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Abstract

Background: Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one
of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and
other cancers. These successes and appearances of drug resistance in some patients have raised significant interest
and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is
desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at
high yields and reduced false-hit rates.

Results: We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from
large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly
identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM
trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of
the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%)
of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors.

Conclusions: SVM showed comparable yield and reduced false hit rates in searching large compound libraries
compared to the similarity-based and other machine-learning VS methods developed from the same set of training
compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house
chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially
explored for searching Src inhibitors from large compound libraries at low false-hit rates.
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Background
Src promotes tumour invasion and metastasis, facilitates
VEGF-mediated angiogenesis and survival in endothelial
cells, and enhances growth factor driven proliferation in
fibroblasts [1]. It is one of the multiple kinase targets of
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a number of multi-target kinase inhibitors effective in
the clinical treatment of leukemia and in clinical trials of
other cancers [2-4]. The successes and problems of these
inhibitors have raised significant interest and efforts in
discovering new Src inhibitors [5-7]. Several in-silico
methods have been used for facilitating the search and
design of Src inhibitors, which include pharmacophore
[8], Quantitative Structure Activity Relationship (QSAR)
[9], and molecular docking [6].
While these in-silico methods have shown impressive

capability in the identification of potential Src inhibitors,
their applications may be affected by such problems as the
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vastness and sparse nature of chemical space needing to
be searched, complexity and flexibility of target structures,
difficulties in accurately estimating binding affinity and
solvation effects on molecular binding, and limited repre-
sentativeness of training active compounds [10-12]. It is
desirable to explore other in-silico methods that comple-
ment these methods by expanded coverage of chemical
space, increased screening speed, and reduced false-hit
rates without necessarily relying on the modelling of target
structural flexibility, binding affinity and salvation effects.
Support vector machines (SVM) has recently been

explored as a promising ligand-based virtual screening
(VS) method that produces high yields and low false-hit
rates in searching active agents of single and multiple
mechanisms from large compound libraries [13] and in
identifying active agents of diverse structures [13-17].
Good VS performance can also be achieved by SVM
trained from sparsely distributed active compounds [18].
SVM classifies active compounds based on the separ-
ation of active and inactive compounds in a hyperspace
constructed by their physicochemical properties rather
than structural similarity to active compounds per se,
which has the advantage of not relying on the accurate
computation of structural flexibility, activity-related fea-
tures, binding affinity and solvation effects. Moreover,
the fast speed of SVM enables efficient search of vast
chemical space. Therefore, SVM may be a potentially
useful VS tool to complement other in-silico methods
for searching Src inhibitors from large libraries.
In this work, we developed a SVM VS model for identi-

fying Src inhibitors, and evaluated its performance by both
5-fold cross validation test and large compound database
screening test. In 5-fold cross validation test, a dataset of
Src inhibitors and non-inhibitors was randomly divided
into 5 groups of approximately equal size, with 4 groups
used for training a SVM VS tool and 1 group used for
testing it, and the test process is repeated for all 5 pos-
sible compositions to derive an average VS performance.
In large database screening test, a SVM VS tool was
developed by using Src inhibitors published before
2011, its yield (percent of known inhibitors identified as
virtual-hits) was estimated by using Src inhibitors
reported since 2011 and not included in the training
datasets, virtual-hit rate and false-hit rate in searching
large libraries were evaluated by using 13.56M Pub-
Chem and 168K MDDR compounds, and an additional
set of 9,305 MDDR compounds similar in structural and
physicochemical properties to the known Src inhibitors.
Moreover, VS performance of SVM was compared to

those of two similarity-based VS methods, Tanimoto
similarity searching and k nearest neighbour (kNN), and
an alternative but equally popularly used machine
learning method, probabilistic neural network (PNN)
method, based on the same training and testing datasets
(same sets of PubChem and MDDR compounds) and mo-
lecular descriptors. In a study that compares the perform-
ance of SVM to 16 classification methods and 9 regression
methods, it has been reported that SVMs shows mostly
good performances both on classification and regression
tasks, but other methods proved to be very competitive
[19]. Therefore, it is useful to evaluate the VS performance
of SVM in searching large compound libraries by com-
parison with those of both similarity-based approaches
and other typical machine learning method.
PubChem and MDDR contain high percentages of in-

active compounds significantly different from the known
Src inhibitors, and the easily distinguishable features
may make VS enrichments artificially good [20]. There-
fore, VS performance may be more strictly tested by
using subsets of compounds that resemble the physico-
chemical properties of the known Src inhibitors so that
enrichment is not simply a separation of trivial physico-
chemical features [21]. To further evaluate whether our
SVM VS tool predict Src inhibitors and non-inhibitors
rather than membership of certain compound families,
distribution of the predicted active and inactive com-
pounds in the compound families were analyzed.

