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Abstract. We obtain an upper estimate for the Poisson kernel for the class of second-order left invariant
differential operators on the semi-direct product of the 2n + 1-dimensional Heisenberg group Hn and an
Abelian group A = R

k . We also give an upper estimate for the transition probabilities of the evolution on
Hn driven by the Brownian motion (with drift) in R

k .

1. Introduction

1.1. Poisson kernel on higher rank N A groups

Let S be a semi-direct product S = N � A where N is a connected and simply
connected nilpotent Lie group and A is isomorphic with R

k . For g ∈ S we let x(g) = x
and a(g) = a denote the components of g in this product so that g = (x, a).

In what follows we identify the group A, its Lie algebra a, and a∗, the space of
linear forms on a,with the Euclidean space R

k endowed with the usual scalar product
〈·, ·〉 and the corresponding norm ‖ · ‖. For the vector x ∈ R

k we write x2 = x · x =
〈x, x〉 =∑k

i=1 x2
i . By ‖ · ‖∞,we denote the maximum norm ‖x‖∞ = max1≤i≤k |xi |.

We assume that there is a basis X1, . . . , Xm for n that diagonalizes the A-action. Let
λ1, . . . , λm ∈ a∗ = R

k be the corresponding roots, i.e., for every H ∈ a, [H, X j ] =
λ j (H)X j , j = 1, . . . ,m. As in [4] we assume that there is an element Ho ∈ R

k such
that λ j (Ho) > 0 for 1 ≤ j ≤ m.

Let, for α = (α1, . . . , αk) ∈ R
k and real d ′

j s,

Lα=
r∑

j=1

(
e2λ j (a)X2

j + d j e
λ j (a)X j

)
+�α, where �α=

k∑

i=1

(
∂2

ai
−2αi∂ai

)
, (1.1)

Mathematics Subject Classification (2000): 43A85, 31B05, 22E25, 22E30, 60J25, 60J60
Keywords: Poisson kernel, Harmonic functions, Left invariant differential operators, Brownian motion,

Exponential functionals of Brownian motion, Evolution kernel, Heisenberg groups, Solvable Lie groups,
Homogeneous groups, Higher rank NA groups.
R. Urban was supported in part by the MNiSW research grant N N201 393937.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81729092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


328 R. Penney and R. Urban J. Evol. Equ.

and X1, . . . , Xr satisfy Hörmander condition, i.e., they generate the Lie algebra n

of N . Then, Lα is a left invariant differential operator on S. Define

ρ0 =
m∑

j=1

λ j and set χ(g) = det(Ad(g)) = eρ0·a .

Let A+ = Int{a ∈ R
k : λ j (a) ≥ 0 for 1 ≤ j ≤ r}. If α ∈ A+ then there exists a

Poisson kernel ν for Lα [4]. That is, there is a C∞ function ν on N such that every
bounded Lα-harmonic function F on S may be written as a Poisson integral against a
bounded function f on S/A = N ,

F(g) =
∫

S/A
f (gx)ν(x)dx =

∫

N
f (x)ν̌a(x−1n)dx,

where ν̌a(x) = ν(a−1x−1a)χ(a)−1. Conversely the Poisson integral of any f ∈
L∞(N ) is a bounded Lα-harmonic function.

For t ∈ R
+ and ρ ∈ A+, let δρt = Ad((log t)ρ)|N .Then, t �→ δ

ρ
t is a one parameter

group of automorphisms of N for which the corresponding eigenvalues on n are all
positive. It is known [10] that then N has δρt -homogeneous norm: a non-negative con-
tinuous function | · |ρ on N such that |n|ρ = 0 if and only if n = e and |δρt n|ρ = t |n|ρ.
For many years the best pointwise estimate in higher rank available in the literature
was

ν(x) ≤ Cρ(1 + |x |ρ)−ε

for some ε > 0, where ρ ∈ A+ ([4,5]). This estimate was significantly improved by
the authors in [12,13]. A simplified version of [12, Theorem 1.2] says

THEOREM 1.1. ([12, Theorem 1.2]) For every given ρ ∈ A+, there exist positive
constants C and c (c is explicitly computable) such that the following estimate holds

ν(x) ≤ C(1 + |x |ρ)−cρ0(ρ)γ (α),

where γ (α) = 2 min1≤ j≤r
λ j (α)

λ2
j
.

1.2. Statements of the main results

The estimate given in Theorem 1.1 is not optimal. In this work we consider the
case where N = Hn, the 2n + 1-dimensional Heisenberg group, which we realize as
R

n × R
n × R with the Lie group multiplication given by

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1 · y2).

