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1 Introduction and results

In this paper, we study the dynamics of N = 2 supersymmetric pure gauge (Seiberg-

Witten [1]) theory and its N = 1 mass perturbation compactified on R3 × S1 through a

new method. We mostly work with an SU(2) gauge group and only mention SU(N) in

connection with non-’t Hooftian (abelian) large-N limits. Ref. [2] already examined this

theory on R3 × S1. A description of the vacuum structure of the theory is given as a

function of the circle radius L, interpolating between 3d and 4d results. Supersymmetry,

holomorphy, and elliptic curves provide much information about the vacuum of the theory.

However, many physical aspects of the mass-perturbed N = 2 theory on R3 × S1 remain

open. For example, at small R3 × S1, one can ask:

i) what generates confinement and the mass gap for gauge fluctuations?

ii) what induces chiral symmetry breaking and generates mass for fermions?

iii) what stabilizes the center symmetry?

These are questions of interests not only in the supersymmetric theory, but also of cen-

tral importance in non-supersymmetric QCD and QCD-like gauge theories on R3 × S1.

It turns out that adequately answering these questions opens interesting avenues in the

study of confinement and topological defects in gauge theories, not exclusively restricted

to supersymmetric theories.

1.1 Method

In this work, we use a different methodology relative to ref. [2] to study the theory on

R3×S1. Our approach, shown in the commutative diagram in figure 1, permits us to study

this theory by using simple field theory techniques. Some of our techniques also apply to

non-supersymmetric theories.

Let us now briefly describe the physics of Seiberg-Witten solution at R4 and the rea-

soning behind figure 1. The N = 2 theory on R4 possesses a quantum moduli space

parameterized by u = 〈trΦ2〉, where Φ is an adjoint chiral multiplet. The u-modulus also

provides a control parameter. On the moduli space, the SU(2) gauge symmetry is Higgsed

down to U(1) at a scale |u|
1
2 . Since the theory is asymptotically free, for |u| � Λ2

N=2, where

ΛN=2 is the strong scale, the theory is (electrically) weakly coupled, g2
4(|u|) � 1. (From

now on, we set ΛN=2 = 1). The |u| . 1 domain (shaded region in figure 1) is electrically

strongly coupled.

The SU(2) → U(1) theory possesses the ’t Hooft-Polyakov monopole and dyon parti-

cles, which are heavy at |u| � 1. There are two points on the moduli space in the shaded

region in figure 1, where a monopole (u = +1) or a dyon (u = −1) become massless.

The low-energy limit of the theory near the monopole (or dyon) points is described by the

N = 2 supersymmetric electrodynamics (SQED) of massless monopoles (or dyons). The

gauge field and the coupling in SQED are dual to the ones in the microscopic theory. In

particular, whenever the electric coupling is large, the dual magnetic coupling is small and

vice versa. The effective field theory descriptions near the u = +1 and u = −1 points are
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Figure 1. Taking different paths in the u–L plane. The horizontal direction, u, is the modulus of

Seiberg-Witten theory and the vertical, L, is the size of S1. Ref. [2] studied the softly broken N = 2

theory on R3 × S1 by using elliptic curves through path A. In this work, we reexamine the same

theory along the path BCD in moduli space. The CD branch always remains semi-classical and

allows us to understand the relation between the topological defects responsible for confinement at

small-L and large-L in detail.

mutually non-local and there is no global macroscopic theory which describes both u = +1

and u = −1. Physically, one of the most interesting outcomes of the Seiberg-Witten solu-

tion is that when the N = 2 theory is perturbed by an N = 1 preserving mass term for Φ,

it exhibits confinement of electric charges due to magnetic monopole or dyon condensation.

Ref. [2] studied the N = 2 SYM and its softly broken N = 1 version on R3 × S1 by

using elliptic curves through path-A on figure 1. However, if we would like to understand

the relation between the topological defects (and field theories) at large and small S1, there

are some intrinsic difficulties associated with path-A. In particular, the large-S1 theory is

magnetically weakly and electrically strongly coupled, and the small-S1 one is electrically

weakly (by asymptotic freedom) and magnetically strongly coupled. Thus, when L ∼ 1 and

|u| . 1, both electric and magnetic couplings are order one, and we do not know how to

address this domain in field theory. To avoid this difficulty, we propose a compactification

(path-C) at large-u where the theory is always electrically weakly coupled, regardless of

the S1-size L. Path-D is also always weakly coupled, either because the u-modulus is large

or because an additional modulus, the Wilson line along S1, is turned on (also note that in

the small-L domain the N = 2 theory always abelianizes, and the long-distance dynamics

is described by a three dimensional hyper-Kähler nonlinear sigma model [2]).

1.2 Conclusions

We find, by using the techniques of ref. [2] and of our current work, that a locally four

dimensional generalization [3, 4] of Polyakov’s 3d instanton mechanism of confinement [5]

takes over in the small-L mass-perturbed N = 2 theory. To elucidate, note that the theory

possesses 3d instanton (and anti-instanton) solutions, which, when embedded in R3 × S1,

have magnetic, Qm =
∫
S2
∞
F , and topological, QT =

∫
R3×S1 FF̃ charges, normalized to

(Qm, QT ) = ±
(
1, 1

2

)
. There are also twisted instantons (and anti-instantons), which carry

charges (Qm, QT ) = ±
(
−1, 1

2

)
. The mass gap for gauge fluctuations and confinement in

the mass-perturbed N = 2 theory arise due to Debye screening by topological defects with

charges (Qm, QT ) = (±2, 0). This mechanism of confinement was called the “magnetic
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bion” mechanism in [3, 4] and we show here that it also takes place in the N = 1 mass

deformation of Seiberg-Witten theory at small L. The fact that the leading instanton

amplitude in the semi-classical expansion cannot generate mass gap for gauge fluctuation —

which distinguishes the magnetic bion mechanism from Polyakov’s 3d instanton mechanism

— is due to the presence of fermion zero modes, dictated by the Nye-Singer index theorem

for the Dirac operator on S1 × R3 [6, 7].

Our main conclusions are:

1. There are two types of confinement mechanisms in mass-perturbed N = 2 theory.

At L large compared to the inverse strong scale of the theory, confinement is due

to magnetic monopole or dyon condensation. At small L, it is the “Polyakov-like”

magnetic bion mechanism briefly described above.

2. Under the reasonable assumption that supersymmetric theories with supersymmetry-

preserving boundary conditions on S1 × R3 do not have any phase transition as a

function of radius, these two mechanisms ought to be continuously connected. The

physical questions we address in this work are:

(a) What is the relation between the monopole and dyon particles on R4 (or large

S1×R3) and the monopole-instantons and magnetic bion-instantons of the small

S1 × R3 regime? How do we relate the two confinement mechanisms?

(b) What is the region of validity of the various small- and large-L descriptions?

Our results show that the relation between the topological defects responsible for

confinement at small L and large L is intricate — even in the case where confinement

remains manifestly abelian at any L, as in the mass-perturbed Seiberg-Witten the-

ory. However, along the path-C in figure 1 of undeformed theory, we find a precise

duality relation between the semi-classical topological defects pertinent to confine-

ment at large- and small-L. More precisely, the 3d monopole-instantons and twisted

monopole-instantons, which make up the magnetic bion “molecules” that generate

mass gap and confinement at small L, have a Kaluza-Klein tower. The nonpertur-

bative contribution of this tower is dual, through a Poisson resummation, to that of

the tower of 4d monopole/dyon particles whose Euclidean worldlines wrap around

the compact direction. We refer to the duality along the path-C as Poisson duality.

This duality presents an explicit relation between the topological defects responsible

for confinement at small R3 × S1 and on R4.

3. The magnetic bion mechanism also holds in a large-class of non-supersymmetric theo-

ries at small L. Thus, our construction gives a map between theoretically controllable

confinement mechanisms in non-supersymmetric and supersymmetric gauge theories.

1.3 Outline

We begin in section 2 by reviewing the classical pureN = 2 supersymmetric Yang-Mills the-

ory, both using 4d notation (section 2.1) and dimensional reduction from 6d (section 2.2).

– 4 –



 
J
H
E
P
0
7
(
2
0
1
1
)
0
8
2

The latter is useful when studying the supersymmetries preserved by various classical so-

lutions in appendix A. In section 2.2, we also introduce come useful notation.

We begin the discussion of the classical solutions in section 3 by recalling, in section 3.1,

the properties of monopole and dyon particles on R4. The corresponding tower of monopole-

and dyon-instantons on R3 × S1, pertinent to the large-L nonperturbative dynamics, is

constructed in section 3.2. In section 3.3, we describe the tower of winding monopole-

instanton solutions at a generic point in moduli space, relevant to the small-L dynamics.

The Poisson duality between the 3d tower of winding solutions and 4d tower of dyon-

instantons is discussed in the following three sections. In section 3.4, the duality is discussed

and qualitatively explained in a simplifying limit. In section 3.5, a more general duality

relation is derived and then discussed in section 3.6.

In section 4, we study the role the winding monopole-instantons and dyon-instantons,

discussed above, play in the nonperturbative dynamics of confinement and chiral symmetry

breaking at large or small L. In section 4.1, we recall the SW description of monopole/dyon

condensation in the mass-perturbed theory and give the large-L expressions for the mass

gap and string tension. Then, we explain the difficulties a compactification along path A of

figure 1 would face. We also give an effective 3d description of the physics at scales larger

than L, valid for LΛN=2 � 1, using a chain of known 3d dualities.

The small-L dynamics is studied in section 4.2, beginning with a discussion of the

’t Hooft vertices induced by the winding monopole-instantons of lowest action. Then,

in section 4.2.1, we explain the effect of the N = 1 preserving mass perturbation, the

generation of a superpotential, the resulting vacua of the theory, and give expressions

for the mass gap and string tension (all results well-known in the literature). Then, we

concentrate on the physical mechanisms responsible for the center-symmetry stabilization

and confinement. We note that they are due to different kinds of instanton-anti-instanton

“molecules”. Most notably, we explain that the mass of the dual photon is generated by

magnetic bions, bound states of monopoles and twisted anti-monopoles of magnetic charge

two, and an example of a topological “molecule” whose stability is semiclassically calculable.

The realization of the unbroken center-symmetry is discussed in section 4.2.2. The physics

of chiral symmetry breaking is discussed in section 4.2.3, along with an elaboration on

some imprecise statements in the literature.

In section 5, we discuss the phase diagram in the m–L plane, indicating the regimes

where the different topological excitations discussed above play a role in the confinement

mechanism. We consider both the SU(2) (small-N) and large-N cases. In the latter case,

we note that the abelian description of the dynamics persists as N → ∞ only in non

’t Hooftian large-N limits, both at small L (where L must scale as 1/N) and large L

(where the soft breaking mass m ∼ 1/N4).

We summarize our findings and discuss some open problems in section 6. We give

various technical details in the appendices. In appendix A, we study the supersymmetries

preserved by the various solutions discussed in the paper, in order to identify the nature of

the unlifted supersymmetric fermion zero modes. In appendix B, we generalize to SU(N)

the Poisson duality relation of section 3.5.

– 5 –
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2 Review of the classical N = 2 supersymmetric theory

2.1 Theory on R4 and global symmetries

The matter content and bosonic symmetries of the pure N = 2 supersymmetric Yang-Mills

theory on R4 fill a representation of the SO(4) ∼ [SU(2)L × SU(2)R]E Euclidean Lorentz

symmetry and the SU(2)R × U(1)R chiral R-symmetry. The transformation properties

under [SU(2)L × SU(2)R × SU(2)R]U(1)R are as follows: the gauge field Aµ ∼
(

1
2 ,

1
2 , 0
)

0
,

the scalar φ ∼ (0, 0, 0)+2, fermions λi ∼
(

1
2 , 0,

1
2

)
+1

. All fields are valued in the adjoint

representation of the gauge group G and fill a gauge multiplet of N = 2 supersymmetry.

In this paper, we study mostly G = SU(2) and give a generalization to SU(N) for some of

the results.

The N = 2 supersymmetric gauge multiplet diamond can be decomposed in terms of

N = 1 multiplets, vector V = (Aµ, λ) and chiral Φ = (φ, ψ) multiplets, as well as N = 1′

V ′ = (Aµ, ψ), Φ′ = (φ, λ) multiplets as shown below:

Aµ??
N=1

��

__
N=1′

��
λ __

N=1′ ��

ψ??

N=1��
φ

(2.1)

We will eventually be interested in the theory with only N = 1 supersymmetry, where

N = 1′ part of the supersymmetry is broken by a soft mass term for the Φ-multiplet. We

parameterize the SU(2)R doublet as
(
λ1

λ2

)
=
(
λ
ψ

)
, where the first form is used whenever we

want to make SU(2)R invariance manifest.

The Lagrangian of N = 2 Yang-Mills theory may be written in component fields as:

L =
2

g2
4

tr

[
1

4
F 2
µν +Dµφ

†Dµφ+
1

2
[φ†, φ]2 + iλiσµDµλ

i − i√
2
εijλ

i[λj , φ†]− i√
2
εijλi[λj , φ]

]
,

(2.2)

where Dµ = ∂µ + i[Aµ, ] and the field strength is Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. We

normalize the Lie algebra generators as tr tatb = 1
2δ
ab. The component formalism makes

the chiral symmetries manifest, but it hides the exact N = 2 supersymmetry.