Materials and methods
Compound collections and construction of training and
testing datasets
We collected 1,703 Src inhibitors reported before 2011,
with IC50<10 μM, from the literatures [22-26] and the
BindingDB database [27]. The inhibitor selection criter-
ion of IC50<10 μM was used because it covers most of
the reported HTS and VS hits [28,29]. The structures of
representative Src inhibitors are shown in Figure 1. As
few non-inhibitors have been reported, putative non-
inhibitors were generated by using our method for
generating putative inactive compounds [13,18]. This
method requires no knowledge of known inactive com-
pounds and active compounds of other target classes,
which enables more expanded coverage of the “non-
inhibitor” chemical space. Although the yet-to-be-dis-
covered inhibitors are likely distributed in some of
these “non-inhibitor” families, a substantial percentage
of these inhibitors are expected to be identified as inhi-
bitors rather than non-inhibitors even-though repre-
sentatives of their families are putatively assigned as
non-inhibitors [13]. 13.56M PubChem and 168 K
MDDR compounds were grouped into 8,423 compound
families by clustering them in the chemical space
defined by their molecular descriptors [30,31]. The
number of generated families is consistent with the
12,800 compound-occupying neurons (regions of topo-
logically close structures) for 26.4 million compounds
of up to 11 atoms [32], and the 2,851 clusters for
171,045 natural products [33].



Figure 1 The structures of representative c-Src inhibitors.
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Our collected Src inhibitors are distributed in 493
families. Because of the extensive efforts in searching
kinase inhibitors from known compound libraries, the
number of undiscovered Src inhibitor families in Pub-
Chem and MDDR databases is expected to be relatively
small, most likely no more than several hundred fam-
ilies. The ratio of the discovered and undiscovered in-
hibitor families (hundreds) and the families that contain
no known Src inhibitor (8,423 based on the current ver-
sions of PubChem and MDDR) is expected to be <15%.
Therefore, putative non-inhibitor training dataset can be
generated by extracting a few representative compounds
from each of those families that contain no known in-
hibitor, with a maximum possible “wrong” classification
rate of <15% even when all of the undiscovered inhibi-
tors are misplaced into the non-inhibitor class. The
noise level generated by up to 15% “wrong” negative
family representation is expected to be substantially
smaller than the maximum 50% false-negative noise
level tolerated by SVM [16]. Based on earlier studies
[13,18] and this work, it is expected that a substantial
percentage of the un-discovered inhibitors in the puta-
tive “non-inhibitor” families can be classified as inhibitor
despite their family representatives are placed into the
non-inhibitor training sets.
In the database screening test, 60.1% of the families

that contain Src inhibitors reported since 2011 [34-39]
are not covered by the Src inhibitor training dataset
(inhibitors reported before 2011). The representative
compounds of these families, none of which happen to
be Src inhibitor, were deliberately placed into the in-
active training sets because the inhibitors in these fam-
ilies are not supposed to be known in our study. As
shown in earlier studies [13,18] and in this work, a
substantial percentage of the inhibitors in these mis-
placed inhibitor-containing “non-inhibitor” families were
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predicted as inhibitors by our SVM VS tool. Moreover, a
small percentage of the compounds in these putative
non-inhibitor datasets are expected to be un-reported
and un-discovered inhibitors, their presence in these
datasets is not expected to significantly affect the esti-
mated false hit rate of SVM.

Molecular descriptors
Molecular descriptors are quantitative representations
of structural and physicochemical features of molecules,
which have been extensively used in deriving structure-
activity relationships [40,41], quantitative structure ac-
tivity relationships [42,43] and VS tools [44-51]. A total
of 98 1D and 2D descriptors derived by using our soft-
ware [52] were used in this work. These descriptors and
the relevant references are given in Table 1, which
include 18 descriptors in the class of simple molecular
properties, 3 descriptors in the class of chemical
properties, 35 descriptors in the class of molecular con-
nectivity and shape, 42 descriptors in the class of
electro-topological state.