In this realization

(x1, y1, z1) = (0, y1, z1)(x1, 0, 0).
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Hence Hn decomposes as a semi-direct product of R
2n and R

n and the corresponding
Lie algebra hn is spanned by the left invariant vector fields

X j = ∂x j , Y j = ∂y j + x j∂z, Z = ∂z, (1.2)

where 1 ≤ j ≤ n. Let A = R
k and let ξ1, j , ξ2, j , ξ3 ∈ (Rk

)∗
, 1 ≤ j ≤ n, be such that

ξ1, j + ξ2, j = ξ3

independently of j . For x ∈ R
n , a ∈ R

k , and i = 1, 2, we set

eξi (a)x =
(

eξi,1(a)x1, eξi,2(a)x2, . . . , eξi,n(a)xn

)
.

We then define an A action on Hn by automorphisms of Hn by

a(x, y, z)a−1 = (eξ1(a)x, eξ2(a)y, eξ3(a)z), (1.3)

We then let S = Hn � A.
Let X j , Y j , and Z be, respectively, X j , Y j , and Z considered as left invariant vector

fields on S. Then,

X j = eξ1, j (a)X j , Y j = eξ2, j (a)Y j , Z = eξ3(a)Z .

We set Lα =∑n
j=1

(
X

2
j + Y

2
j

)
+ Z

2 +�α, where �α is as in (1.1). Then,

Lα =
n∑

j=1

(
e2ξ1, j (a)X2

j + e2ξ2, j (a)Y 2
j

)
+ e2ξ3(a)Z2 +�α. (1.4)

We assume also that ξi, j (α) > 0, 1 ≤ j ≤ n, i = 1, 2.

THEOREM 1.2. For every ρ ∈ A+ and ε > 0 there exists a constant C = Cρ,ε > 0
such that

ν(x, y, z) ≤ C(1 + |(x, y, z)|ρ)−γ ,
where

γ = 1

2
min

j
ξ1, j (ρ)min

j
(ξ1, j (α)/ξ

2
1, j )

+1

2
min

j
(ξ1, j (ρ), ξ2, j (ρ))min

j
(ξ1, j (α)/ξ

2
1, j , ξ2, j (α)/ξ

2
2, j , ξ3(α)/ξ

2
3 )

for ‖(y, z)‖ ≥ ε and ‖x‖∞ ≥ ε,

γ = min
j
ξ1, j (ρ)min

j
(ξ1, j (α)/ξ

2
1, j )

for ‖x‖∞ ≥ ε, and

γ = min
j
(ξ1, j (ρ), ξ2, j (ρ))min

j
(ξ1, j (α)/ξ

2
1, j , ξ2, j (α)/ξ

2
2, j , ξ3(α)/ξ

2
3 )

for ‖(y, z)‖ ≥ ε.
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REMARK. Our estimates in the rank 1 case are considerably weaker than ones
available in the literature. (See [3,7,8,16], for example.) However, in the higher rank
case the estimates given in Theorem 1.2 are much better than those from Theorem 1.1.
See the example in Sect. 5.2 on p. 25.

The proof of Theorem 1.2 requires both analytic and probabilistic techniques. Some
of them were introduced in [4] and used in [6–8,12]. In particular, we use the following
skew-product formula for the semigroup Tt generated by Lα, on a general N A group,

Tt f (x, a) = EaUσ (0, t) f (x, σt ), (1.5)

where the expectation is taken with respect to the diffusion σt on R
k generated by�α,

i.e., the Brownian motion with drift, and Uσ (s, t) is the evolution generated by Lσt

where σ ∈ C([0,∞),Rk) and, for a ∈ R
k ,

La =
n∑

j=1

(
e2ξ1, j (a)X2

j + e2ξ2, j (a)Y 2
j

)
+ e2ξ3(a)Z2. (1.6)

Thus, Uσ (s, t) is the (unique) family of bounded (on appropriate space of functions on
Hn) convolution operators Uσ (s, t) f = f ∗ Pσ (t, s),with smooth kernels (transition
probabilities) Pσ (t, s), which have some properties generalizing semigroup property
(see p. 8).

In order to get estimates for the Poisson kernel it is necessary to have estimates for
Pσ (t, 0)(x). The best general result we are aware of in the literature is Theorem 1.3
below. See [6,7] and [12].

Let

Aσ (s, t) =
∑

j=1,...,k
d=1,2

∫ t

s
edλ j (σu)du. (1.7)

THEOREM 1.3. Let K ⊂ N be closed and e �∈ K , where e is the identity element
of N . Then, there exist constants C1, C2, and ν such that for every x ∈ K and for
every t,

Pσ (t, 0)(x) ≤ C1

(∫ t

0
χ(σu)

2/νdu

)−ν/2
exp

(
τ(x)

4
− τ(x)2

C2 Aσ (0, t)

)

,

where τ is a subadditive norm which is smooth on N \ {e}.
It is clear that this estimate is not optimal; it follows from formula (2.6) below,

for example, that if N is Abelian, a similar estimate holds without the τ(x)
4 term. In

the rank-one case the presence of this term does not cause a problem; it is enough to
consider x is in a compact set. In the higher rank case, this term does create difficulties.
Our second main result, Theorem 1.4 below, which plays the crucial role in the proof
of Theorem 1.2, is an estimate for Pσ (t, 0) on Hn which does not contain such a term.
We conjecture that a similar result holds general for nilpotent groups N .
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In order to state this result, let

Aσk, j (s, t) =
∫ t

s
e2ξk, j (σ (u))du, Aσk (s, t) =

∑

1≤ j≤n

Aσk, j (s, t), k = 1, 2,

Aσ3 (s, t) =
∫ t

s
e2ξ3(σ (u))du, Aσk,�(s, t) =

n∏

j=1

Aσk, j (s, t), k = 1, 2.