The classical U(1)R symmetry is anomalous quantum mechanically. For an SU(N)

gauge group, 4d instantons generate an amplitude:

e−SI
[

1

2
εi1i2εj1j2(λi1λj1)(λi2λj2)

]N
≡ e−SI

[
det
i,j

(λiλj)
]N
, (2.3)

which is manifestly invariant under SU(2)R, but rotates by a phase ei 4Nα under U(1)R,

λi → eiαλi. Thus, the quantum theory respects only a Z4N subgroup of U(1)R. For SU(2)

gauge group, the exact chiral symmetry of the quantum theory is:(
SU(2)R × Z8

)
/Z2 (2.4)

– 6 –
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where Z2 is factored out to prevent double counting of the factor (−1)F (where F is fermion

number) common to the center of SU(2)R and Z8.

Since the N = 2 Lagrangian (2.2) includes terms of the form φ†[λ1, λ2], the scalar φ

is also charged under Z8. It transforms as φ → ei
π
2 φ. The simplest gauge invariant that

we build out of φ is u ≡ trφ2. The u field parametrizes the classical moduli space of gauge

theory, and it changes sign under the Z8 action. This discrete symmetry will be crucial

once we consider the theory on R3 × S1. To summarize, the action of the anomaly-free

chiral Z8 symmetry is:

Z8 : λi → ei
2π
8 λi , φ→ ei

4π
8 φ , u→ −u . (2.5)

Note that the Z8 symmetry is unbroken only at the u = 0 point in the classical moduli

space. This will also have interesting consequences for the theory on R3 × S1.

2.2 Reduction of six dimensional N = 1 theory and notation

It will be also useful to describe the N = 2 theory in 4d by starting with the minimal

supersymmetric Yang-Mills theory in 6d with the Lagrangian:

L =
2

g2
4

tr

[
1

4
F 2
MN + iΨΓMDMΨ

]
(2.6)

where M,N = 1, . . . , 6. ΓM ,M = 1, . . . 6 denote the six gamma-matrices satisfying the

Clifford algebra {ΓM ,ΓN} = 2δMN , and Γ7 is the chirality matrix in six dimensions.1 The

complex spinor Ψ satisfies the chirality condition, (Γ7 + 1)Ψ = 0.

The N = 1 theory in 6d has an SU(2)R chiral symmetry which acts on fermions (it is

not manifest in the way we have written it). The fermions as well as the supercharges trans-

form as doublets under this symmetry, whereas the gauge field is a singlet. Dimensional

reduction turns the Lorentz symmetry in the reduced directions into global R-symmetries

of the lower dimensional theory. Let us denote the Euclidean spacetime directions as

x1,2,3,4,5,6. The N = 2 theory on R4 may be obtained by erasing the x5,6 dependence

from all fields. This means that the SO(6)E Euclidean Lorentz symmetry transmutes to

SO(4)E × SO(2)R symmetry, whose covering group is [SU(2)× SU(2)]E ×U(1)R. Together

with the SU(2)R mentioned above, this is the symmetry group of the 4d N = 2 theory

described in section 2.1.

Let us denote the gauge field of the six dimensional theory as AM . Consider both

dimensional reduction and compactification2 down to to R4, R3 × S1, and R3. The 6d

1We may use the following basis for computations:

Γµ = σ2 ⊗ γµ , Γ5 = σ2 ⊗ γ5 , Γ6 = σ1 ⊗ 14 , Γ7 = σ3 ⊗ 14 , (2.7)

where γ1,...,4 are four-dimensional gamma matrices and γ5 = γ1 . . . γ4. However, using an explicit basis is

not necessary for our purposes, see appendix A.
2We distinguish dimensional reduction and compactification. Compactification, unlike dimensional re-

duction, does not alter the microscopic chiral symmetries of the theory, which has important consequences.
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gauge field decomposes as follows:

AM → Aµ ⊕A5, A6︸ ︷︷ ︸
φ, φ†

, µ = 1 , . . . , 4 , R4 (2.8)

AM → Ai ⊕ A4︸︷︷︸
b

⊕A5, A6︸ ︷︷ ︸
φ, φ†

, i = 1, 2, 3 , R3 × S1 (2.9)

where φ = (A5 + iA6)/
√

2. If the gauge theory abelianizes, at scales larger than the S1 size

L we can dualize the three dimensional field strength to a compact scalar σ, via:

Fij =
g2

4

4πL
εijk∂kσ , (2.10)

and use the complex fields B = (b+ iσ)/
√

2 to obtain the decomposition:

AM → σ, b︸︷︷︸
B,B†

⊕A5, A6︸ ︷︷ ︸
φ, φ†

, b ≡ 4π

g2
4

ω , ω ≡ LA4 R3 . (2.11)

In (2.11) A4 refers to the value of A4 in the Cartan subalgebra (the unbroken abelian gauge

group) and ω denotes the corresponding Wilson line around the compact direction.

3 Relating 4d monopole particles to 3d monopole-instantons

3.1 Monopole and dyon particles on R4

Consider the pure N = 2 theory in the semi-classical domain of its moduli space. Denoting

v = |u|
1
2 , this is the regime where v � 1; recall that we set ΛN=2 = 1. BPS particles

with electric and magnetic charges (nm, ne) have masses determined by the central charge

Z(nm,ne) = v(ne + nmτ), where τ = 4πi
g2
4

+ θ
2π is the holomorphic gauge coupling:

M(nm, ne) = |Z(nm,ne)| = v

√
n2
m

(
4π

g2
4

)2

+

(
ne + nm

θ

2π

)2

= v

√
n2
m

(
4π

g2
4

)2

+ n2
e . (3.1)

From now on, we set θ = 0.

In the limit v � 1, the coupling is small g2
4(v) � 1. The monopole with nm = 1 and

arbitrary ne will be relevant below. Its mass is given by expanding (3.1):

M(1, ne) ≈
4πv

g2
4

+
1

2

g2
4v

4π
n2
e = M(1,0) + (M(1,ne) −M(1,0)) ≡M(1,0) + ∆M(1,ne) . (3.2)

This formula has a well-known physical interpretation. A monopole in the four-dimensional

theory has four collective coordinates. The classical solution is not invariant under three

spatial translations and under the unbroken subgroup U(1)e ⊂ SU(2). The corresponding

collective coordinate space is (~a, ϕ) ∈ R3 × S1
ϕ. The angular zero mode is generated by

U(1)e rotations and the eigenvalue of rotation on the unit circle S1
ϕ is the electric charge.

The wave function associated with the collective coordinates is Ψ(~a, ϕ) = ei~p·~aeineϕ. When

we quantize the BPS monopole with nm = 1, we observe that it can carry arbitrary electric

– 8 –
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b)Mass spectrum of monopoles and dyons
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n

e

m

a)(1,0) monopole and its dyonic tower

M

E∆
��

Figure 2. a) The spectrum of charges of a monopole and its dyonic tower obtained by quantizing the

U(1)e zero mode. b) The mass spectrum. In the semi-classical regime, ∆E ≡ E(1,±1)−E(1,0) �M .

This tower of states, labelled by electric charge, is pertinent to large-L and is Poisson-dual to the

3d BPS monopole-instanton and its tower, characterized by the winding number, and pertinent to

small-L.

charge, an integer multiple of the fundamental charge, as shown in figure 2a (such towers

exist for any magnetic charge monopole (nm, 0), albeit they may be unstable). The dyonic

tower of the anti-monopole is (−1, ne), ne ∈ Z.

In the semi-classical regime, the mass of a (1, 1) dyon (3.2) differs negligibly from that

of a monopole. In fact, a large number of states occupying the dense band shown in figure 2

(clearly, the spectrum is not equidistant as may appear from the figure) has ∆M(1,ne) �
M(1,0). The states almost degenerate with the monopole have |ne| � nmax

e � 4π/g2
4. When

|ne| < nmax
e , the fermionic zero modes of the states in the tower will also be identical, at

leading order; this will be important for our future considerations.

Also for future reference we note that the Bogomolnyi’s bound applied to (1, ne) BPS

monopole/dyon particles yield the first order differential equations (see ref. [8] for a review):

~B − cos δne ~DA5 = 0 ,

~E − sin δne ~DA5 = 0 ,

D4A5 = 0 , (3.3)

where:

eiδne =

4π
g2
4

+ ine√(
4π
g2
4

)2
+ n2

e

. (3.4)

We have rotated the scalar vev, see (2.8), in the φ = (A5, A6) plane to purely A5, with no

loss of generality.

3.2 Monopole-instantons and dyon-instantons at large S1 × R3

To study the theory on S1×R3, we compactify the x4 direction on a circle with circumference

L. When LΛN=2 � 1, the spectrum of the theory is clearly that of Seiberg-Witten theory

on R4 with trivial restrictions due to the boundary condition in x4. The perturbative
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spectrum consists of photons, electrically charged W -bosons, and their superpartners, while

the non-perturbative spectrum is comprised of monopoles, dyons, and their superpartners.

In the v � 1 regime, the nonperturbative magnetically charged states are semiclassi-

cally accessible and are thus significantly heavier then the perturbative states. They do,

however, contribute to the dynamics of the quantum theory on S1×R3. If one lets the Eu-

clidean worldline of a monopole/dyon particle wrap around the S1, this “pseudo-particle”

acquires a finite Euclidean action, S(nm, ne) = LM(nm, ne). This means that it has to be

interpreted not as a (BPS) state in the compactified theory, but rather as an instanton of

action, which, for nm = 1, is given by:3

S(1, ne) = LM(1, ne) = vL

√(
4π

g2
4

)2

+ n2
e . (3.5)

These instantons represent saddle points of the Euclidean path integral and their contri-

butions must be summed over.

When we consider the theory on R4, we can gauge away the gauge field in any one

chosen direction, in particular its x4-component A4. However, once the theory is compact-

ified, x4 ≡ x4 + L, the zero mode of A4 — equivalently, the Wilson line around S1 — can

no longer be gauged away. In the supersymmetric theory on S1 × R3, we are free to turn

on an arbitrary constant and homogeneous A4 background gauge field commuting with the

vev of φ, A4 = a4T
3. This background gauge field naturally couples to the electric charge

of the dyonic tower, modifying the action:

S(1, ne)→ S(1, ne) + ine

L∫
0

dx4a4 = S(1, ne) + inea4L = S(1, ne) + ineω , (3.6)

where in the last line we recalled the definition (2.11) of ω, an angular variable (see the

following section 3.3).

The “dyon-instantons” with charges (1, ne) induce amplitudes ∼ e−S(1,ne)eiσ+ineω ×
(fermion zero modes) in the long distance effective Lagrangian, where σ is the dual pho-

ton defined in (2.10). (The fermionic zero modes are discussed in sections 3.4, 3.5, and

appendix A.) The eiσ factor, within the dilute gas approximation, takes into account the

long-distance Coulomb interactions between dyon-instantons [5]. Thus, in the large-L limit,

the sum of the leading semiclassical contributions with magnetic charge nm = 1 comes from

the infinite dyonic tower (1, ne), ne ∈ Z. This gives, schematically:

(Dyon sum at large-L) ∼ eiσ
∑
ne∈Z

e
−vL

√(
4π

g24

)2

+n2
e +ineω

. (3.7)

In the semiclassical domain g2
4(v)� 1, we use (3.2) to obtain:

(Dyon sum at large-L) ∼ eiσe
− 4πvL

g24

∑
ne∈Z

e−
1
2

vLg24
4π

n2
e+ineω (3.8)

3The theory also has 4d instantons, obeying the self-duality condition Fµν = 1
2
εµνρσF

ρσ of action 8π2

g24
.

As these carry no magnetic charge, they are not relevant for confinement at small L.
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The sum over electric charges in (3.8) converges rather fast for
vLg2

4
4π � 1, i.e., at large-

L, and the first few terms in the sum are sufficient to produce accurate semi-classical

results. Conversely, this sum converges very slowly if
vLg2

4
4π � 1, where a more convergent

description, as will be described in the next subsection, emerges — this time in terms of

3d monopole-instantons and twisted monopole-instantons.

3.3 3d monopole-instantons at small S1 × R3

Consider again the Euclidean action (2.2) of the N = 2 gauge theory on R3 × S1 and use

A5, A6 to denote the scalar φ, see (2.11). A5 and A6 can be rotated to each other, by using

the symmetries (in what follows we will use this to set 〈A6〉 = 0), but not to A4 due to the

lack of any symmetry relating them. Thus, we take only A4 and A5 to have nonzero vevs:

〈A5〉 = a5T3 ≡ vT3 =

[
v
2 0

0 −v
2

]
, 〈A4〉 = a4T3 ≡

ω

L
T3 =

[
ω
2L 0

0 − ω
2L

]
. (3.9)

Further, we note that in the compactified theory the vev a4 is actually an angular variable,4

a4 ≡ a4 + 2πn
L . The a4–a5 slice of the moduli space of the compactified theory is depicted

in figure 3, where we include all “images” along a4 of the chosen vev.