Support vector machines method
The process of training and using a SVM VS model for
screening compounds based on their molecular descrip-
tors is schematically illustrated in Figure 2. SVM is
based on the structural risk minimization principle of
statistical learning theory [57,58], which consistently
shows outstanding classification performance, is less
penalized by sample redundancy, and has lower risk for
over-fitting [59,60]. In linearly separable cases, SVM
constructs a hyper-plane to separate active and inactive
classes of compounds with a maximum margin. A com-
pound is represented by a vector xi composed of its mo-
lecular descriptors. The hyper-plane is constructed by
Table 1 Molecular descriptors used in this work

Descriptor class No of
descriptors in
class

Descriptors

Simple molecular
properties [53]

18 Number of C,N,O,P,S, Numb
bonds, Molecular weight,, N
bond acceptors, Number o
Number of N heterocyclic r

Chemical properties [54] 3 Sanderson electronegativity

Molecular Connectivity and
shape [53,55]

35 Schultz molecular topologic
index, Gravitational topolog
Balaban Index J, 0-2th valen
Solvation connectivity inde
Kier Molecular Flexibility Ind
Centralization, Logp from c

Electro-topological state
[53,56]

42 Sum of Estate of atom type
sNH2, ssNH2, dNH, ssNH, aa
atoms, all C atoms, all hete
type HsOH, HdNH, HsSH, H
Havin, Sum of H Estate of H
finding another vector w and a parameter b that mini-
mizes ‖w‖2 and satisfies the following conditions:

w⋅xi þ b≥þ 1; for yi ¼ þ1 Class 1 activeð Þ ð1Þ

w⋅xi þ b≤� 1; for yi ¼ �1 Class 2 inactiveð Þ ð2Þ

where yi is the class index, w is a vector normal to the
hyperplane, |b|/‖w‖ is the perpendicular distance from
the hyperplane to the origin and ‖w‖2 is the Euclidean
norm of w. Base on w and b, a given vector x can be
classified by f(x) = sign[(w ⋅ x) + b]. A positive or negative
f(x) value indicates that the vector x belongs to the ac-
tive or inactive class respectively.

In nonlinearly separable cases, which almost always
occur in classifying compounds of diverse structures
[14-17,50,61-63], SVM maps the input vectors into a higher
dimensional feature space by using a kernel function K(xi, xj).

We used RBF kernel K xi; xj
� � ¼ e� xj�xik k2

=2σ2 which has
been extensively used and consistently shown better per-
formance than other kernel functions [64-66]. Linear SVM
can then applied to this feature space based on the follow-

ing decision function: f xð Þ ¼ sign
Xl
i¼1

α0i yiK x; xið Þ þ b

! 
,

where the coefficients αi
0 and b are determined by

maximizing the following Langrangian expression:Xl
i¼1

αi � 1
2

Xl
i¼1

Xl
j¼1

αiαjyiyjK xi; xj
� �

under the conditions

αi≥ 0 and
Xl
i¼1

αiyi ¼ 0 . A positive or negative f(x) value

indicates that the vector x belongs to the active or inactive
class respectively.
er of total atoms, Number of rings, Number of bonds, Number of non-H
umber of rotatable bonds, number of H-bond donors, number of H-
f 5-member aromatic rings, Number of 6-member aromatic rings,
ings, Number of O heterocyclic rings, Number of S heterocyclic rings.

, Molecular polarizability, aLogp

al index, Gutman molecular topological index, Wiener index, Harary
ical index, Molecular path count of length 1–6, Total path count,
ce connectivity index, 0-2th order delta chi index, Pogliani index, 0-2th
x, 1-3th order Kier shape index, 1-3th order Kappa alpha shape index,
ex, Topological radius, Graph-theoretical shape coefficient, Eccentricity,
onnectivity.

sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH, dssC, aasC, aaaC, sssC, sNH3,
NH, dsN, aaN, sssN, ddsN, aOH, sOH, ssO, sSH; Sum of Estate of all heavy
ro atoms, Sum of Estate of H-bond acceptors, Sum of H Estate of atom
sNH2, HssNH, HaaNH, HtCH, HdCH2, HdsCH, HaaCH, HCsats, HCsatu,
-bond donors



Figure 2 The process of training and using a SVM VS model for screening compounds. Schematic diagram is illustrating the process of the
training a prediction model and using it for predicting active compounds of a compound class from their structurally-derived properties
(molecular descriptors) by using support vector machines. A, B, E, F and (hj, pj, vj,. . .) represents such structural and physicochemical properties as
hydrophobicity, volume, polarizability, etc.
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In developing our SVM VS tool, a hard margin
c=100,000 was used. The margin parameter c is penalty
parameter that controls the trade-off between the train-
ing errors and sample separation. Increasing c imposes a
higher penalty for training errors. Our chosen value cor-
responds to a very high penalty. The performance of
SVM was evaluated by 5-fold cross-validation test.
Table 2 shows the results of the 5-fold cross validation
of SVM VS models of Src inhibitors and putative non-
inhibitors. After the 5-fold cross-validation, the σ values
were found to be 1.2 based on the average VS perform-
ance for the model development. Its performance indica-
tors can be derived from the numbers of true positives
TP (true inhibitors), true negatives TN (true non-
inhibitors), false positives FP (false inhibitors), and false
negatives FN (false non-inhibitors). Src inhibitor and
non-inhibitor prediction accuracies are given by sensitiv-
ity SE=TP/(TP+FN)*100 and specificity SP=TN/(TN+FP)
*100 respectively. Prediction accuracies have also been
frequently measured by overall prediction accuracy (Q)
and Matthews correlation coefficient (C) [67]

