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A PKC-SHP1 signaling axis desensitizes Fcγ receptor
signaling by reducing the tyrosine phosphorylation
of CBL and regulates FcγR mediated phagocytosis
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Abstract

Background: Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of
microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces
the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling
molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in
receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may
downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes.

Results: Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL,
which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms
involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ
receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals,
such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with
GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response.
We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of
Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM
stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1
and not by the transfection of catalytic dead SHP1 (C124S).

Conclusions: Our results suggest a functional model by which PKC interacts with SHP1 to affect the
phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ
receptor mediated phagocytosis. These findings suggest a mechanism for Fcγ receptor desensitization by which
a serine-threonine kinase e.g. PKC downregulates tyrosine phosphorylation dependent signaling events via the
reduced tyrosine phosphorylation of the complex adapter protein, CBL.
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Background
Signal transduction events initiated by stimulation of Fc
receptors are important to understanding processes such
as immune reactions, inflammation, autoimmunity, and
leukemic transformation. FcγRI, the high-affinity Fc recep-
tor for monomeric IgG (CD64) and FcγRIIIA (CD16), the
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low affinity Fc receptor for IgG, are members of the im-
munoglobulin gene super family, which includes the T cell
receptor, the B cell receptor, and Fc receptors such as the
multi-subunit immune receptors (IRs) for IgE and IgG [1].
Importantly, both FcγRI and FcγRIIIA receptors signal
through the 7 kd FcγRIγ subunit ITAM (termed the
gamma subunit), whereas the FcγRIIA receptor con-
tains a receptor intrinsic ITAM motif and the FcγRIIb
receptor contains an immunoreceptor tyrosine inhibi-
tory motif, ITIM [2]. Fc receptors are unique in that
they do not possess intrinsic kinase activity, but medi-
ate downstream signaling events through a conserved
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stretch of amino acids containing (YXXL), the immu-
noreceptor tyrosine based activation motif ITAM, which
resides in the cytoplasmic region of the associated FcγRI
gamma subunit or intrinsic to FcγRIIA receptor cytoplas-
mic domain [3].
The phosphorylated ITAM serves as a docking site for

the recruitment of Syk/Zap-70 cytoplasmic nonreceptor
protein tyrosine kinases (PTKs) as pre-requisite for their
activation [4,5]. Fc receptor activation is associated with
the rapid tyrosine phosphorylation of multiple cellular
proteins including the adaptor protein, CBL, which is
complexed with the gamma subunit of FcγRI and other
FcγRs [6,7]. Tyrosine phosphorylation of CBL following
Fcγ receptor stimulation has been implicated in intracel-
lular signaling pathways via its interaction with several
signaling molecules e.g. nonreceptor kinases, other adapter
proteins [6,8,9]. The full-length c-CBL gene product, CBL
is widely expressed in the cytoplasm and is known to con-
sist of an amino terminal TKB domain, a ring finger do-
main and a carboxy terminal leucine zipper domain [10].
CBL possesses a number of proline rich motifs as well as
several tyrosine residues in the C-terminus that bind ki-
nases and adaptor proteins containing SH2 or SH3 do-
mains (e.g., Nck, Grb2, Crk, CrkL, Syk, Fyn, and Lyn) that
regulate guanine nucleotide exchange factors in mamma-
lian cells [6,7,11,12]. The interaction of Syk with CBL
(a multi-domain complex adaptor protein) [6,11,12]
seems to be facilitated by some Src family kinases that
can interact with proline rich PxxP motifs within the
CBL protein by means of their SH3 domain [13]. The
SH2- and SH3-domain containing CrkL adaptor pro-
tein is known to bind CBL at Y700 and Y774 a YxxP
motif in human macrophages [14] as well as in normal
T cells [15]. It has also been suggested that CBL can
serve as a linker for phosphatidyl-inositol-3 kinase (PI-
3Kinase) via Y731 site [16-18].
It has been shown recently that after TCR stimulation,

CBL is phosphorylated not only on tyrosine, but also on
serine, and that this post-translational modification regu-
lates its interaction with 14-3-3 ζ-proteins [19]. The phor-
bol ester PMA induced the serine phosphorylation of CBL
and induced its interaction with 14-3-3 ζ-proteins, impli-
cating the protein kinase C family of serine/threonine ki-
nases in CBL function. These reports prompted us to
examine the signaling molecules that might be involved in
mediating the attenuation of CBL tyrosine phosphoryl-
ation following Fcγ receptor activation. Protein kinase C
(PKC) is a family of serine/threonine kinase that plays crit-
ical role in the regulation of differentiation and prolifera-
tion of many cell types in the presence of diverse stimuli
[20,21]. The PKC family consists of at least 11 isoforms
that can be classified into three main subfamilies based on
their homology and cofactor requirements for activation:
conventional PKCα, βI, βII and γ are diacylglycerol (DAG)
and calcium-dependent; novel PKCδ, ɛ, θ and η are DAG-
dependent and calcium-independent; and finally a typical
PKCζ, λ and ι are dependent only on phospholipids [22].
Studies indicate that PKC is also important during mye-
loid and lymphoid activation. Recent evidence suggests
that Protein Kinase C (PKC) may desensitize tyrosine kin-
ase linked receptors by altering the tyrosine phosphoryl-
ation state of the receptor-signaling complex [23]. However
the mechanism is not yet clearly defined.
Previous work done by our laboratory [24] and other

groups [25] have reported that tyrosine phosphorylation
plays a key role in Fcγ receptor mediated phagocytosis
that is essential for activation of PI-3 kinase. Phagocyt-
osis of pathogens by macrophages initiates the immune
response, which in turn orchestrates the adaptive im-
mune response. Phagocytosis is associated with a variety
of cellular responses, including a rise in [Ca++] [26], acti-
vation of PKC [27], generation of respiratory burst, release
of arachidonic acid [28] and tyrosine phosphorylation
[29-31]. During FcγR mediated phagocytosis (specific
opsonization with antibodies), FcγIIIA and IIB recep-
tors are co-cross linked by Fc portion of IgG coated
surface of the foreign invaders. Activation of macro-
phages through Fc receptors leads to activation of non-
receptor protein tyrosine kinase, Src and Syk families
[32-35]. Recently Crowley and Kiefer [36,37] have re-
ported that macrophages derived from Syk deficient
mice display defect in phagocytosis of IgG coated par-
ticles indicating an important role of Syk kinase in
phagocytosis. In our earlier reports, we reported the
involvement of Src family kinase in the tyrosine phos-
phorylation of CBL and Syk which are required for
the formation of ITAM/Syk/CBL complex to initiate
phagocytic response. A recent report suggested that
negative regulation of class IA PI-3 kinase by PKC δ
limits Fcγ receptor mediated phagocytosis in macro-
phages [38]. It has also been reported by our labora-
tory [24] and other groups [39-41] that SHP1 plays a
key role in Fcγ receptor mediated phagocytic signal
transduction. In the present study, we have investi-
gated the interplay between PKC and SHP1 to regu-
late the deactivation of the Fcγ receptor, which leads
to inhibition of phagocytic signal transduction cas-
cade. Herein, we demonstrate that PKC activated by
PMA desensitizes FcγR signaling an effect which is
correlated with the reduced receptor-induced tyrosine
phosphorylation of CBL. The effect of PKC on FcγR
mediated phagocytosis, and downstream alteration in
signaling are both dependent on the transfection of
catalytically active protein tyrosine phosphatase, SHP1.
These results provide new insight into potential mecha-
nisms by which PKC may downregulate tyrosine phosphor-
ylation dependent signaling events to regulate receptor
desensitization.
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Results
Kinetics of CBL tyrosine phosphorylation and
dephosphorylation upon FcγR1 stimulation
In order to study the effect of Fcγ crosslinking on tyro-
sine phosphorylation of CBL, U937IF cells were used
which express two ITAM containing activating receptors
FcγRI and FcγRIIA. We focused our studies on FcγRI
because monocytes express this receptor under inflam-
matory conditions and we have used this system to exam-
ine FcγRI signaling downstream of the ITAM [42,43]. Our
results show the kinetics of phosphorylation and dephos-
phorylation of CBL immunoprecipitated from resting and
FcγR1 stimulated U937IF cells differentiated with human
interferon gamma (250 U/ml) for 5 days. FcγR1 was stim-
ulated with anti-FcγR1 [32.2 F (ab)2] at 37°C for 30 min.
and cross linked with secondary antibody (rabbit F(ab)2
fragment to mouse IgG) for different time periods at 37°C.
CBL (120 KD) displays a basal level of tyrosine phosphor-
ylation in resting cells (Figure 1, lane 2) and reached peak
within 1 to 5 min. of receptor aggregation (Figure 1, lane
3 and 4). Twenty min. after FcγR1 stimulation, the de-
phosphorylation of CBL begins (Figure 1, lane 6) and by
60 min. CBL is completely dephosphorylated (Figure 1,
lane 8).