Since SU(2) → U(1) by the expectation values (3.9), the theory has x4-independent

finite-action Euclidean monopole-instanton solutions, which are simply the dimensional

reduction of the 4d static ’t Hooft-Polyakov monopole. Consider now the nonvanishing

part of the action associated to such a 3d monopole-instanton embedded in S1 ×R3. Take

the monopole solution to be x4 independent and to have A6 = 0, and [A4, A5] = 0. By

using steps similar to the Bogomolnyi’s bound applied to dyons,5 we obtain, keeping only

the nonvanishing terms in the bosonic action (2.2):

S =
1

g2
4

∫
R3×S1

tr
[
~B2 + ( ~DA4)2 + ( ~DA5)2

]
=

L

g2
4

∫
R3

tr
[
( ~DA4 − sinα~B)2 + 2 sinα~DA4

~B + ( ~DA5 − cosα~B)2 + 2 cosα~DA5
~B
]

≥ L

g2
4

∫
R3

tr
[
2 sinα~DA4

~B + 2 cosα~DA5
~B
]

=
L

g2
4

∫
R3

~∂ tr
[
2 sinαA4

~B + 2 cosαA5
~B
]

=
L

g2
4

[
sinαa4 + cosαa5

] ∫
S2
∞

d~Σ · ~B3

=
L

g2
4

√
(a2

5 + a2
4)(4π) . (3.10)

4One way one can think of this is that a4 always enters as ∂4 + ia4 in the Lagrangian and thus can

be shifted by 2π
L

by relabeling the Kaluza-Klein modes on the circle (or, equivalently, by a “large” gauge

transformation).
5Earlier, when deriving the dyon equations (3.3), in the energy functional E= 1

g24

∫
R3 tr

[
~B2+~E2+( ~DA5)2

]
,

we split the ( ~DA5)2 term such that it compensates both the electric and magnetic field. This yields the first

order dyon equations given in (3.3); see ref. [8] for a review. On R3 × S1, since A4 and A5 are on different

footing (compact vs. noncompact) and cannot be rotated to each other, the ~B2 term in the action should

now split to compensate the two types of scalar terms, as in (3.10), when applying Bogomolnyi’s technique

to our problem.
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Figure 3. Monopole-instanton solutions for nm = +1 are represented by a line with an arrow

pointing from the vev of a4,5 at the center of the monopole, denoted by a circle, to the vev at

infinity, denoted by a square (the vev at the center vanishes and is, on both pictures, taken to be

the origin of coordinates in the a4/a5-plane). Since a4 is an angular variable on R3× S1, a tower of

instanton-monopoles of “winding numbers” labelled by nw exists. The length of the arrow equals

the distance between the vevs at the center of the monopole and infinity,
√
a25 + a4(nw)2, and is

proportional to the action of the corresponding topological defect. The nm = +1 tower, shown

in the upper figure, is composed of deformations (obtained by turning on a5) of BPS monopole-

instantons and KK twisted anti-instantons, shown in the lower figure (BPS monopoles have their

arrows pointing to the right and KK-monopoles to the left). The nm = −1 tower, not shown above,

obtained by reverting all the arrows, is composed of deformations of BPS anti-monopole-instantons

and KK twisted monopole-instantons.

In the last step, we assumed that the magnetic charge is +1. Furthermore, the last equality

in (3.10) only holds when the r.h.s. is minimized with respect to α for the given value of

the magnetic charge, i.e. α is given by the vevs (3.9) for the A5 and A4 fields as follows:

eiα =
a5 + ia4√
a2

5 + a2
4

. (3.11)

This value of α is denoted by α0 in figure 3a. The action of the monopole is equal to the

minimal value of the r.h.s. when the solution is BPS saturated:

~DA4 − sinα~B = 0 ,

~DA5 − cosα~B = 0 . (3.12)

– 12 –



 
J
H
E
P
0
7
(
2
0
1
1
)
0
8
2

Few comments are now in order:

1. For α = π/2, the first equation in (3.12) is the dimensional reduction of the usual

instanton equation, F = F̃ (remembering that DiA4 = Fi4, etc.), now obeyed by a

self-dual BPS-monopole instanton with nm = 1.

2. For α = 0, the second equation in (3.12) is the usual Bogomolnyi equation (see (3.3

with δne = 0) for a magnetic monopole particle with nm = 1 in macroscopically four

dimensional space-time.

3. For α = −π/2, the first equation in (3.12) is the dimensional reduction of the anti-

instanton equation, F = −F̃ , which is obeyed by an anti-selfdual KK-monopole-

instanton with nm = 1 (recall that the KK-monopole instanton is self-dual and has

nm = −1, while the BPS-monopole-instanton is anti-selfdual and has nm = −1).

So far, we have only addressed the 3d BPS instanton embedded in R3 × S1 without

winding number.6 We can generalize the above argument by incorporating the winding

number nw ∈ Z. Recall that a4 in (3.9) is really an angular variable on R3 × S1 and that

a4 ≡ a4 mod 2π
L . Monopole-instanton solutions of higher action (“winding number”) can

be constructed allowing for larger separation between the scalar field eigenvalues at the

center of the monopole and infinity — increasing in steps of 2πnw
L in the a4 direction, as

illustrated on figure 3. Then, repeating the steps in (3.10), we have for winding solutions

saturating the BPS bound:

Snw =
L

g2
4

[
sinαnw

(
a4 +

2π

L
nw

)
+ cosαnwa5

] ∫
S2
∞

d~Σ · ~B3

=
L

g2
4

√
a2

5 +

(
a4 +

2π

L
nw

)2

(4π) , nw ∈ Z , (3.13)

where:

eiαnw =
a5 + i

(
a4 + 2π

L nw
)√

a2
5 +

(
a4 + 2π

L nw
)2 . (3.14)

The BPS bound on the action (3.13) is achieved by solutions obeying:7

~DA4 − sinαnw ~B = 0 ,

~DA5 − cosαnw ~B = 0 . (3.15)

6The existence of the winding (also called “twisted”, or “KK”) monopole-instantons is only possible

because the “Higgs field” ∼ eiLA4 is compact. We note that the existence of extra monopole solutions

in theories with compact Higgs fields has been noted, but not pursued, earlier, in the context of maximal

abelian projection [9]. The advent of D-branes greatly helped the study of the twisted monopole-instantons,

as they appear rather naturally in string theory brane constructions [10], see also [11].
7To avoid a possible confusion about the x4 independence of the winding solutions, we note that all

winding solutions are x4 independent in a gauge where they asymptote to vacua with a4 vevs differing by

2πnw/L, while in a gauge where all solutions asymptote to a vacuum with fixed a4, the winding solutions

acquire x4 dependence. The BPS bound is most simply derived in the first gauge.
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All the instantons in the tower have the same magnetic charge, but their topological charges

differ by one unit. Interestingly, this tower is a deformation8 of the a5 = 0 theory to non-

zero a5 and the instantons pertinent to this set-up arise from the self-dual 3d-instanton

(BPS) for nw ≥ 0 and twisted (KK) anti-instanton for nw ≤ −1. The existence of these

two types of topological excitations, 3d instantons and the twisted-instantons, is pertinent

to the locally four-dimensional nature of the theory.

Since the action of a monopole-instanton that saturates the BPS bound (3.15) is de-

termined by the vev at infinity, on figure 3, it is geometrically represented by the length

of the line9 stretching between the scalar eigenvalues at the origin and infinity. In (3.13),

if we take a5 = 0 and restrict attention to the 3d instanton for which nw = 0, and take

a4 = π/L, which corresponds to a center symmetric background, we obtain from (3.13),

that the action of a 3d instanton in a center-symmetric vacuum is Snw=0 = 4π2

g2
4

, which is

half that of the 4d instanton.

The 3d monopole-instantons of magnetic charge +1 induce amplitudes proportional

to e−Snw eiσ × (fermion zero modes) in the long distance effective Lagrangian, where σ is

the dual photon defined in (2.10). As explained above, there is an infinite tower of such

instanton amplitudes contributing to the effective Lagrangian even for an instanton with

a given magnetic charge.

Incorporating the shift due to the a5 vev and winding in the action (3.13), and recalling

from (2.11) that a5 = v, La4 = ω, we thus find that the sum of magnetic charge +1

instanton amplitudes in the small-L domain is, schematically:

(Instanton sum at small-L) ∼ eiσF (ω)

F (ω) ≡
∑
nw∈Z

e−Snw =
∑
nw∈Z

e
− 4π

g24

√
(vL)2+(ω+2πnw)2

, (3.16)

where F (ω) is the the sum of the fugacities (i.e., of the e−S prefactors of the instan-

ton amplitude) and eiσ incorporates the long-distance Coulomb interaction between the

monopole-instantons. In the regime where a5/a4 � 1 or (Lv � 1), the action can be

approximated by:

Snw ≈
4πvL

g2
4

+
1

2

4π

Lvg2
4

(ω + 2πnw)2 , (3.17)

leading to the asymptotic expression for the small-L instanton sum:

(Instanton sum at small-L) ∼ eiσe
− 4πvL

g24

∑
nw∈Z

e
− 1

2
4π

Lvg24
(ω+2πnw)2

. (3.18)

This small-L instanton sum converges fast for
Lvg2

4
4π � 1, which implies

a5g2
4

a4
� 1. The

combination of this with the condition a5
a4
� 1, used to obtain (3.17), gives:

a4 � a5 �
a4

g2
4

, (3.19)

8Similar solutions in nonsupersymmetric Yang-Mills-adjoint-Higgs theories are considered in [12].
9In the brane description of N = 4 SYM these are related to the worldlines of Euclidean D0-

branes [13, 14].
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m

A5

A4

a)  n    =+1 3d instanton tower

Figure 4. 3d-instantons in the magnetic charge +1 tower in the regime a4 � a5 � a4/g
2
4 . The

tower is composed of deformation of BPS monopole instantons and KK twisted anti-instantons. The

properties of fermionic zero modes is dictated by the leading a5 dependence for the low winding

number instantons.

which can be accomplished at weak coupling. The monopole-instantons that contribute to

the sum (3.18) are shown on figure 4.

In the next section, we will show that the small-L and large-L instanton sums (3.18)

and (3.8) are, in fact, equivalent.

3.4 3d-instanton/4d-dyon tower Poisson duality: first pass

The statement of Poisson duality, which has been studied inN = 4 gauge theories in [13, 14]

and in theN = 2 context in [15], is as follows: the small-L (3.8) and large-L (3.18) instanton

sums, which, at first sight, look completely different, are in fact equivalent expressions, and

one is the Poisson resummation10 of the other:

e
− 4πvL

g24
+iσ ∑

nw∈Z
e
− 1

2
4π

Lvg24
(ω+2πnw)2

× (four-fermion operator)

= e
− 4πvL

g24
+iσ ∑

ne∈Z

√
Lvg2

4

8π2
e−

1
2

vLg24
4π

n2
e+ineω × (four-fermion operator) (3.20)

Both of these are viewed as instanton sums: the first sum, (3.18), over the winding number

incorporates 3d monopole-instantons and twisted (or winding) monopole-instantons and

their Kaluza-Klein tower. The second sum, (3.8), which should perhaps be called a dyon

sum, as its salient features are dictated by 4d dyons, is a sum over the electric charges of

the dyon tower. In this case, the instantons at large-L are realized through dyon particles

whose worldlines wrap around the large circle. As discussed earlier, the large-L series

converges fast for Lvg2
4 � 1 and the small-L series converges fast for Lvg2

4 � 1.

The origin of the Poisson duality (3.20) can be simply understood as follows. In the

regime when the expansions (3.2) and (3.18) make sense, i.e., at weak coupling and when

10See section 3.5, where we prove a more general relation, which implies (3.20).
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Lv � 1, one can interpret the first and second sums in (3.20) in terms of the semiclassi-

cal expansion around a classical x4 independent BPS monopole-instanton solution of zero

winding/zero electric charge, respectively, of action 4πvL
g2
4

. The 4d static monopole solution

has a zero mode associated with global U(1)e transformations, as already mentioned af-

ter (3.2). Let the corresponding collective coordinate be φ ∈ [0, 2π], a compact variable. It

is useful to first recall that when quantizing static monopoles as particles on R3,1, φ is taken

to be a function of time (by the coupling of internal and charge symmetries, corresponding

to a time-dependent rotation of the monopole), and has a Lagrangian:

Lφ =
I

2
φ̇2 , (3.21)

where I is the “moment of inertia” of the monopole of mass M and “size” R, I = M“R2′′ =
4πv
g2
4

1
v2 = 4π

g2
4v

. This is the Lagrangian of a particle on a circle of unit radius. The corre-

sponding Hamiltonian is:

Hφ =
1

2I
p2
φ , (3.22)

where the eigenvalues of angular momentum pφ are ne = 0,±1,±2, . . . , the electric charges

of the dyons (recall that the radius of the circle is unity).

When the path integral on R3×S1 is considered, the “static” x4-independent solutions

become 3d instanton-monopoles, and after changing variables to collective coordinates

in the path integral, we have to integrate over all functions φ(x4), corresponding to the

classical paths the particle on a circle can take in a periodic time direction. The net result

is that the path integral over the collective coordinate φ is equal to the partition function

of the particle on a circle with Lagrangian Lφ (3.21) at temperature 1
L .

It is well known that there are two equivalent ways to compute the partition function

Z(L) = tre−LHφ : one can either compute it in the operator formalism as a sum over states

in the Hilbert space of Hφ, or use the Feynman path integral to represent Z(L) as a sum

over classical paths of all possible winding numbers. Let us ignore the A4 background mo-

mentarily. If one computes the partition function using the sum over eigenvalues of (3.22),

one obtains from tre−LHφ the sum over the electric charges of the dyon tower, the second

line in (3.20). On the other hand, if the partition function is represented as a sum over

winding classical paths labelled by winding number nw, φnw(x4) = 2πnw
L x4 +φ0(x4), where

φ0 is periodic, one ends up with the small-L representation from the first line in (3.20). In

other words, the two representations of Z(L) are:

Z(L) = tre−LHφ ≡
∑

ne∈Spec(Hφ)

〈ne|e−LHφ |ne〉 =
∑

ne∈Spec(Hφ)

e−
Ln2
e

2I

≡
∫

φ(0)=φ(L)(mod 2π)

Dφ(τ)e−
∫ L
0 dτ I

2
φ̇2

=
∑

nw∈π1(S1)

√
2πI

L
e−

I
2L

(2πnw)2
, (3.23)
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where the prefactor on the second line in (3.20) is related to the properly normalized path

integral over the periodic φ0. Since 1
I =

g2
4v
4π , we immediately see the equivalence of (3.23)

to (3.20).