Q ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

C ¼ TP � TN � FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þp

ð4Þ



Table 2 Performance of SVM for identifying Src inhibitors and non-inhibitors evaluated by 5-fold cross validation
study

Cross -
validation

Src inhibitors Src non-inhibitors Q C

No of training/ testing
inhibitors

TP FN SE No of training/testing
non-inhibitors

TN FP SP

1 1362/341 320 21 93.84% 50654/12664 12651 13 99.90% 99.74% 0.948

2 1362/341 324 17 95.01% 50654/12664 12650 14 99.89% 99.76% 0.953

3 1362/341 324 17 95.01% 50654/12664 12640 24 99.81% 99.68% 0.939

4 1363/340 318 22 93.53% 50655/12663 12642 21 99.83% 99.67% 0.935

5 1363/340 322 18 94.71% 50655/12663 12643 20 99.84% 99.71% 0.943

Average 94.42% 99.85% 99.71% 0.944

SD 0.0069 0.0004 0.0004 0.0072

SE 0.0031 0.0002 0.0002 0.0032
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In the large database screening tests, the yield and false-
hit rate are given by TP/(TP+FN) and FP/(TP+FP)
respectively.

Tanimoto similarity searching method
Compounds similar to at least one known Src inhibitor
in a training dataset can be identified by using the Tani-
moto coefficient sim(i,j) [68]

sim i; jð Þ ¼

Xl
d¼1

xdixdj

Xl
d¼1

xdið Þ2 þ
Xl
d¼1

xdj
� �2 �Xl

d¼1

xdixdj

ð5Þ

where l is the number of molecular descriptors. A com-
pound i is considered to be similar to a known active j
in the active dataset if the corresponding sim(i,j) value is
greater than a cut-off value. In this work, the similarity
search was conducted for MDDR compounds. There-
fore, in computing sim(i,j), the molecular descriptor vec-
tors xis were scaled with respect to all of the MDDR
Table 3 Performance of kNN for identifying Src inhibitors and

Cross -
validation

Src inhibitors

No of training/ testing
inhibitors

TP FN SE No
non

1 1362/341 302 39 88.56% 506

2 1362/341 313 28 91.79% 506

3 1362/341 311 30 91.20% 506

4 1363/340 316 24 92.94% 506

5 1363/340 302 38 88.82% 506

Average 90.66%

SD 0.0191

SE 0.0085
compounds. The cut-off values for similarity compounds
are typically in the range of 0.8 to 0.9 [21,69]. A stricter
cut-off value of 0.9 was used in this study.

K-nearest neighbour method

kNN measures the Euclidean distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xik k2

q
between a compound x and each individual inhibitor or
non-inhibitor xi in the training set [70]. A total of k
number of vectors nearest to the vector x are used to
determine the decision function f(x):

f̂ xð Þ← argmaxv∈V
Xk
i¼1

δ v; f xið Þð Þ ð6Þ

Where δ(a,b)=1 if a=b and δ(a,b)=0 if a≠b, argmax is
the maximum of the function, V is a finite set of vectors

{v1,. . .,vs} and f̂ xð Þ is an estimate of f(x). Here estimate
refers to the class of the majority compound group (i.e.
inhibitors or non-inhibitors) of the k nearest neighbours.
The performance of kNN was evaluated by 5-fold cross-
validation in the same manner as in SVM and Table 3
shows the results of the 5-fold cross-validation results of
non-inhibitors evaluated by 5-fold cross validation study

Src non-inhibitors Q C

of training/testing
-inhibitors

TN FP SP

54/12664 12635 29 99.77% 99.48% 0.896

54/12664 12620 44 99.65% 99.45% 0.894

54/12664 12610 54 99.57% 99.35% 0.878

55/12663 12619 44 99.65% 99.48% 0.901

55/12663 12632 31 99.76% 99.47% 0.895

99.68% 99.44% 0.893

0.0008 0.0005 0.0085

0.0004 0.0002 0.0038



 !
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kNN model. After the 5-fold cross-validation, the par-
ameter k=1 was found to give the best performance of
this work.