CBL-CRKL association is correlated with the tyrosine
phosphorylation of CBL upon FcγR1 stimulation
The results shown in Figure 1 demonstrate that CBL
undergoes tyrosine phosphorylation followed by dephos-
phorylation upon FcγR1 aggregation in U937IF cells.
Previous reports from our laboratory showed that upon
FcγR1 stimulation, CBL is tyrosine phosphorylated and
concomitantly bound with CRKL [12,44]. The membrane
was cut and reprobed with anti-CBL and anti-CRKL anti-
body to show that small amount of CRKL was associated
Figure 1 Time course analysis of tyrosine phosphorylation and
dephosphorylation of CBL and its association with the CRKL
adapter protein following FcγR1 activation. Anti-phosphotyrosine
immunoblot was performed on CBL immunoprecipitated from U937
cells with anti-phosphotyrosine antibody (4G10). Lane 1, preimmune
(1 mg/ml rabbit IgG) and lane 2, resting U937 cells (NS). FcγR1
stimulation [32.2mAb F(ab)2] and crosslinking with rabbit anti
mouse antisera to U937 cells were done for 1, 5, 10, 20, 40 &
60 min., lane 3 to 8 respectively. Lane 9, whole cell lysate (WCL).
This blot was again reprobed with anti-CBL and anti-CRKL antibody to
confirm equal precipitation of CBL in all lanes and its association with
CRKL. This experiment was repeated three times.
with CBL in resting state. An increase in CBL-CRKL bind-
ing was noted within the first 1 min. (Figure 1, lane 3) to
5–10 min. (Figure 1, lane 4 and 5) of stimulation. By 20–
30 min. after FcγR1 stimulation CBL-CRKL interaction
began to decrease and minimal binding was observed by
60 min. (Figure 1, lane 8). From these data, we can con-
clude that CBL-CRKL interaction in myeloid cells corre-
lates with the tyrosine phosphorylation of CBL upon
FcγR1 stimulation.
PMA stimulation reduced the tyrosine phosphorylation of
CBL
It has been reported by Fernandez et.al. [23] that treat-
ment using PMA decreases tyrosine phosphorylation of
CBL in T-cells. In this present study, we have found that
PMA stimulation significantly decrease CBL phosphoryl-
ation in myeloid cells (Figure 2). As shown in Figure 2,
CBL immunoprecipitated from resting state U937IF cells
exhibited relatively low level of tyrosine phosphorylation,
which was significantly increased upon FcγR1 stimula-
tion. When cells were stimulated with PMA (200 ng/ml),
the tyrosine phosphorylation of CBL is markedly de-
creased after 5 min. (Figure 2, lane 4) and there is no
CBL phosphorylation after 10 min. (Figure 2, lane 5).
These results establish that the CBL adapter protein
underwent a significant decrease in tyrosine phosphor-
ylation after PMA treatment.
A prominent feature of FcγR1stimulation in myeloid

cells is the transient association of CRKL with CBL [12].
Figure 2 shows that the association of CRKL with CBL
was increased by FcγR1 stimulation (Figure 2, lane 6, 7
and 8) and this interaction is reduced by PMA treatment
(Figure 2, lane 3, 4 and 5).
Figure 2 PMA treatment reduced the tyrosine phosphorylation
of CBL and dissociation of binding of CRKL to CBL.
Immunoprecipitations of U937 cell lysates were performed with anti-CBL
antibody after PMA or FcγRI stimulation. Lane 1 & 2 indicates preimmune
and resting state (NS) respectively. Lane 3, 4 & 5, treated with PMA
(200 ng/ml) for 1, 5 and 10 min. respectively. Lane 6, 7 & 8, stimulated
for FcγR1 with 32.2 F(ab)2 and cross linked with secondary antibody
(rabbit anti mouse F(ab’)2) for 1 , 5 and 10 min. respectively. Whole cell
lysate was added in lane 9 as positive control (WCL). Immunoprecipitated
proteins were resolved in 10% SDS-PAGE, blot on nitrocellulose
membrane and probed with anti-phosphotyrosine antibody
(4G10). This blot was again reprobed with anti-CBL and anti-CRKL
antibody. This experiment was repeated three times.



Figure 4 GST-CRKL-SH2 pull down experiment showing the effect
of PMA on CBL-CRKL dissociation and CBL dephosphorylation.
U937IF cell lysates were prepared and were precipitated with GST fusion
protein as described in Methods. 10 μg of GST fusion protein was used
for invitro pull down experiments. 50 μl of glutathione-sepharose
beads (prewashed with extraction buffer) was added to each sample.
GST-Crkl-SH2 fusion (lanes 2–11) protein was used to precipitate
associated protein with or without PMA treatment in FcγRI stimulated
cell lysate. Lane 1, precipitated with GST alone. Lane 2, no stimulation,
Lane 3, 4 & 5, stimulated cell lysate (stimulated with 32.2 F(ab)2
antibody and cross linked with secondary antibody for 1, 5 and
10 min. Lane 6, 7 and 8, cells were treated with PMA (200 ng/ml)
for 5 min. followed by FcγR1 stimulations, lane 9, 10 and 11, cells
were preincubated with GF109203X (2.5 μM) for 15 min. on ice
and then treated with PMA (200 ng/ml) for 5 min. followed by
FcγR1 stimulations. Proteins bound to GST fusion protein were resolved
in 10% SDS-PAGE, blotted on nitrocellulose membrane and probed
with phosphotyrosine antibody (4G10). This blot was reprobed with
anti-CBL antibody. This experiment was repeated two times.
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PKC activation attenuates tyrosine phosphorylation of
CBL
To determine the specific effect of PKC on tyrosine phos-
phorylation of CBL, U937IF cells were pre-incubated with
a specific PKC inhibitor, GF109203X, followed by PMA
treatment. Our data suggest that CBL phosphorylation
was maintained for 1 to 5 min. (Figure 3, lane 6 and 7) in
GF109203X treated cells pre-incubated with PMA in
comparison to cells treated with PMA alone (Figure 3,
lanes 3, 4 and 5). In addition to CBL phosphorylation,
CBL-CRKL association was also maintained in cells pre-
incubated with GF109203X.
In order to study CBL-CRKL interaction in U937IF