The coupling to A4 = ω/L can be similarly understood by considering the static

monopole in an external A0 field, which modifies (3.21), (3.22), to Lφ = I
2(φ̇ + iA0)2

and H = 1
2I p

2
φ − iA0pφ, respectively, and a subsequent continuation to Euclidean space.

From the thermal analogy, it is also clear that at low temperature (large-L), the partition

function converges faster if given as a sum over the quantized eigenvalues of H, while at

high temperature (small-L) it is better represented as a sum over classical paths.

Going back to the monopole-instanton sums (3.20), the Poisson duality means that

we can describe the system most conveniently in terms of the few leading topological

defects in the respective sums wherever they converge fast. However, this is an issue of

convenience and the physical content of the two sums is identical. Nevertheless, we would

have to do much work to describe the small-L phenomena by using the large-L degrees

of freedom and vice versa. The Poisson resummation also instructs us that the electric

charge and winding number are dual variables. As is clear from the above discussion, in

this system, the quantization of the dyon electric charge may also be thought as the dual

of the quantization of winding number of 3d monopole instantons.11

In the presence of massless fermions, the instanton amplitudes are associated with a

number of fermionic zero modes. In general, the fermionic zero modes rotate as a function

of the two adjoint Higgs vevs, a4 and a5, and vary throughout the moduli space. We

postpone the detailed discussion of the preserved supersymmetries and the fermion zero

mode structure to appendix A for conciseness.12 For now, we only note that in the limit

that we derived the Poisson duality, αnw ≈ 0 for a large number of instantons in the

3d tower (see figure 4); similarly in the semi-classical and non-relativistic limit of dyons,

giving rise to the dense band of states shown in figure 2, we have δne ≈ 0. In these two

regimes, the wave functions of the fermion zero modes of the two towers are identical to

leading order, as follows from eqs. (A.10) and (A.13). This demonstrates that the Poisson

duality (3.20) is not harmed by the inclusion of fermionic zero modes.

3.5 General Poisson duality, or 4d dyon spectrum from 3d instanton sums

In this subsection, we demonstrate that the relativistic version of the BPS spectrum (3.1)

and the central charge formula Z(nm,ne) for the magnetic dyon tower in 4d can be extracted

from the sum over the tower of 3d instantons. This procedure is parallel to the well-known

textbook example on the extraction of the energy spectrum of O(N) rigid rotator from the

path integral formulation of quantum mechanics. See, for example, ref. [16]. We present

the calculation in detail for pedagogical reasons.

Consider first the following small-L sum over the instanton tower (3.16) labeled by

the winding number nw and magnetic charge nm = 1. The winding number nw ∈ Z is

11In the string theory embeddings this follows from momentum/winding number T -duality along

S1 [13, 14].
12However, this is an integral part of the discussion. The reader who is not familiar with this line of

reasoning should study the derivations in appendix A.
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the integer part of the topological charge of the corresponding monopole-instanton in the

tower. The sum (3.16) is a generalized fugacity F (ω):

F (ω) =
∑
nw∈Z

e−Snw =
∑
nw∈Z

e
− 4π

g24

√
(vL)2+(ω+2πnw)2

. (3.24)

This is clearly a periodic function of holonomy ω, F (ω+ 2π) = F (ω). Introduce its Fourier

transform:

F (ω) =
∑
ne∈Z

Fnee
iωne , (3.25)

where eiωne is the canonical coupling of the background gauge field A4 to electric charge

ne, e
i
∫
S1 neA4 ≡ eiωne . Remembering that the fugacity we are calculating appears in the

combination eiσF (ω), we deduce that the Fourier coefficients Fne are associated with dyons

of magnetic and electric charges (1, ne). Fne should have an interpretation as the Boltzman

weight, just like it was the case in our non-relativistic discussion in section 3.4, but now for

a relativistic particle with Hamiltonian Hφ =
√
M2

(1,0) + v2p2
φ and eigenspectrum M(1,ne) =

v

√(
4π
g2
4

)2
+ n2

e. We will indeed see that Fne ∼ e−LM(1,ne) . To this end, let us invert (3.25):

Fne =

∫ 2π

0

dω

2π
F (ω)e−iωne

=
∑
nw∈Z

∫ 2π

0

dω

2π
e
− 4π

g24

√
(vL)2+(ω+2πnw)2

e−iωne (3.26)

=

∫ ∞
−∞

dω

2π
e
− 4π

g24

√
(vL)2+ω2

e−iωne .

We will see below that Fne equals the contribution of a single dyon pseudoparticle of electric

charge ne. Thus, the middle line of (3.26) expresses the single dyon contribution as a linear

combination of contributions of an infinite number of winding monopole-instantons.

We now perform the integral in (3.26) by using the change of variables ω = vL sinh t,

dω = vL cosh tdt:

Fne =
vL

4π

∫ ∞
−∞

e
− vL

2

((
4π

g24
+ine

)
et+
(

4π

g24
−ine

)
e−t
)

(et + e−t)dt , (3.27)

and then split the integrand in two. In the first one, we use et = u and in the second —

e−t = u. Then, we have Fne = vL
4π (F1ne + F2ne), where F2ne = F ∗1ne , and obtain:

F1ne =

∫ ∞
0

e
− vL

2

((
4π

g24
+ine

)
u+
(

4π

g24
−ine

)
1
u

)
du = 2

√√√√√
(

4π
g2
4
− ine

)
(

4π
g2
4

+ ine

) K1

(
vL

√(
4π

g2
4

)2

+ (ne)2

)

= 2e−iδneK1

(
LM(1, ne)

)
, (3.28)

where K1 is the Bessel function, M(1, ne) is the mass of the dyon with electric charge ne,

and δne is the angle defined in finding the dyon equations of motions (3.3). Thus, Fne
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becomes:

Fne =
vL

4π

(
2e−iδne + 2eiδne

)
K1

(
LM(1, ne)

)
=
vL

π
cos δne K1

(
S(1, ne)

)
, (3.29)

where S(1, ne) is the action of the dyon (3.5).

Substituting (3.29) back into (3.25), the generalized Poisson duality is:

∑
nw∈Z

e
− 4π

g24

√
(vL)2+(ω+2πnw)2

=
∑
ne∈Z

vL

π
cos δne K1

(
LM(1, ne)

)
eiωne

=
∑
ne∈Z

vL

π
cos δne

√
π

2LM(1, ne)
e−LM(1,ne)eiωne . (3.30)

In the second line, we used the x → ∞ asymptotic expansion K1(x) ≈
√

π
2xe
−x. As

promised, the sum over the 3d instanton tower is Poisson dual to the sum over the spectrum

of the 4d dyon particle tower. The 4d spectrum of dyons can easily be obtained through

the formula:

M(1, ne) = − lim
L→∞

(
1

L
logFne

)
. (3.31)

This formula generalizes to dyons with higher magnetic charges as well. We note that

in (3.31), the l.h.s. is a 4d quantity while the r.h.s. is given as an infinite sum over 3d

contributions comprising Fne , see (3.26), given in terms of sum over paths.13

In the semi-classical domain discussed in section 3.4, we assumed cos δne ≈ 1 for

the low-lying dyon band, and used the non-relativistic approximation for the dyon mass

of eq. (3.2) and the expansion (3.17) for the twisted instanton action. Inserting these

expansions, on both sides, we obtain exactly (3.20) of section 3.4; the prefactors also

match exactly.

3.6 Digression: the meaning of the sum

One might ask what quantities in the N = 2 theory does the sum in the general Poisson

duality formula (3.30) relate? In fact, this question was already addressed in [15]. It turns

out that the r.h.s. of (3.30) is proportional to the large-L dyon tower contribution to the

Kähler potential, where the complex moduli v = (A5 + iA6)/
√

2 and σ − ib = σ − i4πω
g2
4

,

recall (2.11), are used to parameterize the hyper-Kähler manifold. More explicitly, the

13This is actually a special and particularly simple case of a more general Poisson duality formula,

formulated semi-classically by Gutzwiller and later generalized to an exact relation by Selberg [17]. The

winding number is associated with the first homotopy group and the lengths of closed geodesics are in one-to-

one correspondence with the homotopy classes in the compact space. The electric charges provide spectral

data about the Hamiltonian, which describes the U(1)e collective coordinate of the monopole particle.

Gutzwiller trace formula is a relation between the lengths of closed geodesics and the quantum spectrum

of a Hamiltonian, and applies also to spaces with non-abelian isometry groups. It may be interesting to

examine if there is anything of significance in this relation for the monopole physics and whether it has

connections to a non-abelian generalization of T-duality in string theory.
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contributions of the dyon tower to the Kähler potential are given by:14

Kdyon =
1

√
2π

3
2L

3
2 |v|

1
2

∑
nm=±1

∑
ne∈Z

e
−L|v|

√(
4π

g24

)2

+n2
e+iωne+iσnm[(

4π
g2
4

)2
+ n2

e

] 1
4

, (3.32)

while the Poisson resummed Kähler potential, expressed now as a sum over the contribu-

tions of winding solutions, and thus appropriate at small L, is:

Kwinding = Kdyon =
1

πL2|v|
∑

nm=±1

∑
nw∈Z

e
− 4πL

g24

√
|v|2+(ω+2πnw

L )
2
+iσnm

. (3.33)

Note that Kwinding = Kdyon is precisely equivalent our equation (3.30) in the g2
4 → 0 limit

(i.e., with cos δne ≈ 1).

The sum (3.32) over the dyon tower contributions to the Kähler potential was obtained

in [15] by solving the equations [18] obeyed by the hyper-Kähler metric on the moduli space

of the N = 2 theory on R3 × S1 iteratively for weak coupling. Thus, the expressions for

the Kähler potentials (3.32) and (3.33) are valid in the limit |v| � ΛN=2, but for arbitrary

values of |v|L . Note that in the regime where (3.32), (3.33) are valid, |v|ΛN=2 � 1,

there is no “wall-crossing” and that this regime is different from the large-L (but arbitrary

coupling) regime |v|L� 1 studied in [18]. We also note that in [15], instead of the Kähler

potential (3.33) for v and σ− ib, the Kähler metric component gvv∗ was actually given, but

it is a simple matter to check their equivalence.

We see that the Poisson duality explained in section 3.4 is actually more generally

valid. However, it is difficult to give a semiclassical test of this more general duality, since

the fermion zero modes of the different winding and dyon backgrounds are different (see

appendix A) and demonstrating the Poisson duality would entail showing that the sums

over the various four-fermion operators agree (ref. [15] only provided a semiclassical test

of the duality in the simplifying regime where the four-fermion operators of the two towers

are identical, just as we did near eq. (3.20)). However, the derivation starting from the

Kähler potential or Kähler metric [15], which assumes the validity of the “wall-crossing”

formula [18], shows that the duality is clearly valid — the four-fermion terms follow from

the metric and the relevant zero modes appearing in the four-fermion amplitude adjust

themselves as the moduli and quantum numbers of the relevant instantons vary.

To summarize, in sections 3.4, 3.5, and 3.6, we argued that in the semiclassical regime

along the path C of figure 1, the topological defects responsible for confinement at small and

large L are related by Poisson duality. At large L, the (nm, ne) = (1, 0) and (1, 1) members

of the dyon tower and their antiparticles survive continuation to the strong-coupling u ∼ 1

domain and become massless at the monopole and dyon points, respectively. At small L,

it is the lowest action winding monopole-instantons, (nm, nw) = (1, 0) and (−1,−1) and

their anti-instantons that play a crucial role in the dynamics of confinement. Next, we

discuss these confinement mechanisms in turn.

14Up to an overall constant, which is the same in (3.32) and (3.33).
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4 Mass deformed Seiberg-Witten theory on S1 × R3

In the next section 4.1, we recall the description of the monopole and dyon condensation in

the mass-perturbed theory at large L, L� Λ−1
N=2. The local dynamics at distances smaller

than L is the one of 4d SW-theory. If we are interested in physics at distances larger

than the S1 size L, then the dynamics needs to be described by the dimensional reduction

of the relevant SQED. We give a description based on various 3d infrared dualities.15 In

section 4.2, we elucidate the role of the monopole-instantons and magnetic bions in the less

well-known small-S1 confinement and chiral symmetry breaking dynamics.

4.1 The large-L regime

On R4, Seiberg and Witten (SW) showed that the theory around any one of the two

singular points in moduli space can be described as d = 4, N = 2 SQED. These points

are usually referred to as monopole (u = 1) and dyon (u = −1) points. Near these points,

the (1, 0) and (1, 1) dyons, respectively, are described by hypermultiplets charged under

the electromagnetism of the relevant dual photon multiplet, AD; we note again that there

is no globally valid effective field theory that describes both the monopole and dyon point

in moduli space. Precisely at the monopole/dyon points, these hypermultiplets become

massless.