Probabilistic neural network method
PNN is a form of neural network that classifies objects
based on Bayes’ optimal decision rule [71] hicifi(x) > hjcjfj
(x), where hi and hj are the prior probabilities, ci and cj
are the costs of misclassification and fi(x) and fj(x) are
the probability density function for class i and j respect-
ively. A compound x is classified into class i if the prod-
uct of all the three terms is greater for class i than for
any other class j (not equal to i). In most applications,
the prior probabilities and costs of misclassifications are
treated as being equal. The probability density function
for each class for a univariate case can be estimated by
using the Parzen’s nonparametric estimator [72].

g xð Þ ¼ 1
nσ

Xn
i¼1

W
x� xi
σ

� �
ð7Þ

where n is the sample size, σ is a scaling parameter
which defines the width of the bell curve that surrounds
each sample point, W(d) is a weight function which has
its largest value at d = 0 and (x – xi) is the distance be-
tween the unknown vector and a vector in the training
set. The Parzen’s nonparametric estimator was later
expanded by Cacoullos [73] for the multivariate case.

g x1; . . . ; xp
� � ¼ 1

nσ1 . . . σp

Xn
i¼1

W
x1 � x1;i

σ1
; . . . ;

xp � xp;i
σp

� �
ð8Þ

The Gaussian function is frequently used as the weight
function because it is well behaved, easily calculated and
satisfies the conditions required by Parzen’s estimator.
Thus the probability density function for the multivari-
ate case becomes
Table 4 Performance of PNN for identifying Src inhibitors and
study

Cross -
validation

Src inhibitors

No of training/ testing
inhibitors

TP FN SE No o
non

1 1362/341 319 22 93.55% 5065

2 1362/341 324 17 95.01% 5065

3 1362/341 330 11 96.77% 5065

4 1363/340 330 10 97.06% 5065

5 1363/340 318 22 93.53% 5065

Average 95.19%

SD 0.0169

SE 0.0076
g xð Þ ¼ 1
n

Xn
i¼1

exp �
Xp
j¼1

xj � xij
σ j

� �2

ð9Þ

The network architectures of PNN are determined by
the number of compounds and descriptors in the train-
ing set. There are 4 layers in a PNN. The input layer
provides input values to all neurons in the pattern layer
and has as many neurons as the number of descriptors
in the training set. The number of pattern neurons is
determined by the total number of compounds in the
training set. Each pattern neuron computes a distance
measure between the input and the training case repre-
sented by that neuron and then subjects the distance
measure to the Parzen’s nonparameteric estimator. The
summation layer has a neuron for each class and the
neurons sum all the pattern neurons’ output corre-
sponding to members of that summation neuron’s class
to obtain the estimated probability density function for
that class. The single neuron in the output layer then
estimates the class of the unknown compound x by
comparing all the probability density function from the
summation neurons and choosing the class with the
highest probability density function. The performance of
PNN was validated by 5-fold cross-validation in the
same manner as in SVM model development. Table 4
shows the results of the 5-fold cross-validation of PNN
model. After the 5-fold cross-validation, the parameter
of the developed PNN models was chosen as 0.02.

Results and discussion
Performance of SVM, kNN and PNN identification of Src
inhibitors based on 5-fold cross validation test
The parameters of our SVM, kNN and PNN models
were determined by 5-fold cross-validation studies of
Src inhibitors and non-inhibitors. The results of these
tests for SVM, kNN and PNN are shown in Tables 2,3,4
non-inhibitors evaluated by 5-fold cross validation

Src non-inhibitors Q C

f training/testing
-inhibitors

TN FP SP

4/12664 12413 251 98.02% 97.90% 0.715

4/12664 12380 284 97.76% 97.69% 0.702

4/12664 12395 269 97.88% 97.85% 0.722

5/12663 12389 274 97.84% 97.82% 0.720

5/12663 12413 250 98.03% 97.91% 0.715

97.90% 97.83% 0.715

0.0012 0.0009 0.0075

0.0005 0.0004 0.0034



Figure 3 Performance for identifying Src inhibitors evaluated by 5-fold cross validation study across methods. Figure 3 is illustrating the
5-fold cross-validation studies of Src inhibitors across methods with the averaged sensitivity together with their respective error bars.
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and Figure 3 respectively. Overall, the sensitivity of
SVM, kNN and PNN is in the range of 93.53%~95.01%,
88.56%~92.94% and 93.53%~97.06%, the specificity in
the range of 99.81%~99.90%, 99.57%~99.77% and 97.76%
~98.03%, and overall accuracy Q in the range of 99.67%
~99.76%, 99.35%~99.48% and 97.69%~97.91% respect-
ively. The inhibitor accuracies of our SVM are compar-
able to or slightly better than the reported accuracies of
58.3%~67.3% for protein kinase C inhibitors by SVM-
RBF and CKD methods [74], 83% for Lck inhibitors by
SVM method [75], and 74%~87% for inhibitors of any of
the 8 kinases (3 Ser/Thr and 5 Tyr kinases) by SVM,
ANN, GA/kNN, and RP methods [76]. The non-inhibitor
accuracies are comparable to the value of 99.9% for Lck
inhibitors [75] and substantially better than the typical
values of 77%~96% of other studies [74,76]. Caution needs
to be exercised about straightforward comparison of these
results, which might be misleading because the outcome
of VS strongly depends on the datasets and molecular
descriptors used. Based on these rough comparisons,
SVM appears to show good capability in identifying Src
inhibitors at low false-hit rates.
Table 5 Virtual screening performance of support vector mac
libraries