(1.8)

We also set

A0 = Aσ1,�(0, t)
1
2 Aσ2,�(0, t)

1
2 Aσ3 (0, t)

1
2 , A1 = Aσ1 (0, t),

A2 = Aσ2 (0, t)+ Aσ3 (0, t), A3 = Aσ1 (0, t)+ Aσ2 (0, t)+ Aσ3 (0, t).
(1.9)

Finally we let

φ(m) =
( ‖m‖1/2

‖m‖1/2 + 1

)2

. (1.10)

THEOREM 1.4. There are positive constants C and D such that for all x, y and z,

Pσ (t, 0)(x, y, z)

≤ C A−1
0

(
‖(y, z)‖1/2 + 1 + A1/2

1

)
exp

(

−D
‖x‖2∞

A1
− D

‖(y, z)‖
A3

φ(y, z)

)

.

The proof of Theorem 1.4 is based on our third main result, Corollary 3.5, that
allows us to decompose the diffusion defined by Pσ (t, s) on a Lie group N which
can be expressed as an appropriate semi-direct product of two subgroups, into vertical
and horizontal components, in much the same way that formula (1.5) decomposes the
diffusion defined by Lα on S.

2. Preliminaries

2.1. Exponential functionals of Brownian motion

Let bs, s ≥ 0, be the Brownian motion on R starting from a ∈ R and normalized
so that Ebs = a and Var bs = 2s.

For d > 0 and μ > 0 we define the following exponential functional

Id,μ =
∫ ∞

0
ed(bs−μs)ds. (2.1)

THEOREM 2.1. (Dufresne, [9]) Let b0 = 0. Then, the functional I2,μ is distributed
as (4γμ/2)−1,where γμ/2 denotes a gamma random variable with parameterμ/2, i.e.,

γμ/2 has a density (1/�(μ/2))x
μ
2 −1e−x 1[0,+∞)(x), where � is the gamma function.

As a corollary from Theorem 2.1, by scaling the Brownian motion and changing
the variable, we get the following
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THEOREM 2.2. Let b0 = a. Then,

Ea f (Id,μ) = cd,μeμa
∫ ∞

0
f (x)x−μ/d exp

(

− eda

d2x

)
dx

x
.

The following lemma follows from Theorem 2.2. (See [12, Lemma 5.4] for details.)

LEMMA 2.3. Let σu = bu − 2αu be the k-dimensional Brownian motion with a
drift. Let d > 0, and let � ∈ (Rk)∗ be such that �(α) > 0. Then,

Ea f

(∫ ∞

0
ed�(σu)du

)

= cd,�,αeγ �(a)
∫ ∞

0
f (u)u−γ /d exp

(

− ed�(a)

2d2�2u

)
du

u
,

where γ = 2�(α)/�2.

2.2. Some probabilistic lemmas

If bt is the Brownian motion starting from x ∈ R, then the corresponding Wiener
measure on the space C([0,∞),R) is denoted by Wx . The following lemma follows
from formula 1.1.4 on p. 125 in [1].

LEMMA 2.4. There exists a constant c > 0 such that for all x ≤ y,

Wx

(

sup
0<s<t

|bs | ≥ y

)

≤ ce−(y−x)2/4t .

The following two equalities follow easily from the reflection principle for the
Brownian motion [11].

LEMMA 2.5. If x > a > 0, then

W0

(

sup
u∈[0,t]

bu ≥ a and bt ≤ x

)

= 2W0(bt > a)− W0(bt > x),

whereas if x < a with a > 0, then

W0

(

sup
u∈[0,t]

bu ≥ a and bt ≤ x

)

= W0(bt > 2a − x).

Note that W0(bt > a) = 1 −�(a/
√

t), where �(x) = 1√
4π

∫ x
−∞ e−u2/4du. As a

corollary from Lemma 2.5 we get the following.

LEMMA 2.6. For a ≥ 0, x, y ∈ R with x < y, and t > 0, let

R1 = {−a ≤ x < y ≤ a}, R2 = {x < y < −a},
R3 = {a < x < y}, R4 = {0 < x < a < y}.
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Then,

W0

(

sup
u∈[0,t]

|bu | ≥ a and bt ∈ [x, y]
)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2�
(

2a−x√
t

)
− 2�

(
2a−y√

t

)
+ 2�

(
2a+y√

t

)
− 2�

(
2a+x√

t

)
, on R1,

2�
(

2a−x√
t

)
− 2�

(
2a−y√

t

)
+�

(−x√
t

)
−�

(−y√
t

)
, on R2,

�
(

y√
t

)
−�

(
x√
t

)
+ 2�

(
2a+y√

t

)
− 2�

(
2a+x√

t

)
, on R3,

2
(

1 −�
(

a√
t

))
−�

(
y√
t

)
−�

(
2a−x√

t

)
+�

(
2a+x√

t

)
−�

(
2a+y√

t

)
, on R4.

