing dataset by assigning LR values
to the individuals according to their genotypes. A MWU
value and the corresponding p-value can be calculated
based on the assigned LR values and the case–control out-
comes. Note that the MWU value calculated based on
equation (1) is also equivalent to AUC [5], which can
be used to measure the classification/prediction accuracy
of the selected model.
GWGGI is developed in C++, and is available for mul-

tiple platforms (e.g., Windows and Linux). The software
is based on standard C++ and does not depend on other
source codes or libraries. Researchers can download the
source code, recompile and build it using different C++
compilers (e.g., Visual Studio in Windows or g++ in
Linux or Mac). Figure 1 gives an example of the Win-
dows version of GWGGI.
Figure 1 A screen shot of the GWGGI software.
We implement both LRMW and TAMW into GWGGI,
which can be called by using commands “–lmw” and
“–tamw”, respectively. Users can decide which module to
use based on the prior knowledge of the disease and their
research purposes. LRMW is suitable for scenarios when
the underlying disease model caused by a small number
of moderate-marginal-effect genetic variants and interac-
tions, while TAMW fits for disease models involving a
large number of low-marginal-effects genetic variants
and interactions.
Data read in GWGGI can be either in Plink [4] binary

format or in the text format. For data with less than ten
thousand SNPs, we suggest the text format, which can
be easily read by other statistical software (e.g., R). For
data with a much larger size, we recommend Plink binary
format, especially for personal computers with limited
memory. To optimize the memory storage, the genetic data
are stored in memory in a similar way as Plink. Specifically,
because two Boolean values can store genetic information
for one SNP and one subject, with four possible values, 0,
1, 2, and NA (i.e., the missing value), the genetic informa-
tion on one locus for all subjects is stored in two Boolean
vectors. We use the standard C++ library implementation
of vector < bool > for Boolean vectors, which optimizes
memory storage so that each value is stored in a single bit.
Considering that 1 byte (8 bits) can store 4 SNPs, genetic
data with 1 million SNPs for 1000 subjects only needs
250 Mb memory. The tree construction in GWGGI de-
mands most of the computation time. To optimize compu-
tation, we use two vectors to store tree information, where
one vector is used for storing the location of subjects in
the tree structure and the other vector is used for storing



Table 1 Characteristics of GWGGI

T1D CAD

LRMW TAMW LRMW TAMW

# of SNPs 2184 2184 459 K 459 K

# of samples 4901 4901 4864 4864

Memory usage 7 Mb 7 Mb 731 M 738 M

Loading time <1 s <1 s 3 min 3 min

Analysis time 1.5 min 3 min 3.5 hr 10 hr

Selected SNPs 7 SNPs 472 SNPs 6 SNPs 57 SNPs

AUC 0.844 0.776 0.672 0.719

P-value* 1.12e-268 3.06e-138 1.78e-33 4.11e-65

*P-values were calculated by applying the model built from the training
dataset to the testing dataset.
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the LR values of subjects. In this way, the computation can
be speed up with little cost of memory use.
GWGGI also provides tuning parameters, so that users

can use the software in a flexible and sometimes bio-
logically meaningful way. For example, using “–hz”,
users can determine whether to include a heterozygote
effect (Aa v.s. AA/aa) in the analysis. In TAMW, re-
searchers can also use “–td-burnin” to get the optimal
size of trees from the first 50 bootstrap samples.
In the output of GWGGI, both statistical significance

of detected gene-gene interactions and the marginal
contribution of each genetic variant are reported. In
addition, GWGGI provides additional information re-
garding the joint association model (e.g., providing the
AUC value to assess the classification accuracy of the
model). More detailed information, such as the tree
structure in LRMW and individual LR values in TAMW,
can be also obtained if needed.

Results and Discussion
We demonstrated the use of GWGGI through the ana-
lysis of two datasets from the Wellcome Trust genome
wide association study [8]. The first dataset comprises of
Table 2 Comparison of GWGGI with other software on the T1

LRMW TAMW Plink

Memory usage 7 Mb 7 Mb 7 Mb

Time 1.5 min 3 min 5.5 h

Model 7 SNPs 472 SNPs 2 SN

P-value 1.12e-268 3.06e-138 1.74e

Selected SNPs** rs3957146 rs9273363 rs927

rs377763 rs3957146 rs946

rs9270986 rs9270986

rs9273363 rs3135377

rs3177928 rs9275523
*For Random Jungle, we choose the SNPs with permutation importance scores larg
**SNPs chosen by the methods. If the number is larger than 5, we list the top 5 SNP
4901 samples from the Wellcome Trust Type I Diabetes
(T1D) GWAS. From the GWAS data, we selected 2184
SNPs that have been previously reported to be associ-
ated with T1D or potentially have a function role in
T1D. The second dataset is the Genome-Wide dataset of
Wellcome Trust Coronary Artery Disease (CAD) study,
with 459 k SNPs and 4864 subjects.
The optimal tree size from LRMW (i.e., the highest