Inhibitors in training set Number of inhibitors

Number of chemical families covered by in

Inhibitors in Testing Set Number of Inhibitors

Number of Chemical Families Covered by Inhi

Percent of Inhibitors in Chemical Families Cov

Virtual Screening
Performance

Yield

Number and Percent of Identified True Inhibit

Number and Percent of 13.56M PubChemCom

Number and Percent of the 168K MDDR Com

Number and Percent of the 9,305 MDDR Com
Inhibitors
Virtual screening performance of SVM in searching Src
inhibitors from large compound libraries
As outlined in the methods section, we developed a
SVM VS tool for searching Src inhibitors from large
were developed by using Src kinases reported before
2011. The VS performance of SVM in identifying Src
inhibitors reported since 2011 and in searching MDDR
and PubChem databases is summarised in Table 5. The
yield in searching Src inhibitors reported since 2011 is
70.45%, which is comparable to the reported 50%~94%
yields of various VS tools [77]. Strictly speaking, direct
comparison of the reported performances of these VS
tools is inappropriate because of the differences in the
type, composition and diversity of compounds screened,
and in the molecular descriptors, VS tools and their
parameters used. The comparison cannot go beyond the
statistics of accuracies.
We also evaluated virtual-hit rates and false-hit rates

of SVM in screening compounds that resemble the
structural and physicochemical properties of the known
Src inhibitors by using 9,305 MDDR compounds similar
to an Src inhibitor in the training dataset. Similarity was
hines for identifying Src inhibitors from large compound

1703

hibitors 493

44

bitors 35

ered by Inhibitors in Training Set 51.43%

70.45%

ors Outside Training Chemical Families 15 (34.1%)

pounds Identified as Inhibitors 44,843
(0.33%)

pounds Identified as Inhibitors 1,496 (0.89%)

pounds Similar to the Known Inhibitors Identified as 719 (7.73%)
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defined by Tanimoto similarity coefficient ≥0.9 between
a MDDR compound and its closest inhibitor [18]. This
stricter similarity metric was used for conducting a stric-
ter test of our SVM model. SVM identified 719 virtual-
hits from these 9,305 MDDR similarity compounds
(virtual-hit rate 7.73%), which suggests that SVM has
some level of capability in distinguishing Src inhibitors
from non-inhibitor similarity compounds. Significantly
lower virtual-hit rates and thus false-hit rates were found
in screening large libraries of 168 K MDDR and 13.56 M
PubChem compounds. The numbers of virtual-hits and
virtual-hit rates in screening 168 K MDDR compounds
are 1,496 and 0.89% respectively. The numbers of virtual-
hits and virtual-hit rates in screening 13.56 M PubChem
compounds are 44,843 and 0.33% respectively.
Substantial percentages of the MDDR virtual-hits be-

long to the classes of antineoplastic, tyrosine-specific
protein kinase inhibitors, signal transduction inhibitors,
antiangiogenic, and antiarthritic (Table 6, details in next
section). As some of these virtual-hits may be true Src
inhibitors, the false-hit rate of our SVM is at most equal
to and likely less than the virtual-hit rate. Hence the
false-hit rate is <7.73% in screening 9,305 MDDR simi-
larity compounds, <0.89% in screening 168 K MDDR
compounds, and <0.33% in screening 13.56 M PubChem
compounds, which are comparable and in some cases bet-
ter than the reported false-hit rates of 0.0054%~8.3% of
SVM [18,78], 0.08%~3% of structure-based methods, 0.1%
~5% by other machine learning methods, 0.16%~8.2% by
clustering methods, and 1.15%~26% by pharmacophore
models [77].