When a mass perturbation reducing the N = 2 supersymmetry to N = 1 is added, SW

theory exhibits confinement due to the condensation of the monopoles or dyons. Explicitly,

using N = 1 superfields, the superpotential of SQED near either of the two singular points

has the form:

W =
√

2ADQQ̃+mu(AD) (4.1)

where Q and Q̃ are chiral monopole multiplets with charges, ±1, respectively under the

electromagnetism of the dual photon vector multiplet, AD. AD is the N = 1 scalar

component of AD and the first term in (4.1) is required by N = 2 supersymmetry of the

m = 0 theory. Near the monopole point,

AD ≈ c(u− 1) . (4.2)

The vacuum of the theory can be found by solving simultaneously the D- and F -term

equations. Vanishing of the dual U(1) D-term gives D = Q†Q − Q̃†Q̃ = 0. The critical

point of the superpotential is ∂W
∂u = ∂W

∂Q = ∂W

∂Q̃
= 0 and yields:

QQ̃ = − m

c
√

2
, c(u− 1)Q̃ = 0 , c(u− 1)Q = 0 . (4.3)

This means that monopoles, which are massless particles in the N = 2 theory, become

tachyonic once the mass perturbation m � ΛN=2 is added. The mass-perturbed SW

15Section 4.1 uses a 4d N = 1 (or, equivalently, 3d N = 2) formalism for the compactified theory. The

reasoning entering the description of the asymptotically long-distance physics is based on symmetries and

known 3d dualities. A good background material for this part is found in the lecture notes [20]. Our

description will be brief since it does not have significant overlap with the rest of our discussion.
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theory exhibits a magnetic Higgs mechanism, has a mass gap and two isolated vacua

(corresponding to either the monopole or dyon points). Confinement of electric charges

is due to the Abrikosov-Nielesen-Olesen strings of the dual abelian Higgs model (SQED)

describing the long-distance dynamics at the monopole or dyon point.16 Restoring explicit

factors of ΛN=2, the monopole (dyon) condensate is 〈Q〉 ∼
√
mΛN=2 and the mass gap

M2 (i.e., the masses of the dual photon vectormultiplet and the monopole hypermultiplet)

and the confining string tension Σ are given by:

M2 ∼ e2
DmΛN=2 , Σ ∼ mΛN=2 , (4.4)

where eD is the IR-free dual photon coupling:

e2
D ∼

16π2

log ΛN=2
m

, (4.5)

which, in the mass-perturbed theory, is “frozen” due to 〈Q〉 6= 0.

As already mentioned in the Introduction, while the effective SQED descriptions of the

monopole and dyon points are valid at LΛN=2 � 1, we do not know how continue them

to the small-L regime. First, recall that the monopole/dyon point SQEDs are effective

theories, valid at energies below ΛN=2, and upon compactification, once LΛN=2 becomes

of order unity, the effective theory description breaks down since the IR free dual photon

coupling (4.5) becomes strong at the scale 1/L. Second, as will become clear from the

small-L description of the dynamics in section 4.2, for 0 < LΛN=2 � 1, there is a globally

valid weak-coupling description of the two vacua of the mass-perturbed SW theory, while

such a global description is lacking at large L. Thus, as L is decreased, the two mutually

nonlocal descriptions have to merge into a single one and it is beyond our current knowledge

to describe this in field theory.

A more modest task is to consider a compactification of the SW theory on R3 × S1 of

a radius such that L� 1/ΛN=2. Then, the local dynamics is essentially four dimensional

and the SQED descriptions near the monopole or dyon points in moduli space considered

above are certainly valid. If we are interested in physics at distances larger than the S1

size L, we can describe the dynamics by the dimensional reduction of the relevant SQED.

For this purpose, SW theory near the monopole/dyon points reduces to N = 4 SQED in

3d — the dimensional reduction of the 4d dual photon SQED with superpotential (4.1);

for now, we ignore the mass perturbation. The 3d gauge coupling at the UV cutoff of the

3d theory is e2
3 = e2

D(L)/L, where e2
D is the 4d dual photon coupling.

A convenient way to study the N = 4 3d SQED is to start with N = 2 3d SQED.

By adding a gauge-singlet chiral multiplet Ψ with a superpotential W =
√

2ΨQQ̃ (and a

normalization of the kinetic term appropriate to an N = 4 multiplet), one obtains N = 4

SQED in 3d. As we will see shortly, this way of realizing the N = 4 SQED in 3d is useful,

because it will allow us to explore the IR dynamics through a chain of known 3d dualities;

see [20] for a review. This is also necessary, since the dimensional reduction of the 4d IR

free SQED with massless charged fields is not IR free and exhibits nontrivial dynamics.

16See [19] for detailed calculations for an SU(N) gauge group.
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Let us start with the N = 2 3d SQED as there is a duality relating it to a global (non-

gauge) theory. The vacuum of the N = 2 3d SQED theory is one complex dimensional

and is parameterized, asymptotically, by three chiral superfields {V+, V−,M}; the first two

V+ ∼ eΦD = eφ
D+iσD , V− ∼ e−ΦD labeling the Coulomb branch (which splits in two17),

and a meson superfield M = QQ̃ denoting the Higgs branch. Ref. [21] argues that the

three branches meet at the origin of the moduli space and they are in fact related by a

triality exchange symmetry V+ → V− → M → V+. Ref. [21] also provides evidence that

N = 2 SQED in 3d is dual to a Wess-Zumino (WZ) model with superpotential:

W = V+V−M (4.6)

in the infrared,18 where V+, V−, and M are unconstrained chiral superfields.

Now, we can study N = 4 3d SQED by adding the image of the superpotential W =√
2ΨQQ̃ in the V+V−M WZ model. Since QQ̃ is the meson M , W =

√
2ΨQQ̃ ≡ ΨM , and

thus, the superpotential of the V+V−M theory is deformed to:

W = V+V−M + ΨM . (4.7)

The last term gives mass to M and Ψ and removes them from the effective theory. This

leaves us with V+ and V− with no superpotential. The IR-dual description of 3d N = 4

SQED is thus a free field theory. V+ and V− parametrize a four-real dimensional man-

ifold; this is a local patch of a hyper-Kähler manifold with quaternionic dimension one

(presumably, the Atiyah-Hitchin manifold [2, 23]).

Finally, let us study the effect of the mass deformation in SW theory (adding this

perturbation in the long-distance 3d theory assumes that the mass gap (4.4) obeys M � e2
3,

since the IR-dual (4.7) is only valid at scales well below e2
3; recall also that e2

3 � 1/L).

Based on our understanding of SW theory on R4, we expect that the mass-perturbed theory

should have a mass gap. Indeed, the mass perturbation of superpotential (4.7) is:

W = V+V−M + ΨM + εΨ , (4.8)

with ε ∼
√
mΛN=2, whose critical points lead to a unique vacuum at M = −ε, V∓ = 0,

Ψ = 0. It is easy to see that all excitations acquire mass and the theory is gapped, just as

its 4d counterpart.

These consistency checks are the most we can achieve using the 3d language, since

we are considering distances � L and the 4d language of massless monopoles becoming

tachyonic and condensing is not the appropriate one here.

17Here, φD is the component of the 4d dual photon gauge field along the compact direction and σD is

the 3d scalar “dual photon” of the dimensionally reduced 4d dual photon of SW theory (we do not see a

way to avoid this potentially confusing terminology).
18With canonical 3d normalization of the fields, the dimensionful coefficient in (4.6) should be ∼ e3

(although this is irrelevant for the long-distance dynamics of the WZ model, which is described by a 3d

strongly-coupled “Wilson-Fisher” SCFT); the same factor makes up the dimensions in (4.7) as well.
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4.2 The small-L regime

We now consider the limit of small circle size. In the small S1 × R3 domain of the N = 2

theory, there are two types of 3d monopole instantons as well as their Kaluza-Klein towers,

which were described in section 3.3. For definiteness, anticipating the applications to the

mass-deformed theory, we will consider a point in moduli space where a5 = 0, a4 6= 0.

Further, assuming a4 ∼ π/L � ΛN=2, weak-coupling semiclassical methods are clearly

applicable. In the region of moduli space chosen, the angle α of eq. (3.11) equals ±π/2 and

the monopole instanton solutions are (anti-)self-dual, as explained after eq. (3.12). The

action of the solutions of magnetic charge ±1 and arbitrary winding is given in (3.13).

The self-dual solutions are the BPS monopole-instanton (nm, nw) = (1, 0) of action

b = 4π
g2
4
La4 = 4π

g2
4
ω (see (3.13) with nw = 0, (2.11), and note that we take 0 ≤ ω ≤ 2π)).

Below, we will denote the ’t Hooft operator generated by the BPS monopole-instantons

by M1. The other lowest action self-dual solution is the KK monopole and (nm, nw) =

(−1,−1), which has action action 8π2

g2
4
− b = 4π

g2
4

(2π − ω) (see (3.13) with nw = −1). The

’t Hooft vertex associated with this instanton will be denoted byM2. Since we are at small

L here, it will be sufficient to consider only the contributions of these two lowest action

solutions. These solutions have four fermion zero modes each (and, since they are self-dual,

their zero modes are chiral in 4d sense, see also appendix A). To summarize, the magnetic

and topological charges (Qm, QT ) associated with these instantons (and the corresponding

anti-instantons) are:

M1 :

(
+ 1,+

1

2

)
M2 :

(
− 1,+

1

2

)
M1 :

(
− 1,−1

2

)
M2 :

(
− 1,−1

2

)
. (4.9)

Note that the topological charge equals 1
2 only at the center-symmetric point ω = π.

These monopole-instantons generate four-fermi interactions in the effective long-

distance lagrangian, of the form:

L4F =M1 +M2 +M1 +M2 , (4.10)

where the amplitudes associated with these instanton events (and their anti-instantons)

are given by:

M1 = e−b+iσλλψψ M2 = ηe+b−iσλλψψ , η ≡ e2πiτ = e
− 8π2

g24
+iθ

M1 = e−b−iσλ̄λ̄ψ̄ψ̄ M2 = η̄e+b+iσλ̄λ̄ψ̄ψ̄ . (4.11)

The combination M1M2 with eight zero mode insertions is the 4d-instanton amplitude

and has the form η(λλψψ)2 given in (2.3). This amplitude, as noted in section 2.1, reduces

the chiral U(1)R symmetry down to Z8, which is a true anomaly-free symmetry of the

quantum theory. Clearly, the chiral four-fermion operators in (4.11) flip sign under Z8.

This implies that for the operators in (4.11) to remain invariant, one needs a discrete shift

in the σ field, of the form:

Z8 : σ → σ + π . (4.12)

– 24 –



 
J
H
E
P
0
7
(
2
0
1
1
)
0
8
2

The intertwining of the dual photon shift symmetry with continuous global symmetries,

similar to our case of a discrete chiral symmetry (4.12), has been noted in [22]. Since (4.12)

is not a continuous symmetry for σ, but just a Z2 shift symmetry, one may expect that

an operator of the form cos(qσ), q = 0(mod 2), may be induced.19 However, a bosonic

potential is forbidden by the large amount of supersymmetry of the N = 2 theory, hence

it is not generated. In other words, since the operators (4.11) in effective Lagrangian have

more than two zero modes, the N = 2 theory on S1 × R3 cannot induce a superpotential

and the moduli space is not lifted (in the N = 2 theory, the operators with four-fermion

zero modes contribute to the hyper-Kähler metric). The IR physics is described as a three-

dimensional non-linear sigma model with target space M, a hyper-Kähler manifold with

quaternionic dimension one [2, 23]. The IR field theory is described in terms of gapless

bosonic degrees of freedom, φ, φ†, b± iσ, see (2.11), and their fermionic superpartners.

4.2.1 N = 1 perturbation at small S1 × R3

Adding a mass term for the chiral multiplet reduces the N = 2 supersymmetry to N = 1

and has the effect of lifting the ψ zero modes from the instanton amplitudes (4.11). The

mass perturbation (the kinetic term has an N = 2 normalization) is:∫
d2θm trΦ2 +

∫
d2θ̄ m trΦ

2
= m tr(ψ̄ψ̄ + ψψ) + . . . (4.13)

Soaking up the ψ zero modes from (4.11) with the mass perturbation induces the following

3d instanton amplitudes:

M1 = me−b+iσλλ , M2 = mηe+b−iσλλ ,

M1 = me−b−iσλ̄λ̄ , M2 = mηe+b+iσλ̄λ̄ , (4.14)

each of which carries only two zero modes and, as in (4.11), we use η ≡ e2πiτ = e
− 8π2

g24
+iθ

.

Four of the zero modes of the 4d instanton are also lifted, as is transparent from the

combination M1M2 ∼ η(λλ)2. Consequently, the axial symmetry is reduced to Z4. As in

the N = 2 theory, the invariance of the amplitudes (4.14) demands that σ → σ + π when

we apply a discrete chiral rotation to fermions. Since (4.14) carry just two zero modes,

they now also generate a superpotential, given by:

WR3×S1 ∼ m(e−B + ηeB) , (4.15)

19The BPS and KK instanton amplitudes, and the 4d instanton ’t Hooft vertices actually coincide in

N = 2 SYM and the non-supersymmetric QCD(adj) with two massless Weyl adjoint fermion. Consequently,

these two theories possess identical discrete and continuous chiral symmetries. On the other hand, the

magnetic bion operator is generated only in SYM with N = 1 and in N = 0 QCD(adj). We expect that

the microscopic reason behind the non-formation of the magnetic bions in N = 2 SYM is the existence of

exactly massless adjoint Higgs scalars. It is desirable to show this explicitly, and we hope to address this

question in future work. When the adjoint Higgs scalar is lifted by a soft mass term, the theory reduces to

N = 1 SYM, and a magnetic bion induced potential ∼ cos 2σ is both permitted and generated.
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where B is an N = 1 chiral superfield whose lowest component is b− iσ. Clearly, there are

two isolated vacua located located at:

〈eB〉 = 〈eb−iσ〉 = ±η−
1
2 = ±e

4π2

g24
−i θ

2
, or 〈a4〉 =

π

L
, 〈σ〉 =

(
θ

2
,
θ

2
+ π

)
. (4.16)

Note that (4.16) implies that at L � Λ−1
N=2 the semiclassical reasoning is justified, as the

vacuum is at the center-symmetric point a4 = π
L . These results are well known [2, 21, 24].