cells following FcγR1 stimulation, we performed pull-
down experiments with the GST-CRKL-SH2 domain
under conditions of FcγR1 stimulation alone and pre-
treatment with PMA. Similar to data shown in Figure 2,
we observed a basal level of tyrosine phosphorylation of
CBL in GST-CRKL-SH2 pull down from resting state
(Figure 4, lane 2). Within 1 min. of FcγR1 stimulation a
marked increase was seen in amount of tyrosine phos-
phorylated protein bound to CRKL (Figure 4, compare
lane 2 with 3). Pretreatment with PMA followed by
FcγR1 cross linking showed decreased amount of phos-
phorylated CBL pulled down with CRKL-SH2 (Figure 4,
lane 6, 7 and 8). To provide further evidence for the role
of PKC in tyrosine phosphorylation of CBL through Fcγ re-
ceptor desensitization, we performed GST-CRKL-SH2 pull-
down experiment with cells pretreated with GF109203X,
then stimulated with PMA for 5 min followed by cross
linking of FcγR1 at different time periods. Pretreatment
with GF109203X partially rescued the PMA induced
Figure 3 Specific PKC inhibitor (GF109203X) maintains the
basal tyrosine phosphorylation state of CBL. Human IFN γ
differentiated U937 cells were treated with or without GF 109203X
(2.5 μM) on ice for 15 min. and then stimulated with PMA (200 ng/ml)
for 1, 5 & 10 min. at 37°C. Cell lysates were prepared and
immunoprecipitated (IP) with anti-CBL antibody. Lane 1 represents
precipitation with preimmune antisera. Lane 2, no stimulation. Lane 3,
4 & 5 and 9, 10 & 11 represent U937 cells stimulated with PMA
(200 ng/ml) or 32.2 F(ab)2 for 1, 5 & 10 min. respectively. Lane 6, 7 & 8,
represents cells preincubated with GF 109203X followed by PMA
stimulation. This blot was reprobed with anti-CBL and anti-CRKL
antibody.
tyrosine dephosphorylation of CBL (Figure 4 compare
lane 9, 10 and 11 with lane 6, 7 and 8). The protective
effect of GF109203X on CBL dephosphorylation appeared
concomitant to CBL-CRKL association. In addition, we
observe a 130 kd tyrosine phosphorylated protein which
binds to the CRKL-SH2 domain upon FcγR1 crosslinking
and appears to undergo a reduced level of tyrosine
phosphorylation upon PMA treatment in U937IF cells
(Figure 4). The effect of the PKC inhibitor on tyrosine
phosphorylation state of CBL as well as CBL-CRKL
interaction suggest that PMA acts through an effect
upon tyrosine phosphorylation of CBL following FcγR
stimulation.

PMA reduced the tyrosine phosphorylation state of CBL
and abrogates phagocytosis in J774 A.1 cells stimulated
with IgG sensitized sheep RBC
Since several studies have recently reported the require-
ment for specific tyrosine kinases, Syk and Src family ki-
nases in phagocytosis mediated events [32,33,36,45], we
presumed that dephosphorylation of specific cell protein
on specific tyrosine phosphorylation sites may negatively
regulate phagocytosis. We previously reported that Fcγ
receptor cross-linking induces tyrosine phosphorylation
of the complex adapter protein CBL [11]. More recent
data from our laboratory provide evidence that CBL is
required in FcγR mediated phagocytic response [24].
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These observations prompted us to study the role of
tyrosine phosphorylation of CBL in the induction of
phagocytic signaling. To address this question, we have
studied the tyrosine phosphorylation of CBL in J774 A.1
cells stimulated with IgG sensitized sheep RBC. Figure 5
shows that tyrosine phosphorylation of CBL is attenu-
ated in PMA pre-treated cells upon Fcγ receptor stimu-
lation (lane 6, 7 and 8). Phagocytosis of IgG coated
sRBC (Figure 6A) was found significantly inhibited fol-
lowing treatment of PMA in J774A.1 cells. This inhibi-
tory effect of PMA was blocked by the PKC inhibitor,
GF109203X (Figure 6A). These data suggest that FcγR
induced phagocytic event is regulated by PKC. Previous
work in our laboratory demonstrated that SHP-1 overex-
pression inhibits FcγR mediated phagocytosis compared
to no effect of a catalytically dead mutant of SHP-1 and
heterologous overexpression of wild type SHP-1 in J774
A.1 enhances the dephosphorylation of CBL [24] . These
results combined with our observation that PMA in-
duced the dephosphorylation of CBL prompted us to
examine the crosstalk between PKC and SHP-1 on FcγR
mediated downstream event. To execute these experi-
ments, J774A.1 cells were infected either with empty
vector recombinant vaccinia virus (pSC65) or recombin-
ant vaccinia virus for the expression of wild type SHP-1
or catalytically dead SHP-1 at an MOI 2 pfu/cell for
4 hours at 37°C. The result shows that effect of SHP-1
overexpression on phagocytosis is blocked by the inhib-
ition of PKC (treatment with GF109203X) (Figure 6C).
Importantly, PMA has no effect on Fcγ receptor medi-
ated phagocytosis when cells were overexpressing the
catalytically dead SHP1 (C124S). Hence, we suggest that
PKC desensitizes Fcγ receptor in a SHP1 tyrosine phosphat-
ase dependent manner resulting in the dephosphorylation of
Figure 5 PMA induces dephosphorylation of CBL in mouse
macrophage cell line (J774A.1) stimulated with sensitized
sheep RBC. CBL immunoprecipitation was done in J774A.1 cells
stimulated with sensitized (IgG coated) sheep RBCs at 37°C in a
time dependent manner. Anti-phosphotyrosine blot showing CBL
immunoprecipitation. Lane 1, preimmune and lane 2, resting condition
(NS). Lane 3, 4 & 5, cells were stimulated with sensitized sheep RBCs for
1, 5 and 10 min. Lane 6, 7 & 8, preincubated with PMA (200 ng/ml) for
5 min. at 37°C followed by FcγR stimulation for 1, 5 and 10 min.
respectively.
CBL an effect which blocks the downstream phagocytosis
response.
To further validate the role of PKC in FcγR dependent

phagocytosis, we performed experiments in primary mur-
ine macrophages (Figure 6D). Peritoneal macrophages iso-
lated from mice were treated as shown in Figure 6A,
pulsed with PMA or PMA+ PKC inhibitor followed by in-
cubation with anti-SRBC IgG opsonized SRBCs. Similar to
results observed in J774 cells, PMA was noted to inhibit
phagocytosis 70%, an effect that was reversed by the treat-
ment with the PKC inhibitor, GF109203X (Figure 6D).
These results closely replicate our findings in the J774
murine macrophage cell line (Figure 6A).

PKC blocks FcγR1 mediated Rac activity
First, we performed experiments to confirm that FcγR
stimulation induces the activation of the small GTPase,
Rac. We then treated U937IF cells with PKC inhibitor,
GF109203X or activator, PMA to examine the effect of
PKC on Rac activation. From these data (Figure 7), we
conclude that PKC induces dephosphorylation of CBL
potentially through SHP1 and this is associated with a
block in the downstream activation of Rac-GTPase activ-
ity. This observation is consistent with our published
work showing in an heterologous FcγR/SYK reconsti-
tuted COS cell system that SHP1 and not SHP2 can
regulate FcγR activation of Rac and this is correlated
with marked inhibition of FcγR dependent phagocytosis
[24]. Interestingly, inhibition of Rac activation following
PMA treatment was directly correlated with the inhib-
ition of CBL phosphorylation which corresponded with
a marked inhibition of FcγR mediated phagocytosis in
the J774 system and decrease association of CBL with
CRKL. Figure 7B shows a schematic representation of
the signaling pathway elucidated in this report.