(2.2)

COROLLARY 2.7. Assume that a > |n| + δ, δ > 0, and 0 < ε/2 < δ. Then,

ε−1W0

(

sup
u∈[0,t]

|bu | ≥ a and bt ∈ [n − ε/2, n + ε/2]
)

≤ 1√
π t

(
e−(2a−n)2/(4t) + e−(2a+n)2/(4t)

)
.

COROLLARY 2.8. Assume that a ≥ 0. Then,

lim sup
ε→0

1

ε
W0

(

sup
u∈[0,t]

|bu | ≥ a and bt ∈ [n − ε/2, n + ε/2]
)

≤
⎧
⎨

⎩

2√
π t

e−(2a−|n|)2/(4t) |n| < a,
2√
π t

e−n2/(4t) 0 ≤ a ≤ |n|.

2.3. Disintegration of the diffusion into vertical and horizontal
components—skew-product formula

2.3.1. Vertical component

Let Lα be defined by (1.4). The process σt in R
k generated by the operator�α, i.e.,

the Brownian motion with drift −2α, is called a vertical component of the diffusion
generated by Lα.
2.3.2. Horizontal component

Let C∞(Hn) be the space of continuous functions f on Hn for which limx→∞ f (x)
exists. For X ∈ hn,we let X̃ denote the corresponding right-invariant vector field. For
a multi-index I = (i1, . . . , im), i j ∈ Z

+ and a basis X1, . . . ,Xm of the Lie algebra hn

we write X I = X i1
1 . . .X im

m . For k, l = 0, 1, 2, . . . ,∞ we define

C (k,l)(Hn) =
{

f : X̃ I X J f ∈ C∞(Hn) for every|I | < k + 1 and |J | < l + 1
}
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and

‖ f ‖0
(k,l) = sup

|I |=k,|J |=l
‖X̃ I X J f ‖∞, ‖ f ‖(k,l) = sup

|I |≤k,|J |≤l
‖X̃ I X J f ‖∞. (2.3)

In particular, C (0,k)(Hn) is a Banach space with the norm ‖ f ‖0,k .

For a continuous function σ : [0,∞) → R
k, we consider the operator Lσt where

La is as in (1.6). Let {Uσ (s, t) : 0 ≤ s ≤ t} be the (unique) family of bounded
operators on C∞(Hn) which satisfies

i) Uσ (s, s) = Id, for all s ≥ 0,
ii) limh→0 Uσ (s, s + h) f = f in C∞(Hn),

iii) Uσ (s, r)Uσ (r, t) = Uσ (s, t), 0 ≤ s ≤ r ≤ t,
iv) ∂sUσ (s, t) f = −Lσs Uσ (s, t) f for every f ∈ C (0,2)(Hn),

v) ∂tUσ (s, t) f = Uσ (s, t)Lσt f for every f ∈ C (0,2)(Hn),

vi) Uσ (s, t) : C (0,2)(Hn) → C (0,2)(Hn).

The operator Uσ (s, t) is a convolution operator with a probability measure with a
smooth density, i.e., Uσ (s, t) f = f ∗ Pσ (t, s). In particular, Uσ (s, t) is left invariant.
By iii), Pσ (t, r) ∗ Pσ (r, s) = Pσ (t, s) for t > r > s. Existence of Uσ (s, t) follows
from [15]. Notice that from above properties it follows that

vii) Uσ◦θu (s, t) = Uσ (s + u, t + u), where σ ◦ θu(s) = σs+u is the shift operator.

A stochastic process (evolution) in Hn corresponding to transition probabilities
Pσ (t, s) is called a horizontal component of the diffusion generated by Lα.
2.3.3. Skew-product formula

Let Uσ (s, t) and Pσ (t, s) be as in Sect. 2.3.2. For f ∈ Cc(N × R
k) and t ≥ 0, we

put

Tt f (x, a) = EaUσ (0, t) f (x, σt ) = Ea f ∗N Pσ (t, 0)(x, σt ), (2.4)

where the expectation is taken with respect to the distribution of the process σt (Brown-
ian motion with drift) in R

k with the generator�α. The operator Uσ (0, t) acts on the
first variable of the function f (as a convolution operator).

THEOREM 2.9. The family Tt defined in (2.4) is the semigroup of operators gen-
erated by Lα. That is, ∂t Tt f = LαTt f and limt→0 Tt f = f.

We refer to formula (2.4) as the skew-product formula. By now the proof of the
above statement is standard and it goes along the lines of [7] with obvious changes.
(In Sect. 3 below a more general skew-product formula is proved.)