Here, we would like to instead discuss the physics of the superpotential in some detail.

Let us first study the bosonic potential,20 omitting the inessential overall constant and

taking θ = 0:

V (b, σ) ∼
∣∣∣∣∂W∂B

∣∣∣∣2 = e−2b + η2e2b − η(e−2iσ + e2iσ) , (4.17)

which, when expanded around center-symmetric vacuum 〈b〉 = 4π2

g2
4

, takes the form:

V (〈b〉+ b, σ) ∼ η(e−2b + e2b − e−2iσ − e2iσ) ∼ η cosh 2b− η cos 2σ . (4.18)

Evidently, in the effective lagrangian, the mass gap for gauge fluctuations (recall that σ is

the dual photon) is generated by the operator e±2iσ, and for the spin-zero scalar fluctuation,

it is generated by e±2b.

As discussed in ref. [3, 4], in gauge theories with massless adjoint fermions, the 3d

instanton and twisted instanton do not generate a mass gap for the gauge fluctuations due

to their fermionic zero mode structure, dictated by the index theorem [6, 7]. Rather, the

bosonic potential is induced by monopole-antimonopole pairs (multi-instanton amplitudes),

which may be viewed as composites, with opposite chirality zero modes soaked-up. The

bosonic potential is sourced by the amplitudes [M1M1], [M2M2], [M1M2], and [M2M1],

which are composites of (4.14). The magnetic and topological charges and the amplitudes

associated with these instanton-antiinstanton events are:

composite (Qm, QT ) amplitude (Qdil, Qm, QT )

[M1M1] (0, 0) e−2b (−2, 0, 0)

[M2M2] (0, 0) e+2b (+2, 0, 0)

[M1M2] (+2, 0) e+2iσ ( 0,+2, 0)

[M2M1] (−2, 0) e−2iσ ( 0,−2, 0) , (4.19)

where the quantum numbers of the individual instantons are given in (4.14). The last

column and Qdil, a pseudo-quantum number, will be explained in section 4.2.2.

Eq. (4.19) listing the origin of the various terms in the scalar potential (4.17) is quite

interesting. Note that all [MiMj ] events have vanishing topological charge, i.e., they are

indistinguishable from the perturbative vacuum in that sense. However, the [M1M2] (and

20The kinetic terms of the fields σ and b are 1
2

g24
(4π)2L

[(∂ib)
2 +(∂iσ)2], corresponding to a Kähler potential

K =
g24

2(4π)2L
B†B.
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its anti-molecule) events carry two units of magnetic charge. Thus, they can be distin-

guished from the vacuum and have been called “magnetic bions” in [3, 4]. They provide

an example of stable semiclassically calculable bound states of a monopole-instanton and a

twisted monopole anti-instanton. The contribution of the magnetic bion amplitude to the

effective Lagrangian, adapting the results of [4, 26] to the mass-deformed N = 2 theory, is:

[M1M2] ∼ Ae−2S0e2iσ, where

A ∼
∫ ∞

0
dre
−Veff,M1M2

(r)
=

∫ ∞
0
dre
−
(

2× 4πL

g24r
+(4nf−2) log r

)
, nf = 1 . (4.20)

The physics behind the “effective potential” Veff is that the “magnetic” (due to exchange

of σ) and “electric” (due to exchange of b-scalar) repulsive interactions between the con-

stituents of the bion21 are balanced by fermion zero-mode exchange induced attraction (the

choice nf = 1 reflects the presence of a single massless Weyl adjoint flavor in the mass-

perturbed N = 2 theory). This results in stable topological molecules of size `bion ∼ L/g2
4

(see [26] for details) and a well behaved integral dominated around r ∼ `bion. The integral

in the second line of (4.20) is over the radial separation |r| = r between M1 and M2

monopole-instantons in the Euclidean setting, and is an example what is called a quasi-

zero mode (the center of mass position of the [M1M2] molecule is an exact zero mode and

the Gaussian fluctuations around these molecules are small). A correct treatment of the

instanton-anti-instanton requires care due to these (quasi)-zero modes, and doing so yields

a result in exact agreement with supersymmetry. In section 4.2.2, we will identify a new

type of topological molecule, which is more subtle to identify, but plays a useful role in

center-symmetry realization.

It is important to note that the existence of these non (anti)self-dual topological ex-

citations transcends supersymmetry: while studying only the superpotential (4.15) and

inferring the resulting potential (4.17) correctly incorporates their effect by the familiar

“power of supersymmetry”, it hides the physics of balancing repulsive and attractive forces,

which also holds in nonsupersymmetric theories with multiple adjoint fermions.

Thus, we learn that in N = 2 SYM theory softly broken down to N = 1, at small-L,

the mass for the dual photon is induced by composite topological excitations, the “mag-

netic bions” [M1M2].22 Clearly, this is an exotic generalization of Polyakov’s confinement

mechanism to a locally four dimensional gauge theory. In a straightforward generalization

of Polyakov’s mechanism, the mass gap would occur due to operators e−S0e±iσ, typical for

monopole-instantons without any fermion zero modes. This operator is forbidden in our

theory due to the discrete chiral symmetry (4.12), but the operator e2iσ is allowed and

generated by magnetic bions.

It is well known that the generation of mass gap for the dual photon σ also implies

confinement of electric charge [5]. The mass gap for gauge fluctuations (the mass, M , of σ

21The fact that the b-field is not gapped (classically and to all orders in perturbation theory) in the

supersymmetric case accounts the factor of two in front of the 1/r repulsion in Veff compared to refs. [4, 26].
22We note that the magnetic bion size in N = 2 broken down to N = 1 or N = 0 also depends on the

mass of the adjoint Higgs scalar if the mass m . L/g2
4 . See section 6 for further discussion.
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and b) and the tension of the confining electric flux tube Σ between two static sources can

be semiclassically calculated:

M2 ∼ m2

g8
4

e
− 8π2

g24 ∼ m2 × (ΛN=2L)4 ,

Σ ∼ g2
4

L
M ∼ mΛN=2 × (ΛN=2L) , (4.21)

where the coupling is taken at the scale L and subleading logarithmic dependence on

ΛN=2L is neglected in the last equality on each line. The mass gap M , including the g4-

dependent prefactor can be inferred from the recent calculation in multi-flavor QCD(adj)

of [26], while the result for the string tension follows from [5].23

Equations (4.21) for the mass gap and string tensions can be compared to the corre-

sponding expressions for R4 given in (4.4). Clearly the mass gap M2 in (4.21) and on R4

have different power dependence on m, while the string tensions Σ at both large and small

L scale as mΛN=2. The small-L values of Σ and M both increase with L at fixed ΛN=2 and

presumably saturate to the R4 values near ΛN=2L ∼ 1, the region where we lack control

over the theory (the string tension Σ can be defined at any L from the area law obeyed by

a Wilson loop of appropriate size ∈ R3 and M from the exponential fall-off of the two-point

function of the gauge invariant magnetic field strength Bk ∼ εkijtr
[
Fij(Φ + 1

LΩ)
]
, where

Ω is the Wilson line around S1).

As opposed to magnetic bions, the other composites from (4.19), the [MiMi] ampli-

tudes, responsible for generating a potential for b (or a4), do not even carry a magnetic

charge! Yet, both types of topological defects play crucial role in the dynamics, including

center-symmetry realization and confinement, as we now discuss.

4.2.2 Center-symmetry realization and center-stabilizing bions

The potential for the b-field, ∼ e−2b+η2e2b, from eq. (4.17) generates a non-perturbatively

induced repulsive interaction between the eigenvalues of the Wilson line around S1. The

minimum (4.16) is at b = 4π2

g2
4

, or, in terms of the Wilson line, it is:

Ω = eiA4L =

(
ei
π
2

e−i
π
2

)
, trΩ = 0 , (4.22)

up to gauge rotations. This is the unique center-symmetric vacuum of the theory on

R3 × S1. The origin of the center-stabilizing operator in the Lagrangian are the [M1M1]

and [M2M2] induced amplitudes in (4.19).24

The amplitude associated with [M1M1] generates the run-away potential e−2b for the

eigenvalues of the Wilson line and forces them to be as far apart as possible. This part

23The same g2
4 scaling of the mass gap as in (4.21) is obtained if one follows the normalizations in the

N = 1 supersymmetric calculation of [25].
24The remarks here and in section 4.2.3 below hold for the mass-deformed N = 2 theory as well as for

the pure N = 1 super-Yang-Mills theory, with the appropriate scale matching Λ3
N=1 = mΛ2

N=2 applied; for

this reason, in eqs. (4.28), (4.30), and (4.31) below we omit the factors of m (along with other dimensionful

factors) in the superpotential.
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is similar to the lifting of Coulomb branch in N = 2 SYM on R3, where the quantum

theory does not have a ground state (or it is pushed to b = ∞) [22]. However, our

theory has two interrelated differences with respect to N = 2 SYM on R3. The classical

moduli is compact and the theory has an extra set of topological molecules, [M2M2].

Were it not for [M2M2], the two eigenvalues would end up at π, corresponding to a

center broken Wilson line, Ω = −1. However, quite symmetrically, [M2M2] generates

a repulsion between the two eigenvalues of the Wilson line which prevents them from

coinciding. Consequently, the combination of the two center-stabilizing bions is to yield

the center-symmetric minimum (4.22).

Here, we give a brief description of how the [M1M1] and [M2M2] contributions

arise. A detailed discussion of these type of topological molecules in both supersymmetric

and non-supersymmetric gauge theories will appear in [29] and the implication for the

thermal deconfinement phase transition will appear in [30]. The contribution of the [MiMi]

amplitude to the effective theory is, naively,

[M1M1] ∼ Ae−2S0e±2b , where

A ∼
∫ ∞

0
dre
−Veff,M1M1

(r)
=

∫ ∞
0
dre
−
(
−2× 4πL

g24r
+(4nf−2) log r

)
, nf = 1 , (4.23)

where now the interaction between constituents is all attractive: “magnetic” (due to ex-

change of σ-scalar) and “electric” (due to exchange of b-scalar) attractions and the fermion

induced attraction (again, we put nf = 1 for the case of interest). The integral is dom-

inated by the small-r domain, where not only (4.23) is incorrect, it is also hard to make

sense of constituents as the interaction becomes large. This is in sharp contrast with the

magnetic bion [4, 26].

In contrast with the magnetic bions, these instanton-anti-instanton “molecules” are

difficult to exhibit semiclassically, as their constituents have only attractive interactions,

and naively the natural tendency is for these objects to annihilate. However, the amplitude

associated with [MiMi] is not proportional to identity operator, but rather to e±2b. This

means that, although in the sense of magnetic and topological charge these defects are indis-

tinguishable from the perturbative vacuum, since the product of the amplitudes [MiMi]

cannot be contracted to the identity, it should perhaps be seen as carrying a pseudo-

quantum number to distinguish it from perturbative vacuum. In fact, the coupling of b to

monopole-instantons can be thought of as the coupling of a massless “dilaton” [31] (dilata-

tion is a classical symmetry, only globally broken by compactification and locally by the

expectation value of b) or as “electric” charge, if one thinks of the compact x4 as Euclidean

time. Since the adjoint Higgs field is asymptotically of the form A4 = a4T
3
(
1− 1

a4r
+ . . .

)
,

we can define a “dilaton” charge (or flux) associated with it by using Gauss’ law:

Qdil =

∫
S2
∞

~∇A4 · d~S . (4.24)

Note that ~∇A4 is the dimensional reduction of the Euclidean electric field ~E and integral

may be interpreted, in some loose sense, as electric flux.25

25However, this is rather confusing as it forces us to think of monopole-instantons on R3 × S1 as having
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Therefore, a more pragmatic way to think of the quantum numbers for topological

defects on R3 × S1 is to incorporate Qdil and generalize the doublet of quantum numbers

to a triplet:

(Qm, QT ) −→ (Qdil, Qm, QT ) (4.25)

In this language, the charges of M1 are (−1,+1, 1
2) and the charges of [M1M1] are

(−2, 0, 0), as also shown in the last column in (4.19). In this sense, [M1M1] molecule

is now distinguishable from perturbative vacuum. Monopoles and anti-monopoles carry

same “dilation” or “electric” charges, and opposite magnetic charges. Also note that the

same dilaton charge objects attract, as opposed to the fact that same magnetic charge

objects repel.

Finally, we note that supersymmetry demands that the operators induced by instanton-

anti-instanton molecules should be there and their coefficients are identical to the one of

magnetic bion up to a sign, see (4.18). In fact, using analytic continuation in the coupling

constant [33, 34] or in the path integration contour over the quasi-zero mode [35], such sad-

dle points of the Euclidean path integral can be defined. In particular, in supersymmetric

quantum mechanics [35] and even N = 1 supersymmetric QCD [36] these complex sad-

dle point contributions to the Euclidean path integral seem to be unambiguously defined.

Since they are required by supersymmetry, we suspect that this is also the case in the

mass-perturbed N = 2 theory (or in pure N = 1) at small L, an issue which is discussed

in more detail in [29, 30].