Discussion
Fc receptor activation is associated with rapid tyrosine
phosphorylation of CBL adaptor protein, which is com-
plexed via Syk kinase and the γ-subunit of FcγRI [6,7,14].
But the interplay between the key signaling molecules
which dephosphorylate CBL upon receptor desensitization
and hence the deactivation of the phagocytic signalsome
are mostly unknown. In the present study, we identified
an interaction between PKC and SHP1 which appears to
regulate the deactivation of Fcγ receptor leading to the in-
hibition of the phagocytic signal transduction cascade.
Tyrosine phosphorylation is a critical event for the regu-

lation of signal transduction, cell growth, differentiation
and development. Tyrosine phosphorylation of CBL fol-
lowing Fcγ receptor stimulation has been implicated in
intracellular signaling pathways via its interaction with
several signaling molecules. Tyrosine phosphorylation of
CBL has also been demonstrated upon stimulation



Figure 6 Fcγ Receptor induced phagocytic activity is decreased following the treatment by PMA in J774A.1 cell line. (A) For PMA
treatment, cells were pre incubated with PMA (0.2 μg/ml or 0.4 μg/ml) for 15 min. before the onset of phagocytosis. In other set, cells were pre
incubated with GF109203X for 15 min. followed by PMA (0.4 μg/ml) treatment. To initiate phagocytosis, media was replaced by 1ml IgG coated
sheep RBCs and incubated for 30 min. at 37°C. (B) Effect of over expression of SHP-1 on CBL dephosphorylation. J774A.1 cells were infected either
with empty vector recombinant virus (pSC 65) or wild type SHP-1 (MOI 2 pfu/cell for overnight) or with C2 mutant of SHP-1. P and NS represents
pre-immune and non-stimulation respectively, non infected serve as control. Except P and NS conditions, all cells were stimulated with sensitized
sheep RBCs for 10 min. Immunoblots were reprobed with anti-CBL, anti-SHP-1 and anti-CRKL antibody. Lower panel shows the Western blot analysis of
over expression of SHP-1 and C2 mutant in J774A.1 cells. (C) J774A-1 cells were infected with pSC 65or recombinant vaccinia for the expression of C2
mutant or SHP-1 at an MOI of 2 pfu / cell for 4 hours at 37°C as described in Methods. Western blot analysis confirms equivalent level of over expression
of SHP-1 and C2 mutant in J774-1 cells. (D). Peritoneal macrophages isolated from C57BL/6 mice were pre incubated with PMA for 15 min. before the
onset of phagocytosis. In other set, cells were pre incubated with GF109203X (above mentioned conc.) for 15 min. followed by PMA (0.4 μg/ml)
treatment and phagocytosis was performed as described above. Each bar represents mean ± SD, n=3. *P <0.05, **P <0.01 and ***P <0.001
vs. control (t-test) All these experiments were performed three times.
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through T cell receptor [15,46], B cell antigen receptor
[47,48] granulocyte-macrophage colony stimulating factor
and erythropoietin receptor [49], suggesting that CBL
plays an important role in multiple antigen receptor and
mitogen receptor associated tyrosine kinase activation
pathways in hematopoietic cells.
The increased tyrosine phosphorylation of cellular

proteins that occurs after FcγR stimulation is a transient
process, which is regulated by the combined action of
protein tyrosine kinases and phosphatases. Importantly,
once a protein is phosphorylated in vivo on a tyrosine
residue, this covalent phosphotyrosine moiety within a
given intact protein can only be reversed by the action
of a protein tyrosine phosphatase i.e. dephosphorylation
(Figure 1). Interestingly, the peak of protein tyrosine
phosphorylation in response to Fc receptor activation
was observed only after 1 to 5 min. and decreased in
next 10–20 min., which suggests that a tyrosine phosphat-
ase was activated following Fcγ receptor engagement.
Relatively less work has been done regarding the receptor
deactivation mechanisms, including the regulation of
phosphatase activity. Our results suggest that tyrosine
dephosphorylation of proto-oncoprotein CBL is associ-
ated with receptor desensitization and leads to abrogation
of the downstream phagocytic signal. These results raise
the possibility that a specific tyrosine phosphatase is in-
volved in deactivating the ITAM signaling cascade. Our
previous findings [24] and the results observed in the
present study indicate that CBL is a substrate for SHP1
and PMA can potentially induce the activation of SHP1.
This dephosphorylation of CBL abrogates CBL-CRKL
interaction following Fcγ receptor engagement. It has
been also suggested that CBL-CRKL interaction is medi-
ated through YXXP motif at the C terminal end of CBL
(tyrosine 774) [12]. Our mass spectrometry data also
confirmed that PMA abrogates CBL-CRKL interaction
due to dephosphorylation of CBL at Tyr774 (unpub-
lished observation). Based on these data, we suggest that



Figure 7 FcγR1 activates Rac. (A) The activation of total Rac and Rac2 was measured following FcγR1 stimulation in U937 cells (See Methods)
using GST-PAK1_CRIB domain pull down assay. U937 cells were treated with PMA or PKC inhibitor (GF109203X) to determine the effect of PKC on
Fcγ receptor desensitization. The protein bound to GST-PAK1-CRIB is resolved on SDS-PAGE and immunoblotted with antibody for total Rac. Same
experiment was repeated and immunoblotted with antibody specific for Rac2. Lane 1, no stimulation; lane 2 & 3, preincubated with PMA
(200 ng/ml) for 5 min. at 37°C followed by FcγR stimulation for 1 and 5 min. respectively, lane 4 & 5, cells were preincubated with GF 109203X
(2.5 μM) for 15 min. on ice and then treated with PMA (200 ng/ml) for 1 & 5 min. followed by FcγR1 stimulations, lane 6 and 7, FcγR1 stimulation
(alone) on Rac-GTP levels. The experiment was repeated three times. (B) Graphic representation of the signaling mechanism reported in the
present study.
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PMA (probably through SHP1) targets the tyrosine de-
phosphorylation of CBL at Tyr774 which leads to loss of
CBL-CRKL interaction. Several groups have demonstrated
that CRKL interacts via its N-terminal SH3 domain with
guanine nucleotide exchange factors C3G and SOS [50-52]
suggesting that CRKL activates small G-protein signaling
pathways. In Jurkat T cells, CBL through its interaction
with CRKL protein becomes coupled to a guanine nucleo-
tide exchange factor. These findings strongly suggest the
possibility that tyrosine phosphorylation of CBL may pro-
vide one mechanism to link upstream tyrosine kinase to
small G protein regulation. These finding are consistent
with the result that PMA abrogates ITAM induced Rac-
GTP activity (Figure 7), a biochemical phenomenon that
has been implicated in the regulation of cytoskeleton re-
arrangement and phagocytosis.
PMA is known to activate PKCs by binding to their

cysteine rich domain and facilitating their translocation
to plasma membrane [53-55]. Using PKC specific inhibi-
tor GF109203X (inhibits both classical and novel PKCs)
the inhibitory effect of PMA on phosphorylation of CBL
and phagocytosis was reversed, indicating the involve-
ment of PKC in this phenomenon. The inhibition of PKC
activity by GF109203X, leads to higher tyrosine phosphor-
ylation of other cellular proteins. It has also been reported
by others that PMA induces dephosphorylation of Shc in
T cells and this can be reversed by GF109203X [23] indi-
cating that PKC activation modulates the tyrosine phos-
phorylation state of other cellular protein besides CBL. It
has also been reported previously by others that PMA
causes serine/threonine phosphorylation of growth factor
receptor and serine phosphorylation of IRS1 resulting
an inhibition of receptor protein tyrosine kinase activ-
ity [56,57]. Liu et al. [19] have reported that PMA in-
duces the serine phosphorylation of CBL and promote
the association of Tau isoform of 14-3-3 and this serine
phosphorylation of CBL suppressed its tyrosine phos-
phorylation by tyrosine kinase inhibition, however the
mechanism is not yet known. It has also been reported
that PKC does not bind to CBL directly [58], raising
the possibility that PKC might indirectly regulate tyro-
sine phosphorylation of CBL by bringing a tyrosine
phosphatase into the signalsome, by activating a spe-
cific PTP or by altering substrate availability to kinases
and/or phosphatases. Our results provide evidence that
PKC controls the tyrosine phosphorylation state of
CBL via a mechanism that somehow requires the pro-
tein tyrosine phosphatase activity of SHP1.
In the present study, we examined the role of PKC in