2.4. Evolution equation in R
n

Let

Lt = 1

2

n∑

i, j=1

ai j (t)∂i∂ j +
n∑

j=1

b j (t)∂ j (2.5)
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be a differential operator on C∞(Rn), where ∂i = ∂xi and a(t) = [ai j (t)] is a sym-
metric, positive definite matrix and the ai j and b j belong to C([0,∞),R). For s ≤ t ,
let U (s, t) be the unique family of operators on C∞(Rn) satisfying conditions (i)-(vi)
on page 8 where Lσt is replaced by Lt . Our goal in this section is to compute the
corresponding convolution kernel P(s, t).

Let

Ai j (s, t) =
∫ t

s
ai j (u)du ≡ Ai, j , B j (s, t) =

∫ t

s
b j (u)du ≡ B j .

PROPOSITION 2.10. Let A = [Ai j ] and B = (B1, B2, . . . , Bn)
t . Then,

P(t, s)(x) = (2π)−
n
2 (det A)−

1
2 e− 1

2 (A
−1(x−B))·(x−B). (2.6)

Proof. For fo ∈ C∞(Rn)∩ L2(Rn), we write f (x, t) = fo ∗ P(t, s)(x).We note that
for t > s, ∂t f (x, t) = Lt f (x, t) and f (x, s) = fo(x). We form the Fourier trans-

form concluding ∂t f̂ (ξ, t) =
(
− 1

2

∑n
i, j=1 ai jξiξ j +∑n

j=1 ib jξ j

)
f̂ (ξ, t). Solving

the above equation and forming the inverse transformation we get the proposition. �

2.5. Poisson kernel

Letμt be the semigroup of probability measures on S = Hn �R
k generated by Lα.

It is known [5,8] that limt→∞(π(μ̌t ), f ) = (ν, f ), where π denotes the projection
from S onto Hn, and (μ̌, f ) = (μ, f̌ ), f̌ (x) = f (x−1). Let a ∈ R

k and let μ be a
measure on Hn . We define (μa, f ) = (μ, f ◦ Ad(a)). For a ∈ R

k, we have

νa(h) = ν(a−1ha)χ(a)−1, h ∈ Hn, (2.7)

where χ(b) = eρ0·b and ρ0 = ∑n
j=1(ξ1, j + ξ2, j ) + ξ3 = (n + 1)ξ3. It is an easy

calculation to check that

lim
t→∞(π(μ̌t )

a, f ) = (νa, f ). (2.8)

The next lemma follows from Theorem 2.9. (See [12, Lemma 4.1] for the details.)

LEMMA 2.11. We have (π(μ̌t )
a, f ) = (Ea P̌σ (t, 0), f ).

By (2.8) and Lemma 2.11 it follows that

(νa, f ) = lim
t→∞(π(μ̌t )

a, f ) = lim
t→∞(Ea P̌σ (t, 0), f ). (2.9)

3. Split groups and the skew-product formula

Assume that

S = N � A, N = M � V, So = V � A,
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where N is nilpotent, M is normal in N , V is a subgroup of N normalized by A, and
A = R

k . We denote the general element of these groups by:

g = (m, v, a) = (m, x), g ∈ S, m ∈ M, v ∈ V, x ∈ So.

Let {X1, . . . , Xn} and {Y1, . . . ,Ym} be Jordan–Hölder bases for v and m, respectively,
where {X1, . . . , Xno} and {Y1, . . . ,Ymo} generate v and m, respectively. We assume
also that the Xi and Yi are eigenvectors for the adH -action, H ∈ a.

Let

L M =
no∑

i=1

(
X2

i + ci Xi

)
, LV =

mo∑

i=1

(
Y 2

i + di Yi

)
, L N = LV + L M ,

where ci , di ∈ R, and

Do = �α + LV , D = �α + L N

considered as elements of the universal enveloping algebra A(s) where α ∈ R
k and

�α is as in (1.1). For g ∈ S and X ∈ A(s) we let X g = Ad(g)X.
We consider the diffusion defined by Do on So as the vertical component and that

defined by L M on M as the horizontal. Explicitly, for any topological space X we let
�r

X = C([r,∞), X) and �X = �0
X . Then, for τ ∈ �So the operator Lt

M = Lτ(t)M ,
considered as a left invariant operator on C∞(M) produces an operator U τ

M (s, t) on
C∞(M), 0 ≤ s ≤ t as on p. 8. We write

U τ
M (s, t) f (x) =

∫

M
K M,τ

t,s (y, x) f (y)dy,

where dy is Haar measure on M. The equality U τ
M (s, r)U

τ
M (r, t) = U τ

M (s, t), 0 ≤
s < r < t is equivalent with the Chapman–Kolmogorov equation, [2, (15.8), p. 320],∫

M K M,τ
t,r (y, z)K M,τ

r,s (z, x)dz = K M,τ
t,s (y, x). For each r ≥ 0 and m ∈ M , there is a

corresponding Markov process with state space�r
M and a probability measure WM,τ

m;r .
We omit r from the notation when it is 0. In particular, for tn > tn−1 > · · · > t1 > r
and the function f (τ ) = h(τ (tn), τ (tn−1), . . . , τ (t1)),
∫