4.2.3 Chiral symmetry and the topological disorder operator

The potential for the dual photon field σ in (4.17) is − cos 2σ, with two isolated min-

ima (4.16) located (for θ = 0) at σ = 0 and π. The two minima are related to each other

by the exact Z4 chiral symmetry of the mass-deformed N = 2 theory. The potential for

the dual photon is generated by magnetic bion “molecules”, [M1M2], of magnetic charge

±2, whose dynamical stability is semiclassically calculable, as already explained.

The order parameter for chiral symmetry in the small-S1 domain of mass deformed

Seiberg-Witten theory (as well as in the pure N = 1 theory) is:

〈eiσ〉 = ±1 . (4.26)

Contrary to assertions in literature stating that the chiral symmetry is broken by a local

fermion bi-linear 〈trλλ〉 [24], chiral symmetry is in fact broken by the vacuum expectation

value of the topological disorder operator (4.26). If one performs a small-L monopole-

instanton calculation of the fermion bilinear expectation value in the full SU(2) gauge

theory, 〈trλλ〉, similar to [24] but incorporating the long-range interactions in the monopole-

antimonopole (or more precisely, bion-antibion) plasma, one finds that it is related to the

expectation value of the disorder operator (4.26):

〈trλλ〉 ∼ 〈eiσ〉η
1
2 . (4.27)

both real electric and magnetic charges and leads to possible confusion with magnetic dyon particles on R4

(which carry genuine electric and magnetic charges). In the literature, the latter terminology is (appropri-

ately) used in thermal Yang-Mills theory, see ref. [32], but here we refer to Qdil as dilaton charge to prevent

confusion, and refer to M1 as monopole-instanton.
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This shows that the source of chiral symmetry breaking is the magnetic-bion induced

potential (4.17) for the dual photon. A further argument that (4.27) is correct is that it

correctly reproduces the values for the gaugino condensate in the two vacua (4.16), while

due to the omission of the 〈eiσ〉 factor on the r.h.s., eq. (4.7) in [24] only gives a single

value.26

As usual, the spontaneous breaking of chiral symmetry generates fermion mass. Con-

sider the fermion bilinear terms arising from the superpotential:

∂2W

∂B2
λλ+ c.c. ∼ (e−b+iσ + ηe+b−iσ)λλ+ c.c. , (4.28)

and evaluate them at the center-symmetric vacuum (4.16), to find that the fermion mass

breaking the Z4 chiral symmetry:

η
1
2 (〈eiσ〉+ 〈e−iσ〉)λλ = ±2η

1
2 λλ , (4.29)

is also due to (4.26).

Finally, we can consider taking the small and infinite L limits of the superpoten-

tial (4.15). In the R3 limit, keeping g2
3 = g2

4L fixed, we find that η → 0 and the two

vacua (4.16) run-away to infinity. The superpotential reduces to the well-known run-away

superpotential:

WR3 ∼ e−B . (4.30)

In the R4 limit, we should integrate out the chiral superfield e−B, as it does not represent a

valid infrared degree of freedom — this can be seen, e.g., from the fact that the σ, b kinetic

terms, see footnote 20, vanish in the infinite-L limit; see also [21]. In doing so, we obtain

the four dimensional gaugino condensate superpotential:

WR4 ∼ ±η1/2 , (4.31)

corresponding to the two isolated vacua of the 4d mass perturbed N = 2 or pure N = 1

theory.

5 Phase diagram and abelian (non-’t Hooftian) large-N limits

On R4, confinement in an SU(2) gauge theory with N = 2 supersymmetry softly broken

down to N = 1 (m� ΛN=2) is a version of abelian confinement. By this we mean that the

long-distance effective Lagrangian is an abelian U(1) gauge theory, despite the fact that

the microscopic theory is a non-abelian SU(2). The confinement of the electric charges is

due to magnetic monopole or dyon condensation [1].

On the other hand, in the limitm� ΛN=2, where the adjoint Higgs multiplet decouples

and the theory reduces to pure N = 1 SYM theory, there exists no known description of

the gauge dynamics on R4 where abelianization takes place. It is usually believed that

26The breaking of chiral discrete or continuous symmetries by the disorder operator expectation value is

also a generic feature of nonsupersymmetric gauge theories with fermions on R3 × S1 [27, 28].
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Figure 5. The N = 2 theory broken down to N = 1 exhibits confinement. At small m and/or

small L (in units of Λ) the dynamics abelianizes at large distances and the theory exhibits abelian

confinement. The phase diagram in the m–L plane for the small-N theory is shown on the left

figure, where the shaded areas indicate the calculable regimes at small and large L. The third (u)

direction — which allows to smoothly connect the topological excitations responsible for confinement

at large and small L via Poisson duality — is also indicated. At large-N , shown on the right figure,

the calculable semi-classical confinement regime shrinks to a narrow sliver both in m and L, in a

correlated manner, as explained in the text.

there is no phase transition as the mass term is dialed from small to large and the theory

moves from a regime of abelian confinement to non-abelian confinement.

In the pure N = 1 SYM theory, as well as in a large-class of non-supersymmetric gauge

theories which remain center-symmetric upon compactification down to small radius, it has

been recently understood that the LΛN=1 � 1 regime also exhibits abelian confinement.

The confinement of the electric charges is now due to the magnetic bion mechanism [3, 4].

Analogous to the mass-deformed theory, it is usually believed that there is no phase tran-

sition associated with center symmetry as the radius is dialed from small to large. At

large-L, it is expected that non-abelian confinement should take place.

At what values of m and L does the metamorphosis from the abelian confinement

(which we analytically understand) to the non-abelian confinement (which is not yet un-

derstood) take place? Naively, by dimensional analysis, one may argue that this should

happen around m ∼ ΛN=2 for the theory on R4 and at L ∼ Λ−1
N=1 for the pure N = 1

SYM. Although this is true for SU(N) gauge theory with N = 2, or a few, as shown in

figure 5.a), it turns out to be incorrect especially at larger values of N .

This subtlety is associated with the regimes of gauge theory in which the long distance

dynamics reduces to the one of the abelian subgroup U(1)N−1 and with the existence of light

W -bosons whose masses scale as O(1/N). This has been previously discussed by Douglas

and Shenker in the mass deformed SU(N) N = 2 supersymmetric Yang-Mills theory for m-

scaling [19] and by Yaffe and one of us (M.Ü.) in the context of center symmetric vector-like

gauge theories for L-scaling [37].

In this work, we argue that these two large-N limits are indeed correlated in the phase

diagram of the theory in L–m plane.
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At large S1, in the N →∞ limit of the mass deformed theory, the Abelian long distance

regime is preserved only if the mass deformation27 m is sent to zero as m ∼ ΛN=2/N
4

(while the naive expectation would have been that m� ΛN=2 suffices). This follows from

demanding the string tensions (see (4.4), which remains valid at largeN for the lowest string

tensions) to be smaller than the lightest W boson mass squared, mW ∼ ΛN=2/N
2 [19], a

requirement which is crucial for the validity of the abelianized effective theory. Equivalently,

the abelianized low energy effective theory is valid provided there exists a hierarchy of scales

between the heaviest U(1)-photons and lightest W-bosons, which translates into:

mγ

mW
∼
√

m

ΛN=2
N2 . 1 (L =∞) . (5.1)

At small S1, on the other hand, it is the radius L that has to be taken to zero in order

for the abelianized description to be valid as N → ∞. To see this, first take the large-m

limit with the appropriate scale matching Λ3
N=1 = mΛ2

N=2. Then, we find that the abelian

long distance regime is preserved only if the compactification radius L is sent to zero as

L ∼ 1/(ΛN=1N). This follows from demanding that the mass of the lightest W boson,

mW ∼ 1/(LN) in the center-symmetric vacuum, be parametrically larger than the heaviest

dual photon mass mγ ; we find:

mγ

mW
∼ (LΛN=1N)3 . 1 (m =∞) . (5.2)

The conditions used in ref. [19] and ref. [37] for the validity of an abelianized low energy

description are in fact equivalent. Thus, connecting these two large-N limits, we conjecture

that an abelian long distance regime only survives in a corner which becomes arbitrarily

narrow as N →∞, as shown in figure 5.b). In particular, at any fixed non-zero L ∼ O(N0)

and m ∼ O(N0), if one takes N → ∞ first, there is no regime of the supersymmetric

gauge theory in which the long distance dynamics remains abelian. At L ∼ O(N0) and

N → ∞, the theory exhibit volume independence, and behaves as if it is decompactified

even when LΛN=1 � 1 , see for example [37]. At any m/ΛN=2 ∼ O(N0), as N → ∞,

we expect the adjoint scalar to completely decouple even when m/ΛN=2 � 1, and the

N = 1 dynamics to be independent of m. This mass independence is the equivalent of the

large-N volume independence in the non-abelian confinement domain. In other words, in

the large-N limit, we conjecture that all points in the non-abelian confinement domain in

figure 5.b) are equivalent up to subleading corrections in N .

6 Discussion and open problems

By using field theory techniques and with rather minimal help from supersymmetry, we

were able to answer the physical questions that we posed in the Introduction. For the

N = 1 mass deformation of the N = 2 theory, we have shown that:

i) The theory confines and exhibits a mass gap through the magnetic bion mechanism.

This mechanism also applies to a large class of non-supersymmetric theories, notably

to QCD with multiple massless adjoint Weyl fermions.

27Note that at large-N the mass deformation is W = NmtrΦ2 [19].
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ii) The discrete chiral symmetry is broken due to the condensation of a disorder op-

erator, and the SU(2) theory has two isolated vacua. In the effective long distance

theory, this is the source of dynamical mass generation for fermions. The magnetic

bions responsible for chiral symmetry breaking are the M1M2 (3d BPS instanton-

twisted-antiinstanton) and M2M1 (3d BPS anti-instanton-twisted instanton) topo-

logical molecules, generating the operators e±i2σ. These objects carry magnetic

charge Qm = ±2 and their stability can be semiclasically understood.

iii) The center symmetry is stabilized through non-perturbative M1M1 (3d BPS

instanton-antiinstanton) and M2M2 (twisted instanton-antiinstanton) topological

molecules generating the operators e±2b. These objects differ from the perturbative

vacuum because they carry Qdil = ±2 units of “dilatonic” charge.

iv) The Seiberg-Witten [1] and Polyakov [5] solutions on R4 and R3 have been known for

almost two and over three decades, respectively. Recent progress in understanding

confinement in gauge theories on R3 × S1, in particular the Polyakov-like magnetic

bion mechanism in QCD(adj) and N = 1 SYM [3, 4], permits us to demonstrate

that the two type of confinements are in fact continuously connected. Namely, the

topological excitations responsible for confinement at small- and large-L: the wind-

ing monopole-instanton constituents of the magnetic bions and the dyon particles,

respectively, are related by Poisson resummation.

There is a number of interesting questions that arise related to our construction:

1. Non-formation of magnetic bions in N = 2 theory. In the pure N = 2 the-

ory, the global symmetries (except supersymmetry) are identical to those of non-

supersymmetric QCD with nf = 2 flavors of Weyl adjoint fermions. The latter

theory, as well as the supersymmetric N = 1 theory, permit the magnetic bion in-

duced operator ∼ cos 2σ, but the theory with N = 2 supersymmetry does not. The

fact that supersymmetry does not permit this operator is clear. Since leading topo-

logical defects have four zero modes, see (4.11), they do not induce a superpotential

hence a bosonic potential is also not induced. However, while true as a symmetry

argument, we think that it is interesting to understand, by microscopic means, the

non-formation of magnetic bions in N = 2 SYM. We believe the non-formation of

magnetic bions in N = 2 theory is due to the existence of exactly massless adjoint

Higgs scalars counter-acting the multi-fermion induced attraction and that it would

be of interest to show this explicitly.

2. The size of magnetic bions in softly broken N = 2 theory at small m. In the pure

N = 1 theory, which is the m = ∞ limit of deformed SW theory with appropriate

coupling matching, the typical magnetic bion size is — in a regime where we have

semi-classical control over the dynamics — `bion(m = ∞) ∼ L/g2
4. In the N = 2

theory with mass deformation, we expect the bion size to be dependent on m. If the

correlation length for the scalar is smaller than the bion size, i.e., m−1 < `bion(∞), the

scalar decouples quickly and the bion size should remain as it is in the N = 1 theory.
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However, if m−1 < `bion(∞), then we expect that the bion size should be proportional

to an inverse power of m and diverge in the m = 0 limit. This is necessary for the

non-formation of the bions in the pure N = 2 theory. A different behavior would

invalidate the magnetic bion description of confinement in softly broken N = 1.

Thus, it is desirable to study the adjoint mass dependence of the magnetic bion size.

3. Generalizations. It would be of interest to generalize our discussion to other gauge

groups and consider the inclusion of other matter representations, where, possibly,

new phenomena may be observed.

4. Topological molecules and the deconfinement transition. We have identified the topo-

logical molecules whose main role is to provide a center-symmetric vacuum. Similar

and related molecules are also present in non-supersymmetric gauge theories, includ-

ing pure Yang-Mills. These defects may play the pivotal role in the deconfinement

phase transition, and may lead us towards a microscopic theory of deconfinement.

Work in this direction is ongoing.

5. Relation to lattice studies of confinement. Let us finally comment on the non-

supersymmetric case. The bion confinement mechanism operative at small L in

the mass deformed N = 2 theory also applies to a large class of non-supersymmetric

theories, notably to QCD(adj) theories with multiple massless adjoint Weyl fermions.