the control of Fcγ receptor mediated phagocytosis. The
data presented here demonstrate that Fcγ receptor medi-
ated phagocytosis was markedly inhibited by exposure of
cells to PMA, which was associated with CBL tyrosine
dephosphorylation and downstream inhibition of Rac-
GTP activation. The literature contains conflicting
reports concerning the role of PKC in phagocytosis.
Pharmacological inhibition or expression of dominant
negative isoforms of PKC reduced phagocytosis in several
systems [59-61]. However, the precise role of the particular
PKC isoforms involved in phagocytosis remains unclear.
Involvement of PKC activity in complement receptor-
mediated phagocytosis has been clearly demonstrated [62].
In the case of FcγR-mediated phagocytosis, data are more
complex. Differences in these reports regarding the
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involvement of PKC may be a result of the differential role
of various PKC isoforms in phagocytosis [63]. In U937
monocytes, it was found that FcγRI engagement leads to
an increase in PKC activity that is Ca2+-independent and
corresponds to translocation to the membrane of the PKC
isoforms δ, ε, and ζ [64]. In U937-differentiated macro-
phages, FcγRI engagement leads to PKC activity that is
Ca2+-dependent and corresponds to membrane transloca-
tion of the conventional PKC isoforms α, β, and γ [64,65].
Zheleznyak and Brown [66] have found that activation

of PKC is an early signal required for Fc receptor medi-
ated phagocytosis in human monocytes. It is possible
that PKC may play a different role in Fcγ receptor sig-
naling and phagocytosis at different time points follow-
ing receptor engagement as is true for many signaling
molecules. We [24] and others have demonstrated that
tyrosine phosphorylation is a critical signaling event that
underlies Fcγ receptor mediated phagocytosis in mouse
macrophages and the formation of tyrosine phosphoryl-
ation coincides with the appearance of F-actin beneath
the phagocytic cup. [29,62,67]. They reported that genes-
tein (tyrosine kinase inhibitor) but not inhibitors of
protein kinase C, block the ingestion process during
phagocytosis. In agreement with these data, we ob-
served that PMA induces Fc receptor mediated rapid
CBL dephosphorylation which coincides with abroga-
tion of phagocytosis. It has also been reported by
Romanova et al. [68] that Rac1 is necessary for the IL3
induced assembly of membrane ruffles in Baf3 (human
pre-B lymphoid) cell line and PMA dissolves the actin
formed membrane ruffles and round the cells in presence
of IL-3. Rac is directly involved in actin polymerization/
formation of lamellipodia. It plays an important role in en-
gulfment in phagocytosis. Our results suggest that PMA
induced a dephosphorylation of CBL which is associated
with a block in the downstream signaling cascade, the
conversion of Rac-GDP to Rac-GTP, an event that is es-
sential for the phagocytic response.
Tyrosine phosphorylation is controlled by the coordi-

nated action of PTKs (protein tyrosine kinase) and protein
tyrosine phosphates (PTPs) [69-71]. The work from our la-
boratory has reported [24] that SHP1 inhibits Fcγ receptors
mediated phagocytosis by altering the phosphorylation state
of CBL and blocked Rac-GTP. In macrophages, SHP1 also
selectively regulates the tyrosine phosphorylation of Stat1
and Jak1 while leaving Tyk2 and Stat2 unaffected [72].
Herein, we present evidence that PKC negatively regulates

the tyrosine phosphorylation state of the CBL adapter pro-
tein and inhibits FcγR dependent ITAM signaling and
phagocytosis. Our experiments performed with heterologous
expression of SHP1 vs. the phosphatase-dead SHP1 support
the notion that this PKC mediated event is dependent
upon SHP1 phosphatase activity. Previous reports from
our laboratory and others have confirmed a role of
CBL in the regulation of FcγR mediated phagocytosis
and that SHP1 associates with CBL [24].

Conclusions
In conclusion, we favor two potential mechanisms for
the observed PKC-mediated, SHP-1 dependent downreg-
ulation of phagocytosis: 1) PKC directly phosphorylates
and activates SHP-1 resulting in augmented dephosphor-
ylation of CBL and the inactivation of Rac-GTP activity
2) PKC phosphorylates other substrates including CBL
itself resulting in augmented interaction with 14-3-3 and
altered substrate availability for SHP-1 or PTKs. Alterna-
tively, PKC could directly alter the protein tyrosine kin-
ase activity of an ITAM associated PTKs like SYK or a
SFK resulting in decrease in CBL tyrosine phosphoryl-
ation or alter CBL availability as as substrate for PTKs.
It should be noted, that this model would not be consist-
ent with our results, the observed SHP-1 dependency of
the desensitization under conditions of PMA stimulation
or PKC inhibition (Figure 6). Finally, the results may fur-
ther support a general molecular mechanism for ITAM
receptor desensitization which predicts that serine threo-
nine kinases (e.g. PKC, PKA, etc.) can augment the de-
phosphorylation and/or block the tyrosine phosphorylation
of important cellular substrates and therefore disassemble
adapter protein networks as negative regulators of small G
protein and ITAM signaling networks. Future experiments
are planned in these model systems to utilize CBL and
SYK mutants and knockout mouse models to further valid-
ate these different hypotheses.

Methods
Antibodies and reagents
FcγR1 specific antibody [mAb 32.2 F(ab)2 frgment for
IgG] was purchased from Medarex (Annandale, NJ). The
cross linking Ab was a rabbit anti-mouse F(ab)2 frag-
ment (R/M) obtained from Organon technika (West
Chester, PA). Sheep red blood cells and rabbit IgG frac-
tion to sheep RBC were purchased from ICN (Costa
Mesa, CA). Anti-phosphotyrosine (4G10) was procured
from Upstate Biotechnology (Lake Placid, NY). Anti-CBL
and anti-CRKL were obtained from Santa Cruz biotechnol-
ogy (Santa Cruz, LA). PKC activator, PMA (phorbol ester)
and PKC inhibitor bisindolymaleiamide 1 (GF109203X) were
from Calbiochem (San Diego, CA).

Cell culture and activation
U937 cells were cultured in RPMI 1640 with 10% FBS and
differentiated with 250U/ml human recombinant IFNγ for
5 days (termed U937IF) as described [73]. J774A1 cell line
obtained from American type of culture collection was
grown in DMEM supplemented with 10% FBS. For cross
linking of FcγR1 of U937 cell, the cells (20 × 106/500 μl in
serum free RPMI) were incubated with anti FcγR1 [32.2 F
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(ab)2], 1 μg/0.5 ml at 37°C for 30 min. Cross-linking was
done with rabbit F(ab)2 fragments to mouse IgG (5 μg/
sample) at 37°C for different time periods. The reactions
were terminated by centrifugation at 3000 rpm for 5 min.
at 4°C after adding 800 μl pre-chilled HBSS. Cell pellet
was lysed with 0.5 ml lysis buffer containing 1% Triton X-
100 on ice for 30 min.. For stimulation and cross-linking
of Fcγ receptor in J774A.1 cells, sheep RBC was sensitized
with rabbit IgG fraction. 100 μl of pre-washed blood was
added in 10 ml of PBS containing 10 μl of rabbit IgG frac-
tion and incubated at room temperature for 1 hour with
intermittent mixing followed by centrifugation at 1400 rpm
for 5 min. at 4°C. After aspiration of supernatant, equal vol-
ume of serum free DMEM was added. For cross linking,
cells were counted and adjusted to 3 × 106 cells/ sample
washed with HBSS and finally 1 ml of sensitized sheep RBC
was added to each sample and incubated at 37°C for differ-
ent time periods. Activation was stopped by centrifugation
at 10,000 rpm for 1 min at 4°C. The cell pellet was lysed by
adding 0.5 ml lysis buffer containing 1% Triton X100 and
kept on ice for 30 min.