�r
M

f (τ )dWM,τ
m;r (τ )

=
∫

Mn
K M,τ

tn ,tn−1
(xn, xn−1) . . . K M,τ

t1,r (x1,m)h(xn, xn−1, . . . , x1)dxn . . . dx1. (3.1)

Similarly, we denote the respective transition kernels for Do, D, �α on So, S and
R

k by K o
t,s , Kt,s , and K A

t,s , respectively. The corresponding operators are U o(s, t) =
e(t−s)Do ,U (s, t) = e(t−s)D, and U A(s, t) = e(t−s)�α . We denote the correspond-
ing measures on �r

So
, �r

S and �r
A by WSo

x;r , WS
m,x;r , and WA

a;r , respectively, where
x = (v, a) ∈ So and m ∈ M.

The following proposition is an extension of Theorem 2.9 to the case where So is
non-abelian. The proof follows [7].
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PROPOSITION 3.1. For f ∈ C∞(S),

U (0, t) f (m, x) =
∫

�M

(
U τ

M (0, t) f
)
(m, τ (t))dWSo

x (τ ) ≡ T0,t f (m, x).

In the proof of Proposition 3.1 we will need the following lemma.

LEMMA 3.2.

T0,t f (m, x) =
∫ t

0
U o(0, t − u)|y

[
L y

M |m T0,u f (m, y)
]
(x)du + (U o(0, t) f )(m, x),

where the subscript indicates the variable on which the operator operates.

Proof.

(T0,t f − U o(0, t) f )(m, x)

=
∫

U τ
M (0, t) f (m, τ (t))dWSo

x (τ )−
∫

U τ
M (t, t) f (m, τ (t))dWSo

x (τ )

=
∫

U τ
M (t − u, t)

∣
∣u=t
u=0 f (m, τ (t))dWSo

x (τ )

= −
∫ ∫ t

0
∂uU τ

M (t − u, t) f (m, τ (t))dudWSo
x (τ )

=
∫ t

0

∫

Lτ(t−u)
M U τ

M (t − u, t) f (m, τ (t))dWSo
x (τ )du

=
∫ t

0

∫

Lτ◦θt−u(0)
M U τ◦θt−u

M (0, u) f (m, τ ◦ θt−u(u))dWSo
x (τ )du

=
∫ t

0

∫

So

∫

L y
MU τ

M (0, u) f (m, τ (u))dWSo
y (τ )K

o
(t−u)(x, y)dydu

=
∫ t

0
U o(0, t − u)|y[L y

M |m Tu f (m, y)](x)du.

�

Proof of Proposition 3.1. From Lemma 3.2

∂t T0,t ( f )(m, x) = ∂t

∫ t

0
U o(0, t − u)|y

[
L y

M |m T0,u f (m, y)
]
(x)du

+ ∂t (U
o(0, t) f )(m, x)

= Lx
M |m T0,t f (m, x)+ Do(T0,t f − U o(0, t) f )(m, x)

+ DoU o(0, t) f (m, x)

= L M T0,t f (m, x)+ DoT0,t f (m, x),

where L M is L M considered as a left invariant operator on S. This proves Proposi-
tion 3.1. �
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We may express WS
m,x in terms of WSo

x and Wτ
m . Recall that for τ ∈ �So , Lt

M =
Lτ(t)M .

Let f ∈ C(S). Then, by Proposition 3.1, we have1

∫

�S

f (τ (t))dWS
m,x (τ ) =

∫

M×So

Kt,0(m, x; l, y) f (l, y)dldy

=
∫

�So

(∫

M
K M,η

t,0 (m; l) f (l, η(t))dl

)

dWSo
x (η)

=
∫

�So

∫

�M

f (μ(t), η(t))dWM,η
m (μ)dWSo

x (η). (3.2)

Note that (μ, η) ∈ �S . This suggests the following:

THEOREM 3.3.
∫

�S

f (τ )dWS
m,x (τ ) =

∫

�So

∫

�M

f (μ, η)dWM,η
m (μ)dWSo

x (η). (3.3)

Hence,

WS
m,x (μ, η) = WM,η

m (μ)WSo
x (η).

Proof. We have the following proposition, where Ww;s is the measure corresponding
to any general Markov process ξ(t) on�s

X (with ξ(s) = w). This is a restatement and
generalization of Lemma 4.1.4, p. 189 from [14].

PROPOSITION 3.4. Suppose that for s < t,

f (τ ) = h(τ |[s,t], τ |[t,∞)).

Then,

∫

�s
X

f (τ )dWw,s(τ ) =
∫

�s
X

∫

�t
X

h(ψ̃, ψ)dWψ̃(t),t (ψ)dWw,s(ψ̃).