Experimental test of a SVM identified virtual-hit
Three virtual hits of the same novel scaffold from in-
house libraries not found in the known the Src inhibitor
were evaluated for inhibitory activity against Src. Src
kinase was incubated with substrates, compounds and
ATP in a final buffer of 25 mM HEPES (pH 7.4), 10 mM
MgCl2, 0.01% Triton X-100, 100 μg/mL BSA, 2.5 mM
Table 6 MDDR classes that contain higher percentage (≥3%)

MDDR Classes that contain higher percentage
(≥3%) of virtual hits

No of

Antineoplastic 623

Tyrosine-Specific Protein Kinase Inhibitor 231

Signal Transduction Inhibitor 194

Antiarthritic 176

Antiallergic/Antiasthmatic 83

Antihypertensive 76

Antiangiogenic 75

Treatment for Osteoporosis 55

Antidepressant 49

Virtual-hits are identified by SVMs in screening 168K MDDR compounds for Src inhi
DTT in 384-well plate with the total volume of 10 μl.
The assay plate was incubated at 30°C for 1h and
stopped with the addition of equal volume of kinase glo
plus reagent. The luminescence was read at envision.
The signal was correlated with the amount of ATP
present in the reaction and was inversely correlated with
the kinase activity. One of three virtual hits showing in
Figure 4 was found to inhibit Src at a moderate rate of
4.85% at 20 μM.

Evaluation of SVM identified MDDR virtual-hits
SVM identified MDDR virtual-hits were evaluated based
on the known biological or therapeutic target classes
specified in MDDR. Table 6 gives the MDDR classes that
contain higher percentage (≥3%) of SVM virtual-hits and
the percentage values. We found that 623 (41.6%) of the
1,496 virtual-hits belong to the antineoplastic class,
which represent 2.9% of the 21,557 MDDR compounds
in the class. In particular, 231 (15.4%) of the virtual-hits
belong to the tyrosine-specific protein kinase inhibitor
class, which represent 19.6% of the 1,181 MDDR com-
pounds in the class. Moreover, 194 (13.0%) and 75
(5.0%) of the virtual-hits belong to the signal transduc-
tion inhibitor and antiangiogenic classes, representing
9.5% and 4.6% of the 2,037 and 1,629 members in these
classes respectively. Therefore, many of the SVM virtual-
hits are antineoplastic compounds that inhibit tyrosine
kinases and possibly other kinases involved in signal
transduction and angiogensis pathways. While some of
these kinase inhibitors might be true Src inhibitors, a
significant percentage of them are expected to arise from
false selection of inhibitors of other kinases.
A total of 176 (11.8%) SVM virtual-hits belong to the

antiarthritic class. A primary feature of rheumatoid arth-
ritis in synovial tissues is the abnormal stimulation of
fibrin deposition, angiogenesis and proinflammatory
processes, which are promoted by thrombin increased
IL-6 production via the PAR1 receptor/PI-PLC/PKC
alpha/c-Src/NF-kappaB and p300 signaling pathways
of SVM virtual-hits and the percentage values

virtual hits in class Percentage of class members
selected as virtual hits

2.9%

19.6%

9.5%

1.5%

0.8%

0.7%

4.6%

2.2%

0.8%

bitors. The total number of SVM identified virtual hits is 1,496.



Figure 4 Virtual hit inhibiting Src at a moderate rate of 4.85%
at 20 μM.
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[79]. Therefore, Src inhibitors may have some effects
against arthritis via interference with some of these pro-
cesses. Moreover, several other kinases have been impli-
cated in arthritis. An Abl inhibitor Gleevec has been
reported to be effective in treatment of arthritis, which
is probably due to its inhibition of other related kinases
such as c-kit and PDGFR [80]. EGFR-like receptor sti-
mulates synovial cells and its elevated activities may be
involved in the pathogenesis of rheumatoid arthritis
[78]. VEGF has been related to such autoimmune diseases
as systemic lupus erythematosus, rheumatoid arthritis,
and multiple sclerosis [81]. FGFR may partly mediates
osteoarthritis [82]. PDGF-like factors stimulates the prolif-
erative and invasive phenotype of rheumatoid arthritis
synovial connective tissue cells [83]. Lck inhibition leads
to immunosuppression and has been explored for the
treatment of rheumatoid arthritis and asthma [84]. There-
fore, some of the SVM virtual-hits in the antiarthritic class
may be inhibitors of these kinases or their kinase-likes
capable of producing antiarthritic activities.
Moreover, 83 (5.5%), 76 (5.1%), 55 (3.7%) and 49 (3.3%)

of the SVM virtual hits are in the antiallergic/antiasth-
matic, antihypertensive, osteoporosis treatment and anti-
depressant classes respectively. Src or Src family kinases
have been implicated in and the respective inhibitors have
shown observable effects against these diseases. For in-
stance, Src family kinases and lipid mediators have been
found to partly control allergic inflammation [85]. Inhib-
ition of Src family kinase-dependent signaling cascades in
mast cells may exert anti-allergic activity [86]. Up-
regulation of Src signaling has been suggested to be im-
portant in the profibrotic and proinflammatory actions of
aldosterone in a genetic model of hypertension, which can
be significantly reduced by mineralocorticoid receptor
blocker and Src inhibitor [87]. Src signalling pathways play
critical roles in osteoclasts and osteoblasts, and Src inhibi-
tors have been developed as therapeutic agents for bone
diseases [88,89]. Src-family protein tyrosine kinases nega-
tively regulate cerebellar long-term depression, which can
be recovered by the application of Src-family protein
tyrosine kinase inhibitors [90]. Therefore, some of the
SVM virtual hits in these four MDDR classes may be Src
inhibitors or Src family kinase inhibitors capable of regu-
lating allergic inflammation, hypertension, osteoporosis
and depression respectively.