order interaction considered by LRMW) was chosen
based on 10-fold cross validation. The optimal tree
size from LRMW was 7 for the T1D dataset and was 6
for the CAD dataset. For TAMW, we chose the opti-
mal size of tree by using the first 50 bootstrap samples
(i.e., we first built models on the bootstrap samples,
and then chose the optimal tree size based on the
overall performance of the models on the OOB samples).
The optimal size from TAMW was 4 for the T1D
dataset and was 3 for the CAD dataset. The analyses
were performed on a personal computer with 2.5GHz
CPU and 4G memory. The analysis of the dataset with
2 k SNPs and 4901 samples was completed in a few
minutes (Table 1). Through the analysis, LRMW de-
tected a joint association among 6 SNPs in 1.5 minutes,
while TAMW identified a joint association among 472
SNPs in 3 minutes. Both joint associations reached
statistically significant. From the result of T1D data
analysis, we found that the model from LRMW per-
formed slightly better than TAMW. This indicates
moderate-to-strong marginal and interactional effects
for the T1D-associated SNPs. We also conducted a
genome-wide gene-gene interaction analysis by apply-
ing GWGGI to the CAD GWAS dataset. For the
CAD genome-wide dataset with 459 K SNPs and 4864
subjects, LRMW completed the analysis in 3.5 hours,
while TAMW finished the analysis in 10 hours. We ob-
served that TAMW outperformed LRMW in the CAD
genome-wide gene-gene interaction analysis. This may
indicate that CAD is likely influenced by the interplay
D dataset

BOOST MDR RJ

5 Mb 56 Mb 110 Mb

r 14 s 2 min 12 min

Ps 2 SNPs 2 SNPs 1674 SNPs*

-30 3.31e-62 1.27e-20 1.27e-103

2723 rs9270986 rs9273363 rs9273363

9220 rs9469220 rs9275418 rs3957146

rs9275523

rs9275418

rs9469220

er than 0.
s.
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of a large number of SNPs with low marginal effects.
We listed the top SNPs selected by GWGGI in Additional
file 1: Table S1.
We also compared GWGGI with several gene-gene

interaction analyses packages, including Plink, BOOST,
MDR and Random Jungle (RJ). Because not all of the
packages were designed for genome-wide analyses, the
comparison was made based on the T1D dataset with
2184 SNPs. Among these packages, Plink and BOOST
can only consider two-way interactions, while MDR
and RJ can explore high-order interactions like GWGGI.
Another difference of these packages is how they deal
with missing data. BOOST can’t handle missing data,
therefore we imputed missing data for BOOST. MDR
treats missing data as another category besides 0, 1,
and 2, while Plink, RJ and GWGGI can directly han-
dle missing data. MDR ran very slowly on a large
number of SNPs, so we first applied a “RELIEFF” filter
to select top 20 SNPs and then searched for interac-
tions with order up to 5. Because RJ was built for the
prediction purpose without providing p-values, we
used a goodness-of-fit chi-squared test to calculate
p-values. The results were summarized in Table 2.
The computational time and the memory usage were
calculated based on the training data. The p-values
were obtained by evaluating the trained models in the
testing data. Among the five methods, BOOST per-
formed best in terms of memory usage (5 Mb) and
computational efficiency (14 seconds). Yet, BOOST
was limited to non-missing data and two-way interac-
tions. GWGGI was second to BOOST in terms of com-
putational efficiency (7 Mb and 3 minutes). Moreover,
GWGGI was able to handle missing data and attained
the most significant p-value by exploring high order in-
teractions. Similar as GWGGI, MDR and RJ can also
explore high-order interactions. Nevertheless, compared
to GWGGI, they required more memory usage and com-
putational time.

Conclusion
We develop a C++ package, GWGGI, for high-
dimensional gene-gene interaction analyses. It com-
prises of two major functions, TAMW and LRMW,
each of which can be used for genome-wide gene-gene
interaction analyses without requiring a filter algorithm.
In addition, each approach has its own uniqueness.
While LRMW is suitable for the identification of gene-
gene interactions among a few moderate-marginal-
effect genetic variants, TAMW is designed for detecting
gene-gene interactions involving hundreds low-marginal-
effect genetic variants. We further optimize the package so
that the genome-wide gene-gene interaction analysis can
be accomplished within a reasonable time on a personal
computer.
Availability and requirement
Project Name: GWGGI
Project Home Page: https://www.msu.edu/~changs18/
software.html#GWGGI or https://www.msu.edu/~qlu/
Software.html
Operating Systems: UNIX, Windows
Programming Languages: C++
Other Requirements: No other dependence libraries
License: GNU GPL
Any restrictions to use by non-academics: license

needed

Additional file

Additional file 1: Table S1. The summary of the top SNPs selected by
GWGGI.

Abbreviations
GWGGI: Genome-wide gene-gene interaction; LRMW: Likelihood-ratio Mann–
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