Biochemical analysis
The immunoprecipitations were carried out from clarified
clear cell lysate using lysis buffer containing 1% Triton
X100, 10 mM Tris HCl, pH 7.6, 50 mM NaCl, 5 mM
EDTA, 50 mM NaF, 0.1% BSA, 1% aprotonin, 2 mM
sodium orthovanadate and 0.01 mM phenyl arsine oxide
as described by Park et al. [11]. GST fusion protein pull-
down experiments were performed as described by Kyono
et al. [12] with little modification. In brief, 10 μg of fusion
protein (CrKL-SH2) was added to 500 μl of sample and
incubated for 90 min. at 4°C. The immune complexes
were collected by pre-washed glutathione sepharose be-
fore resolving in 12.5% SDS-PAGE. Equivalent amounts of
GST fusion proteins were used in each experimental
group were confirmed by Coomassie blue staining of the
gels after the transfer of protein.
The activation of small GTPase (total Rac and Rac2) fol-

lowing FcγR1 stimulation in U937 cells was measured using
GST PAK1-CRIB domain pull down assay. In brief, this in-
cludes crosslinking of FcγR1 as described above followed by
preparation of cell lysate which is incubated with GST-CRIB
domain fusion protein (from Upstate Biotechnology, Lake
Placid, NY) to bind only GTP bound Rac/Rac2. U937 cells
were pre-treated with PMA or PKC inhibitor GF10902X.
Immunoprecipates, pull down sample and whole cell
lysate were resolved on 10–12.5% acrylamide-0.193%
bis-acrylamide gels by SDS-PAGE [11,12].

Vaccinia virus expression system
The recombinant vaccinia virus was generated, purified
and titrated following the protocol as described by Kant
et al. [24].
Isolation of peritoneal macrophages
Thioglycolate derived peritoneal macrophages were ob-
tained 4 days after intraperitoneal injection of 1.5 ml of
thioglycollate medium (Sigma) in C57BL/6 mice. Peri-
toneal macrophages were isolated by flushing the peri-
toneal cavity 3 × 5 mL with RPMI, 10% FCS. An aliquot
is counted using a hemocytometer. Macrophages are
plated at an appropriate density (5 × 105/well, Costar 6
well plate) and become adherent overnight. Adherent
cells are washed the next day two times with PBS to re-
move nonadherent or only loosely adherent cells and
used for phagocytosis assay.

Phagocytic assay
Phagocytosis assay was performed on J774A.1 cells (2 × 105/
well, Costar 12 well plate) or peritoneal macrophages iso-
lated from C57BL/6 mice (5 × 105/well, Costar 6 well plate).
The cells were treated with PMA (0.2 μg/ml and 0.4 μg/ml)
alone or along with PKC inhibitor GF109203X (0.5 μM and
1 μM). In other set of experiments, cells were infected with
empty vector recombinant vaccinia virus (pSc65) or re-
combinant vaccinia virus for the expression of wild type
SHP-1 or catalytically dead SHP-1 at a multiplicity of
infection (MOI) of 2 pfu/cell for 4 hours at 37°C in 5%
CO2. After incubation, media was changed and cells were
subjected to sheep RBC coated with rabbit anti-SRBC
IgG. The target to effector ratio was kept at 100:1. DMSO
treated cells served as control. After 30 min. of incubation
at 37°C, cells were scrapped, cytospins were prepared,
fixed and stained with Wright Giemsa stain (Dade, AG,
Switzerland) and the slides were observed under micro-
scope for rosette formation. The remaining cells were sub-
jected to water shock to lyse the non-engulfed extracellular
sheep RBCs. The cells were suspended in DMEM contain-
ing 20% FBS. Using cytospin, cells were spun down on
glass slide, fixed and stained with Wright Giemsa stain.
One hundred cells were counted for each slide and phago-
cytic index (PI) was calculated in triplicate. PI is calculated
as % of phagocytic cells × average number of sheep RBC
engulfed by each cell. In every experiment, recombinant
viral load for control (cells infected with empty vector re-
combinant vaccinia virus) compared with experimental
sample (cells infected with either wild type SHP-1 or cata-
lytically dead SHP-1) was equivalent. The capacity of
J774A.1 cells to form rosettes via Fcγ receptor was not al-
tered by vaccinia virus. Rosette formation and phagocytosis
did not occur in absence of sensitizing RBCs, which estab-
lishes the FcγR specificity of this response. As a control for
effects of recombinant vaccinia virus, J774A.1 cells were
tested for equal viral load by quantitation of β-
galactosidase activity measured with X-gal as described by
Kant et al. [24]. Briefly, 50 μl of 1% X-gal (Sigma, St. Louis,
MO) was added to 400 μl cells (1 × 105) suspension in
DMEM (10% FBS) at 37°C. The blue colored supernatant
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was diluted 1:10 for the measurement of optical density at
595 nm in a spectrometer (Molecular Devices, California).

Abbreviations
FcγRI: High affinity Fc receptor for IgG; PKC: Protein kinase C; PMA: Phorbol
12-myristate 13-acetate; SH2: src homology 2 domain; SH3: src homology 3
domain; sRBCs: sheep red blood cells.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
SJ, ARS and DLD designed the research; SJ, ARS and MZ conducted the
research; SJ, ARS and DLD analyzed the research; SJ, ARS and DLD wrote the
manuscript. DLD had primary responsibility for final content. All authors read
and approved the final manuscript.

Acknowledgements
We acknowledge the support of the NIH for funding this work HL091395
and CA94233 to DLD.

Received: 18 December 2013 Accepted: 23 April 2014
Published: 7 May 2014

References
1. Qian D, Weiss A: T cell antigen receptor signal transduction. Curr Opin Cell

Biol 1997, 9:205–212.
2. Nimmerjahn F, Ravetch JV: Fcgamma receptors: old friends and new

family members. Immunity 2006, 24:19–28.
3. Cambier JC: Antigen and Fc receptor signaling. The awesome power of

the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol
1995, 155:3281–3285.

4. Sada K, Takano T, Yanagi S, Yamamura H: Structure and function of Syk
protein-tyrosine kinase. J Biochem 2001, 130:177–186.

5. Johnson SA, Pleiman CM, Pao L, Schneringer J, Hippen K, Cambier JC:
Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique
abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol
1995, 155:4596–4603.

6. Tanaka S, Neff L, Baron R, Levy JB: Tyrosine phosphorylation and
translocation of the c-cbl protein after activation of tyrosine kinase
signaling pathways. J Biol Chem 1995, 270:14347–14351.

7. Marcilla A, Rivero-Lezcano OM, Agarwal A, Robbins KC: Identification of the
major tyrosine kinase substrate in signaling complexes formed after
engagement of Fc gamma receptors. J Biol Chem 1995, 270:9115–9120.

8. Ota Y, Beitz LO, Scharenberg AM, Donovan JA, Kinet JP, Samelson LE:
Characterization of Cbl tyrosine phosphorylation and a Cbl-Syk complex
in RBL-2H3 cells. J Exp Med 1996, 184:1713–1723.

9. Chu J, Liu Y, Koretzky GA, Durden DL: SLP-76-Cbl-Grb2-Shc interactions in
FcgammaRI signaling. Blood 1998, 92:1697–1706.

10. Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ: Structure of the amino-terminal
domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 1999,
398:84–90.

11. Park RK, Kyono WT, Liu Y, Durden DL: CBL-GRB2 interaction in myeloid
immunoreceptor tyrosine activation motif signaling. J Immunol 1998,
160:5018–5027.