This class of non-supersymmetric theories provides the first example where confine-

ment and chiral symmetry breaking can be studied in a controlled manner in a locally

4d theory.

It would be very interesting to know whether, in the non-supersymmetric multiple-

adjoint fermion “QCD-like” theories, a relation can be inferred between the con-

finement mechanism at small L (which is reliably described by the magnetic bion

mechanism) and large L (where it is not understood). In the large-L limit, lattice

studies of pure Yang-Mills theory have shown the relevance of topological defects

charged under the Abelian part (or the center) of the gauge group to the generation

of mass gap and confinement (for a recent review, see [38]). Needless to say, this

problem — addressing which would likely require both analytic and lattice input —

is left for future studies.
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A Chirality and fermion zero modes

In the presence of massless fermions, the instanton amplitudes on R4 as well as the 3d

instantons (either at large or small L) acquire fermion zero modes. The number of zero
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modes is dictated by various index theorems, APS on R4, Callias on R3, and Nye-Singer

on R3 × S1 interpolating between the two. In our discussion of Poisson duality, we have

asserted certain conditions about the fermion zero modes and preserved supersymmetries

in the background of topological defects. In particular, we will show that the duality

described in (3.20) is unharmed by the inclusion of the four-fermi operators on both sides.

The issues about chirality and zero modes may be succinctly described starting with the

supersymmetry transformation properties of a six dimensional theory, and then applying

dimensional reduction in x5,6 direction and compactification in x4 direction. The notation

is given in section 2.2.

A.1 4d-instanton

As a warm-up, let us start with a 4d instanton. The classical instanton configuration

is the solution of self-duality condition Fµν = 1
2εµνρσF

ρσ supplemented with vanishing

fermionic fields. Since supersymmetry transformation relates variation of bosonic fields

to fermions, the variation of bosonic fields are all zero, and the instanton background

preserves the supersymmetries for which variation of fermionic field vanishes, i.e., δΨ = 0.

The complement, which is not annihilated under supersymmetry transformation, gives the

zero mode solution to the Dirac equation under the background of the instanton (or relevant

topological excitation).

In the background of an instanton, setting the A5 and A6 scalars to zero, the super-

symmetry variation of the fermion is (ΓMN = [ΓM ,ΓN ]/2):

δΨ = (ΓMNFMN ) ε

=

(
ΓµνFµν + 2

∑
m=5,6

ΓµmDµAm + i
∑

m,n=5,6

Γmn[Am, An]

)
ε

=

(
1

2
ΓµνFµν +

1

2
Γµν
(

1

2
εµνρσF

ρσ

))
ε

=
1

2
Fµν

(
Γµν +

1

2
εµνρσΓρσ

)
ε

=

[
1

2
F12(Γ12 + Γ34) +

1

2
F13(Γ13 − Γ24) + . . .

]
ε , (A.1)

where we used the self-duality of the solution in the third line above. The final equality

in (A.1) implies, for non-vanishing Fµν , that the supersymmetry preserved for a self-dual

instanton is the one with parameter defined by the first line below, while a similar argument

for the anti-self-dual instanton yields the supersymmetry defined by the second line:

Γ1234ε = +ε (4d-instanton background)

Γ1234ε = −ε (4d-anti-instanton background) , (A.2)

with Γ1234 = Γ1Γ2Γ3Γ4. This defines a chirality condition for the zero mode structure of a

4d instanton. We use a basis where the instanton zero modes are chiral and anti-instanton

zero modes are anti-chiral.
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A.2 3d monopole-instanton tower

Now, consider the first order differential equations for the monopole-instantons that we

derived in section 3.3 and figure out which half of the supersymmetries are preserved in

this background for a given value of α. The preserved supersymmetries can be found

analogously, using A6 = [A4, A5] = 0 and eq. (3.12) for the BPS monopole-instantons with

Bi = 1
2εijkFjk:

δΨ = (ΓMNFMN ) ε

=

(
ΓijFij + 2

∑
m=4,5,6

ΓimDiAm + i
∑

m=4,5,6

Γmn[Am, An]

)
ε

= (ΓijFij + 2Γi4DiA4 + 2Γi5DiA5) ε

=

(
ΓijFij + 2Γi4 sinα

(
1

2
εijkFjk

)
+ 2Γi5 cosα

(
1

2
εijkFjk

))
ε

= Fij(Γ
ij + Γl4 sinαεlij + Γl5 cosαεlij) ε

= 2
[
F12(Γ12 + Γ34 sinα+ Γ35 cosα) + cyclic perm.{1→ 2→ 3}

]
ε , (A.3)

leading to conserved supersymmetries defined through the equation:

[sinαΓ1234 + cosαΓ1235]ε = +ε , (A.4)

which is satisfied by half of the supersymmetries. Few comments, parallel to the bosonic

discussion of section 3.3, are in order:

1. For α = π
2 , we have:

Γ1234ε = +ε

(
α =

π

2
, self-dual BPS monopole-instanton

)
(A.5)

Thus, ε obeys the same “chirality” condition as the four dimensional instantons and

the chirality of the 4d instanton zero modes and the BPS monopole-instantons are

aligned. These are the fermionic zero modes associated with the monopole-instanton

when the vev is aligned purely in the A4 direction.

2. For α = 0, we have:

Γ1235ε = +ε (α = 0 , BPS monopole-instanton) (A.6)

This is also the condition satisfied for a monopole particle in 4d, as well as its low-

lying dyons (since the bosonic background for α = 0 obeys the usual 4d monopole

particle BPS equation, see discussion after (3.12)). This condition will be particularly

important when we consider Poisson-duality between the 4d-monopoles/dyons at

large S1 and monopole instantons pertinent to small S1.

3. For α = −π/2, we have:

Γ1234ε = −ε (α = −π/2 , KK anti-instanton) (A.7)

In this case, ε obeys the same “chirality” condition as the four dimensional anti-

instantons.
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If we now consider the more general BPS and KK monopole instantons whose action is given

in (3.13), we need to generalize the equation obeyed by supersymmetries from (A.4) to:

[sinαnw Γ1234 + cosαnw Γ1235]εnw = +εnw (A.8)

For general values of a4 and a5, the supersymmetries respected by the various instantons

with different winding number nw ∈ Z are not the same. However, in the regime a5 � a4,

to leading order and for low-lying instantons in the tower, we can take:

sinαnw ≈ 0 , cosαnw ≈ 1 . (A.9)

Hence, for the low-lying band of the instanton tower, we have:

Γ1235εnw = +εnw , independent of nw . (A.10)

The fermion zero-mode wave functions can be found by applying a broken supersymmetry

transformation (i.e. the one orthogonal to (A.10)) to the monopole-instanton solution; we

will not need the explicit form of these zero modes.

A.3 Monopole-dyon particle tower

In the background of a monopole or dyon particle, setting A6 to zero and using the first or-

der dyon differential equations (3.3) (thinking of x4 as a compact Euclidean time direction,

i.e., with Ei = F4i), we obtain the preserved supersymmetries:

δΨ = (ΓMNFMN ) ε

=

(
ΓµνFµν + 2

∑
m=5,6

ΓµmDµAm + 2iΓ56[A5, A6]

)
ε

= (ΓijFij + 2Γ4iF4i + 2Γi5DiA5) ε

= (ΓijεijkBk + 2Γ4iEi + 2Γi5DiA5) ε

= DiA5(Γlmεlmi cos δne + 2Γ4i sin δne + 2Γi5) ε (A.11)

For non-vanishing DiA5, the vanishing supersymmetry transformations can be found by

multiplying the matrix equation in parenthesis with Γ5i for a fixed i. They, as usual, yield,

the same equation independent of the value of i, given by:

(cos δne Γ5ilmεlmi − 2 sin δne Γ54 + 2)εne = +εne [i-fixed]

[cos δne Γ1235 − sin δne Γ45]εne = +εne (A.12)

For a generic dyon, the supersymmetries preserved are not aligned with the one of 3d-

instantons (A.8). However, in the limit when δne ∼ 0:

Γ1235εne = +εne , independent of ne , (A.13)

as in (A.10). The δne ∼ 0 condition, and hence (A.13) holds for the band of states for which

n2
e � 4π2

g2
4

, see eq. (3.3). This guarantees the working of the approximate version Poisson

duality (3.20) even when fermions are incorporated. Similar to the remarks after (A.10),

the fermion zero modes can be found by applying a broken supersymmetry transformation

to the bosonic solution.
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B SU(N) generalization of Poisson duality

We now turn to SU(N), N ≥ 3, generalization of the Poisson duality between the 4d

monopole/dyon tower and 3d instanton tower.

On R4, the set of vacua of the classical gauge theory is the space of commuting co-

variantly constant scalars [φ, φ†] = 0, or [A5, A6] = 0. For convenience, we take A6 = 0

and A5 = diag[v1, v2, . . . , vN ], and we choose a point in the moduli space where the long

distance theory fully abelianizes, SU(N)→ U(1)N−1. There are N − 1 types of monopole

particles whose charges are proportional to the N − 1 simple roots αi of the Lie algebra,

of magnetic charges Qi = 4παi, i = 1, . . . N − 1. The mass spectrum of these N − 1 type

of lightest monopole particles and their dyonic tower is:

Mi ≡Mi,i+1 = |vi − vi+1|

√(
4π

g2
4

)2

n2
m + n2

e (B.1)

For nm = 0, ne = 1, eq. (B.1) reduces to the mass formula for the lightest W-bosons due

to adjoint Higgsing, Mi = |vi − vi+1|. For ne = 0, nm = 1, (B.1) is the semi-classical

mass formula for the monopoles, Mi = |vi − vi+1|
(

4π
g2
4

)
. Our primary interest are the set of

monopoles with nm = 1 and arbitrary electric charge ∼ neαi.
For the theory compactified on R3 × S1, the Wilson line along the compact direction

Ω = ei
∫
S1 A4 can also be interpreted as scalar from the lower dimensional point of view.

However, A4 differs from A5 and A6 since it is an angular variable, and as in our SU(2)

example, this plays a crucial role. The vacua of the classical gauge theory on R3 × S1 are

spanned by the space of commuting covariantly constant scalars:

[A3+i, A3+j ] = 0 , i, j = 1, 2, 3 , (B.2)

which may be parameterized as three sets of N eigenvalues,

A4 =
1

L
diag(ω1, ω2, · · · , ωN ) ,

N∑
i=1

ωi = 0 mod 2π , (B.3a)

A5 = diag(v1, v2, · · · , vN ) ,

N∑
i=1

vi = 0 . (B.3b)

For convenience, we set A6 = 0. For generic configurations with distinct eigenvalues,

the long distance theory fully abelianizes. At such points, the subgroup of global gauge

transformations which preserve the diagonalized form (B.3) is the Weyl groupW of SU(N),

whose elements simultaneously permute the eigenvalues of the two scalars, (L−1ωi, vi) →
(L−1ωσ(i), vσ(i)), where σ ∈ SN (SN is the N -element permutation group). In this sense,

SN acts on N -“eigenbranes” whose positions are given by:

ri = (L−1ωi, vi) (B.4)

as ri → rσ(i). Due to periodicity of ωi, the images of these eigenbranes are located at:

ri(nw) =
(
L−1(ωi + 2πnw), vi

)
, nw ∈ Z . (B.5)
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The utility of this description is that it geometrizes various aspects of monopole-instantons

at small S1. The action of the monopole-instantons associated with magnetic charge αi
embedded into R3 × S1 is:

Si =
4πL

g2
4

|ri(0)− ri+1(0)| = 4πL

g2
4

√
(vi − vi+1)2 + L−2(ωi − ωi+1)2 (B.6)

and the action of the winding 3d instantons (the Kaluza-Klein tower of (B.6)) is:

Si,nw =
L

g2
4

|ri(0)− ri+1(nw)|

=
4πL

g2
4

√
(vi − vi+1)2 + L−2(ωi − ωi+1 + 2πnw)2 , nw ∈ Z . (B.7)

This formula is noting but the distance between ri(0) and the image of ri+1(0) labeled as

ri+1(nw).

The fugacity function associated with monopole-instantons of charge αi is therefore,

similar to eq. (3.24):

Fi(ωi − ωi+1) =
∑
nw∈Z

e−Si,nw =
∑
nw∈Z

e
− 4πL

g24

√
(vi−vi+1)2+L−2(ωi−ωi+1+2πnw)2

. (B.8)

We should note that all the instantons in the tower have the same magnetic charge, but

their topological charges differ by one unit. The part of the sum contributing to nw ≥ 0

can smoothly be deformed to the self-dual monopole-instantons by taking (vi − vi+1) = 0,

whereas under the same smooth deformation, the nw ≤ −1 terms arise from non-selfdual

monopole-instantons. As it was the case in SU(2), the sum over the winding number

combines self-dual and anti-selfdual monopole-instantons into a single tower. In the sense

of magnetic charge, this is possible because the simple roots {α1, α2, . . . , αN−1} and affine

root {αN} of SU(N) satisfy αi = αi + nw
∑N

j=1 αj .

Since the function Fi(ωi − ωi+1) from (B.8) is periodic in ωi − ωi+1, we can Fourier

expand it and follow the steps given in section 3.5. The result is

Fi(ωi − ωi+1) =
∑
ne∈Z

vL

π
cos δne K1

(
LM(1, ne)

)
eine(ωi−ωi+1) , (B.9)

where M(1, ne) is the mass formula for dyon particles given in (B.1). This is the general-

ization of Poisson duality between the tower of 3d monopole-instantons and the 4d tower

of dyonic excitations of a monopole.
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