Let g = (m, x). The right-hand side of (3.3) defines a measure on �S which we
temporarily denote W̃S

g . The sequence of equalities (3.2) prove that WS
g ( f ) = W̃S

g ( f )
for f (τ ) = h(τ (t)).

Suppose that

f (τ ) = h(τ (t1), τ (t2)).

1 dl denotes right-invariant Haar measure on So. Hence dldm is right-invariant Haar measure on S. Express-
ing densities with respect to right-invariant measure is not a problem as long as we do not write our kernels
as convolutions. It has the convenience that the measures split in the semi-direct product decomposition.
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Then, with τ = (μ, η),w = (m, x) and 0 < t1 < t2,
∫

�S

h(τ (t1), τ (t2))dWS
w(τ) =

∫

�S

∫

�
t1
S

h(τ̃ (t1), τ (t2))dWS
τ̃ (t1),t1

(τ )dWS
w(τ̃ )

=
∫

�So

∫

�M

∫

�
t1
S

h (μ̃(t1), η̃(t1), τ (t2)) dWS
τ̃ (t1),t1

(τ )dWM,η̃
m (μ̃)dWSo

x (η̃)

=
∫

�So

∫

�
t1
So

∫

�M

∫

�
t1
M

h(μ̃(t1), η̃(t1), μ(t2), η(t2))

× dWM,η
μ̃(t1),t1

(μ)dWM,η̃
m (μ̃)dWSo

η̃(t1),t1
(η)dWSo

x (η̃). (3.4)

We wish to combine (3.4) into a single η integral. We write (3.4) as
∫

�S

h(τ (t1), τ (t2))dWS
w(τ) =

∫

�So

∫

�
t1
So

H(η̃, η)dWSo
η̃(t1),t1

(η)dWSo
x (η̃),

where

H(η̃, η) =
∫

�M

∫

�
t1
M

h(μ̃(t1), η̃(t1), μ(t2), η(t2))dWM,η
μ̃(t1),t1

(μ)dWM,η̃
m (μ̃).

As a function of η, h depends only on η|[t1,∞). The η̃ dependence is also not problem
since

∫

�M

h(μ̃(t1), η̃(t1), μ(t2), η(t2))dWM,η̃
m (μ̃)

=
∫

So

h(y, η̃(t1), μ(t2), η(t2))K
M,η̃
t1,0

(m, y)dy

which depends on η̃|[0,t1]. Hence
∫

�S

h(τ (t1), τ (t2))dWS
w(τ) =

∫

�So

∫

�
t1
So

H(η̃, η)dWSo
η̃(t1),t1

(η)dWSo
x (η̃)

=
∫

�So

H(η, η)dWSo
w (η)

=
∫

�So

∫

�M

∫

�
t1
M

h(η(t1), μ̃(t1), η(t2), μ(t2))dWM,η
μ̃(t1),t1

(μ)dWM,η
m (μ̃)dWSo

w (η)

=
∫

�So

∫

�M

h(η(t1), μ(t1), η(t2), μ(t2))dWM,η
m (μ)dWSo

w (η)

as desired. The general case follows similarly. �

For σ ∈ �A, and (m, x) ∈ M × V , let WV,σ
x , WN ,σ

m,x be the measures on �N and
�V , respectively, defined similarly to the definition of WM,η,σ

m .

COROLLARY 3.5. For a.e. σ with respect to WA
a and (μ, γ ) ∈ �M ×�V ,

WN ,σ
m,x (μ, γ ) = WM,γ,σ

m (μ)WV,σ
x (γ ).
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Proof. Theorem 3.3 implies:

WS
m,x,a(μ, γ, σ ) = WM,γ,σ

m (μ)WSo
x,a(γ, σ ) = WM,γ,σ

m (μ)WV,σ
x (γ )WA

a (σ ).

On the other hand, Theorem 3.3 also implies

WS
m,x,a(μ, γ, σ ) = WN ,σ

m,x (μ, γ )W
A
a (σ )

which proves the corollary. �

The following result is the analog of the skew-product formula (2.4).

COROLLARY 3.6. For a.e. σ with respect to WA
a

∫

N
K N ,σ

t,0 (m, x; m1, x1) f (m1, x1) dm1dx1

=
∫

M
K M,γ,σ

t,0 (m,m1) f (m1, γt ) dm1 dWV,σ
x (γ ).

Proof. This is immediate from Corollary 3.5 and (3.1) with n = 1. �

4. Upper estimate for Pσ

Let notation be as in Sect. 1.2. Then, hn is split by the subalgebras v and m spanned
by {X1, . . . , Xn} and {Y1, . . . ,Yn, Z}, respectively, i.e.,

Hn = M � V,

where M and V are the corresponding Lie groups, which we identify with R
n+1 and

R
n , respectively. Let L M =∑n

j=1 Y
2
j + Z

2
, i.e.,

L M =
n∑

j=1

(
e2ξ2, j (a)∂2

y j
+ 2e2ξ2, j (a)x j∂y j ∂z + e2ξ2, j (a)x2

j ∂
2
z

)
+ e2ξ3(a)∂2

z

and

LV =
n∑

j=1

X
2
j =

n∑

j=1

e2ξ1, j (a)∂2
x j
.