12. Kyono WT, de Jong R, Park RK, Liu Y, Heisterkamp N, Groffen J, Durden DL:
Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma
subunit immunoreceptor tyrosine-based activation motif in signaling
of myeloid high affinity Fc receptor for IgG (Fc gamma RI). J Immunol
1998, 161:5555–5563.

13. Deckert M, Elly C, Altman A, Liu YC: Coordinated regulation of the tyrosine
phosphorylation of Cbl by Fyn and Syk tyrosine kinases. J Biol Chem
1998, 273:8867–8874.

14. Erdreich-Epstein A, Liu M, Kant AM, Izadi KD, Nolta JA, Durden DL: Cbl
functions downstream of Src kinases in Fc gamma RI signaling in
primary human macrophages. J Leukoc Biol 1999, 65:523–534.

15. Reedquist KA, Fukazawa T, Panchamoorthy G, Langdon WY, Shoelson SE,
Druker BJ, Band H: Stimulation through the T cell receptor induces Cbl
association with Crk proteins and the guanine nucleotide exchange
protein C3G. J Biol Chem 1996, 271:8435–8442.
16. Matsuo T, Hazeki K, Hazeki O, Katada T, Ui M: Specific association of
phosphatidylinositol 3-kinase with the protooncogene product Cbl in Fc
gamma receptor signaling. FEBS Lett 1996, 382:11–14.

17. Fukazawa T, Reedquist KA, Trub T, Soltoff S, Panchamoorthy G, Druker B,
Cantley L, Shoelson SE, Band H: The SH3 domain-binding T cell tyrosyl
phosphoprotein p120. Demonstration of its identity with the c-cbl
protooncogene product and in vivo complexes with Fyn, Grb2, and
phosphatidylinositol 3-kinase. J Biol Chem 1995, 270:19141–19150.

18. Liu YC, Altman A: Cbl: complex formation and functional implications. Cell
Signal 1998, 10:377–385.

19. Liu YC, Elly C, Yoshida H, Bonnefoy-Berard N, Altman A: Activation-modulated
association of 14-3-3 proteins with Cbl in T cells. J Biol Chem 1996,
271:14591–14595.

20. Newton AC: Regulation of protein kinase C. Curr Opin Cell Biol 1997,
9:161–167.

21. Nishizuka Y: Protein kinase C and lipid signaling for sustained cellular
responses. FASEB J 1995, 9:484–496.

22. Mellor H, Parker PJ: The extended protein kinase C superfamily. Biochem
J 1998, 332(Pt 2):281–292.

23. Fernandez B, Czech MP, Meisner H: Role of protein kinase C in signal
attenuation following T cell receptor engagement. J Biol Chem 1999,
274:20244–20250.

24. Kant AM, De P, Peng X, Yi T, Rawlings DJ, Kim JS, Durden DL: SHP-1
regulates Fcgamma receptor-mediated phagocytosis and the activation
of RAC. Blood 2002, 100:1852–1859.

25. Kwiatkowska K, Sobota A: Signaling pathways in phagocytosis. Bioessays
1999, 21:422–431.

26. Lew DP, Andersson T, Hed J, Di Virgilio F, Pozzan T, Stendahl O: Ca2+−dependent
and Ca2+−independent phagocytosis in human neutrophils. Nature 1985,
315:509–511.

27. Brozna JP, Hauff NF, Phillips WA, Johnston RB Jr: Activation of the
respiratory burst in macrophages. Phosphorylation specifically
associated with Fc receptor-mediated stimulation. J Immunol 1988,
141:1642–1647.

28. Aderem AA, Wright SD, Silverstein SC, Cohn ZA: Ligated complement
receptors do not activate the arachidonic acid cascade in resident
peritoneal macrophages. J Exp Med 1985, 161:617–622.

29. Greenberg S, Chang P, Silverstein SC: Tyrosine phosphorylation is required
for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp
Med 1993, 177:529–534.

30. Connelly PA, Farrell CA, Merenda JM, Conklyn MJ, Showell HJ: Tyrosine
phosphorylation is an early signaling event common to Fc receptor
crosslinking in human neutrophils and rat basophilic leukemia cells
(RBL-2H3). Biochem Biophys Res Commun 1991, 177:192–201.

31. Huang MM, Indik Z, Brass LF, Hoxie JA, Schreiber AD, Brugge JS: Activation
of Fc gamma RII induces tyrosine phosphorylation of multiple proteins
including Fc gamma RII. J Biol Chem 1992, 267:5467–5473.

32. Durden DL, Kim HM, Calore B, Liu Y: The Fc gamma RI receptor signals
through the activation of hck and MAP kinase. J Immunol 1995,
154:4039–4047.

33. Durden DL, Liu YB: Protein-tyrosine kinase p72syk in Fc gamma RI
receptor signaling. Blood 1994, 84:2102–2108.

34. Aderem A, Underhill DM: Mechanisms of phagocytosis in macrophages.
Annu Rev Immunol 1999, 17:593–623.

35. Indik ZK, Park JG, Hunter S, Schreiber AD: The molecular dissection of Fc
gamma receptor mediated phagocytosis. Blood 1995, 86:4389–4399.

36. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C,
Tybulewicz VL, DeFranco AL: A critical role for Syk in signal transduction
and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp
Med 1997, 186:1027–1039.

37. Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S,
Pawson T: The Syk protein tyrosine kinase is essential for Fcgamma
receptor signaling in macrophages and neutrophils. Mol Cell Biol
1998, 18:4209–4220.

38. Hazeki K, Inoue K, Nigorikawa K, Hazeki O: Negative regulation of class IA
phosphoinositide 3-kinase by protein kinase Cdelta Limits Fcgamma
receptor-mediated phagocytosis in macrophages. J Biochem 2009,
145:87–94.

39. Huang ZY, Hunter S, Kim MK, Indik ZK, Schreiber AD: The effect of phosphatases
SHP-1 and SHIP-1 on signaling by the ITIM- and ITAM-containing Fcgamma
receptors FcgammaRIIB and FcgammaRIIA. J Leukoc Biol 2003, 73:823–829.



Joshi et al. BMC Immunology 2014, 15:18 Page 11 of 11
http://www.biomedcentral.com/1471-2172/15/18
40. Ganesan LP, Fang H, Marsh CB, Tridandapani S: The protein-tyrosine
phosphatase SHP-1 associates with the phosphorylated immunoreceptor
tyrosine-based activation motif of Fc gamma RIIa to modulate signaling
events in myeloid cells. J Biol Chem 2003, 278:35710–35717.

41. Pfirsch-Maisonnas S, Aloulou M, Xu T, Claver J, Kanamaru Y, Tiwari M,
Launay P, Monteiro RC, Blank U: Inhibitory ITAM signaling traps activating
receptors with the phosphatase SHP-1 to form polarized “inhibisome”
clusters. Sci Signal 2011, 4:ra24.

42. Li Y, Lee PY, Sobel ES, Narain S, Satoh M, Segal MS, Reeves WH, Richards HB:
Increased expression of FcgammaRI/CD64 on circulating monocytes
parallels ongoing inflammation and nephritis in lupus. Arthritis Res Ther
2009, 11:R6.

43. Li Y, Lee PY, Kellner ES, Paulus M, Switanek J, Xu Y, Zhuang H, Sobel ES,
Segal MS, Satoh M, Reeves WH: Monocyte surface expression of Fcgamma
receptor RI (CD64), a biomarker reflecting type-I interferon levels in
systemic lupus erythematosus. Arthritis Res Ther 2010, 12:R90.

44. Bos JL: All in the family? New insights and questions regarding
interconnectivity of Ras, Rap1 and Ral. EMBO J 1998, 17:6776–6782.

45. Greenberg S, Chang P, Wang DC, Xavier R, Seed B: Clustered syk tyrosine
kinase domains trigger phagocytosis. Proc Natl Acad Sci U S A 1996,
93:1103–1107.