Comparison of virtual screening performance of SVM with
those of other vrtual screening methods
To evaluate the level of performance of SVM and
whether the performance is due to the SVM classifica-
tion models or to the molecular descriptors used, SVM
results were compared with those of three other VS
methods based on the same molecular descriptors, train-
ing dataset of Src inhibitors reported before 2011, and
the testing dataset of Src inhibitors reported since 2011
and 168K MDDR compounds. The three other VS meth-
ods include two similarity-based methods, Tanimoto-
based similarity searching and kNN methods, and an al-
ternative machine learning method PNN. As shown in
Table 7, the yield and maximum possible false-hit rate of
the Tanimoto-based similarity searching, kNN and PNN
methods are 36.84% and 5.54%, 38.64% and 2.49%, and
50.00% and 2.60% respectively. Compared to these
results, the yield of SVM is better than these similarity-
based VS method, and the false-hit rate of SVM is sig-
nificantly reduced by 6.22, 2.80, and 2.92 fold respect-
ively. These suggests that SVM performance is due
primarily to the SVM classification models rather than
the molecular descriptors used, and SVM is capable of
achieving comparable yield at substantially reduced
false-hit rate as compared to both similarity-based ap-
proach and alternative machine learning method. Our
results are consistent with the report that SVM shows
mostly good performances both on classification and re-
gression tasks, but other classification and regression
methods proved to be very competitive [19].

Does SVM select Src inhibitors or membership of
compound families?
To further evaluate whether SVM identifies Src inhibi-
tors rather than membership of certain compound fam-
ilies, compound family distribution of the identified Src
inhibitors and non-inhibitors were analyzed. 34.1% of
the identified inhibitors belong to the families that con-
tain no known Src inhibitors. For those families that
contain at least one known Src inhibitor, >70% of the
compounds (>90% in majority cases) in each of these
families were predicted as non-inhibitor by SVM. These
results suggest that SVM identify Src inhibitors rather
than membership to certain compound families. Some
of the identified inhibitors not in the family of known
inhibitors may serve as potential “novel” Src inhibitors.
Therefore, as in the case shown by earlier studies [13],
SVM has certain capacity for identifying novel active



Table 7 Comparison of virtual screening performance of SVM with those of other methods

Method Inhibitors in training set Inhibitors in testing set Virtual screening performance

No of
inhibitors

No of
chemical
families
covered by
inhibitors

No of
inhibitors

No of
chemical
families
covered by
inhibitors

Percent of inhibitors in
chemical families
covered by inhibitors in
training set

Yield No and Percent of
identified true
inhibitors outside
training chemical
families

No and Percent of
the 168K MDDR
compounds
identified as
inhibitors

No and Percent of the 9,305
MDDR compounds similar to the
known inhibitors identified as
virtual inhibitors

Support
Vector
Machines

1703 493 44 35 51.43% 70.45% 15(34.1%) 1,496 (0.89%) 719 (7.73%)

Tanimoto
Similarity

36.84% 9(20.5%) 9,305 (5.54%) 9,305 (100%)

K Nearest
Neighbour

38.64% 10(22.7%) 4,182 (2.49%) 1,169 (12.57%)

Probabilistic
Neural
Network

50.0% 13(29.5%) 4,386 (2.60%) 1,184 (12.72%)
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compounds from sparse as well as regular-sized active
datasets.

Conclusions
Our study suggested that SVM is capable of identifying
Src inhibitors at comparable yield and in many cases
substantially lower false-hit rate than those of typical VS
tools reported in the literatures. It can be used for
searching large compound libraries at sizes comparable
to the 13.56 M PubChem and 168 K MDDR compounds
at low false-hit rates. The performance of SVM is sub-
stantially improved against several other VS method
based on the same datasets and molecular descriptors,
suggesting that the VS performance of SVM is primarily
due to SVM classification models rather than the mo-
lecular descriptors used. Three SVM virtual hits of the
same novel scaffold were experimentally tested, one of
which showed moderate Src inhibition rate. Because of
its high computing speed and generalization capability
for covering highly diverse spectrum compounds, SVM
can be potentially explored to develop useful VS tools to
complement other VS methods or to be used as part of
integrated VS tools in facilitating the discovery of Src
inhibitors and other active compounds [91-93].
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