46. Malissen B: Immunology. Switching off TCR signaling. Science 2003,
302:1162–1163.

47. Cory GO, Lovering RC, Hinshelwood S, MacCarthy-Morrogh L, Levinsky RJ,
Kinnon C: The protein product of the c-cbl protooncogene is phosphorylated
after B cell receptor stimulation and binds the SH3 domain of Bruton’s tyrosine
kinase. J Exp Med 1995, 182:611–615.

48. Panchamoorthy G, Fukazawa T, Miyake S, Soltoff S, Reedquist K, Druker B,
Shoelson S, Cantley L, Band H: p120cbl is a major substrate of tyrosine
phosphorylation upon B cell antigen receptor stimulation and interacts
in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and
the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 1996,
271:3187–3194.

49. Odai H, Sasaki K, Iwamatsu A, Hanazono Y, Tanaka T, Mitani K, Yazaki Y, Hirai H:
The proto-oncogene product c-Cbl becomes tyrosine phosphorylated
by stimulation with GM-CSF or Epo and constitutively binds to the
SH3 domain of Grb2/Ash in human hematopoietic cells. J Biol Chem
1995, 270:10800–10805.

50. Kiyokawa E, Mochizuki N, Kurata T, Matsuda M: Role of Crk oncogene
product in physiologic signaling. Crit Rev Oncog 1997, 8:329–342.

51. Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, Mochizuki N,
Matsuda M: Activation of C3G guanine nucleotide exchange factor for Rap1
by phosphorylation of tyrosine 504. J Biol Chem 1999, 274:14376–14381.

52. Knudsen BS, Zheng J, Feller SM, Mayer JP, Burrell SK, Cowburn D, Hanafusa H:
Affinity and specificity requirements for the first Src homology 3 domain of
the Crk proteins. EMBO J 1995, 14:2191–2198.

53. Kikkawa U, Kishimoto A, Nishizuka Y: The protein kinase C family:
heterogeneity and its implications. Annu Rev Biochem 1989, 58:31–44.

54. Newton AC: Interaction of proteins with lipid headgroups: lessons from
protein kinase C. Annu Rev Biophys Biomol Struct 1993, 22:1–25.

55. Zhang G, Kazanietz MG, Blumberg PM, Hurley JH: Crystal structure of the
cys2 activator-binding domain of protein kinase C delta in complex with
phorbol ester. Cell 1995, 81:917–924.

56. Jiang G, Dallas-Yang Q, Liu F, Moller DE, Zhang BB: Salicylic acid reverses
phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor alpha
(TNFalpha)-induced insulin receptor substrate 1 (IRS1) serine 307
phosphorylation and insulin resistance in human embryonic kidney
293 (HEK293) cells. J Biol Chem 2003, 278:180–186.

57. Hunter T, Ling N, Cooper JA: Protein kinase C phosphorylation of the EGF
receptor at a threonine residue close to the cytoplasmic face of the
plasma membrane. Nature 1984, 311:480–483.

58. Hazeki K, Hazeki O, Matsuo T, Seya T, Yamashita T, Nagasawa S, Band H, Ui M:
Role of Syk in Fc gamma receptor-coupled tyrosine phosphorylation of Cbl
in a manner susceptible to inhibition by protein kinase C. Eur J Immunol
1999, 29:3302–3312.

59. Karimi K, Gemmill TR, Lennartz MR: Protein kinase C and a calcium-independent
phospholipase are required for IgG-mediated phagocytosis by Mono-Mac-6
cells. J Leukoc Biol 1999, 65:854–862.

60. Raeder EM, Mansfield PJ, Hinkovska-Galcheva V, Kjeldsen L, Shayman JA,
Boxer LA: Sphingosine blocks human polymorphonuclear leukocyte
phagocytosis through inhibition of mitogen-activated protein kinase
activation. Blood 1999, 93:686–693.

61. Breton A, Descoteaux A: Protein kinase C-alpha participates in
FcgammaR-mediated phagocytosis in macrophages. Biochem Biophys Res
Commun 2000, 276:472–476.

62. Allen LA, Aderem A: Molecular definition of distinct cytoskeletal
structures involved in complement- and Fc receptor-mediated
phagocytosis in macrophages. J Exp Med 1996, 184:627–637.

63. Larsen EC, DiGennaro JA, Saito N, Mehta S, Loegering DJ, Mazurkiewicz JE,
Lennartz MR: Differential requirement for classic and novel PKC isoforms
in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 2000,
165:2809–2817.

64. Melendez AJ, Harnett MM, Allen JM: Differentiation-dependent switch in
protein kinase C isoenzyme activation by FcgammaRI, the human
high-affinity receptor for immunoglobulin G. Immunology 1999, 96:457–464.

65. Melendez AJ, Harnett MM, Allen JM: FcgammaRI activation of phospholipase
Cgamma1 and protein kinase C in dibutyryl cAMP-differentiated U937 cells
is dependent solely on the tyrosine-kinase activated form of
phosphatidylinositol-3-kinase. Immunology 1999, 98:1–8.

66. Zheleznyak A, Brown EJ: Immunoglobulin-mediated phagocytosis by
human monocytes requires protein kinase C activation. Evidence for
protein kinase C translocation to phagosomes. J Biol Chem 1992,
267:12042–12048.

67. Greenberg S, Chang P, Silverstein SC: Tyrosine phosphorylation of the
gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc
receptor-mediated phagocytosis in macrophages. J Biol Chem 1994,
269:3897–3902.

68. Romanova LY, Alexandrov IA, Blagosklonny MV, Nordan RP, Garfield S, Acs P,
Nguyen P, Trepel J, Blumberg PM, Mushinski JF: Regulation of actin
cytoskeleton in lymphocytes: PKC-delta disrupts IL-3-induced membrane
ruffles downstream of Rac1. J Cell Physiol 1999, 179:157–169.

69. Walton KM, Dixon JE: Protein tyrosine phosphatases. Annu Rev Biochem
1993, 62:101–120.

70. Neel BG: Role of phosphatases in lymphocyte activation. Curr Opin
Immunol 1997, 9:405–420.

71. Tonks NK, Neel BG: From form to function: signaling by protein tyrosine
phosphatases. Cell 1996, 87:365–368.

72. David M, Chen HE, Goelz S, Larner AC, Neel BG: Differential regulation of
the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2
domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 1995,
15:7050–7058.

73. Park RK, Izadi KD, Deo YM, Durden DL: Role of Src in the modulation of
multiple adaptor proteins in FcalphaRI oxidant signaling. Blood 1999,
94:2112–2120.

doi:10.1186/1471-2172-15-18
Cite this article as: Joshi et al.: A PKC-SHP1 signaling axis desensitizes Fcγ
receptor signaling by reducing the tyrosine phosphorylation of CBL and
regulates FcγR mediated phagocytosis. BMC Immunology 2014 15:18.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Kinetics of CBL tyrosine phosphorylation and dephosphorylation upon FcγR1 stimulation
	CBL-CRKL association is correlated with the tyrosine phosphorylation of CBL upon FcγR1 stimulation
	PMA stimulation reduced the tyrosine phosphorylation of CBL
	PKC activation attenuates tyrosine phosphorylation of CBL
	PMA reduced the tyrosine phosphorylation state of CBL and abrogates phagocytosis in J774 A.1 cells stimulated with IgG sensitized sheep RBC
	PKC blocks FcγR1 mediated Rac activity

	Discussion
	Conclusions
	Methods
	Antibodies and reagents
	Cell culture and activation
	Biochemical analysis
	Vaccinia virus expression system
	Isolation of peritoneal macrophages
	Phagocytic assay
	Abbreviations

	Competing interests
	Author’s contributions
	Acknowledgements
	References