We replace a by σ(t), t ≥ 0, where σ ∈ C([0,+∞),Rk) is a continuous function on
the half-line with values in A = R

k, and x by η(t), t ≥ 0, where η = (η1, . . . , ηn) is
a continuous path in V = R

n, i.e., belongs to C([0,∞),Rn), and get time-dependent
operators

Lσ,ηM =
n∑

j=1

(
e2ξ2, j (σ (t))∂2

y j
+ 2e2ξ2, j (σ (t))η j (t)∂y j ∂z + e2ξ2, j (σ (t))η j (t)

2∂2
z

)

+ e2ξ3(σ (t))∂2
z
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and

LσV =
n∑

j=1

e2ξ1, j (σ (t))∂2
x j
.

Then, the matrix aLσV
from (2.5) for LσV is aσ = 2mσ

1 where, for j = 1, 2,

mσ
j = diag[e2ξ j,1(σ ), . . . , e2ξ j,n(σ )] (4.1)

(the off diagonal entries are all 0) while the matrix for Lσ,ηM is

aLσ,ηM
= aσ,η = 2

[
mσ

2 bσ,η

(bσ,η)t dσ,η

]

,

where

bσ,η = (e2ξ2,1(σ )η1, e2ξ2,2(σ )η2, . . . , e2ξ2,n(σ )ηn)
t ,

dσ,η =
n∑

j=1

e2ξ2, j (σ )η2
j + e2ξ3(σ ) = 〈bσ,η, η〉 + e2ξ3(σ ).

(4.2)

Let bt be the 1-dimensional Brownian motion normalized so that

Wx (bt ∈ dy) = pt (x, dy) = (4π t)−1/2e−(x−y)2/4t dy.

Then, by (2.6),

K V,σ
t,s (x, dz) =

∏

1≤ j≤n

p∫ t
s e2ξ1, j (σu )du

(x j , dz j ). (4.3)

Thus the process η(t) generated by LσV has coordinates η j (t)which are independent
Brownian motions with time changed according to the clock governed by σ.

Let

Aσ,η(s, t) =
∫ t

s
aσ,η(u) du.

For an n × n invertible matrix A we set

B(A)(x) = 1

2
A−1x · x and D(A) = (2π)−

n
2 (det A)−

1
2 .

In this notation, again by (2.6),

K M,σ,η
t,s (m1,m2) = D(Aσ,η(s, t))e−B(Aσ,η(t,s))(m1−m2), m1,m2 ∈ M = R

n+1.

LEMMA 4.1. Let A be a symmetric, positive semi-definite matrix. Then,

B(A)(x) ≥ ‖x‖2/(2‖A‖).
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Proof. Let A = C2 where Ct = C . Since ‖A‖ = maxi λi where λi ≥ 0 are the
eigenvalues of A, ‖C‖ = ‖A‖ 1

2 . Then,

2B(A)(x) = ‖C−1x‖2 = ‖C‖−2‖C‖2 ‖C−1x‖2 ≥ ‖C‖−2‖x‖2 = ‖A‖−1‖x‖2.

�

Now, we want to estimate the operator norm of Aσ,η.

LEMMA 4.2. There is a C > 0 such that

‖Aσ,η(0, t)‖ ≤C Aσ2 (0, t)(1 +�η(0, t))2 + C Aσ3 (0, t) (4.4)

where Ai is as in (1.8) and �η(s, t) = sups≤u≤t ‖η(u)‖∞.

Proof. We have, with the notation introduced in (4.1) and (4.2),

aσ,η = 2

[
mσ

2 bσ,η

(bσ,η)t dσ,η

]

= 2

[
mσ

2 bσ,η

(bσ,η)t 〈bσ,η, η〉
]

+ 2

[
0 0
0 e2ξ3(σ )

]

= 2

[
mσ/2

2 0
(bσ/2,η)t 0

][
mσ/2

2 bσ/2,η

0 0

]

+ 2

[
0 0
0 e2ξ3(σ )

]

. (4.5)

There is a constant D = Dr such that for all r × r matrices A,

‖A‖ ≤ D max
1≤i, j≤r

|ai j | ≤ D
∑

1≤i, j≤n

|ai j |.

The norm of the first and the second matrix on the right-hand side of (4.5) is dominated
by a multiple of

n∑

j=1

eξ2, j (σ ) +
n∑

j=1

eξ2, j (σ )|η j | ≤ (1 + ‖η‖∞)
n∑

j=1

eξ2, j (σ ),

where ‖ · ‖∞ denotes the �∞-norm on R
n . Hence

‖aσ,η(t)‖ ≤ C

⎛

⎜
⎝(1 + ‖η(t)‖∞)2

⎛

⎝
n∑

j=1

eξ2, j (σ (t))

⎞

⎠

2

+ e2ξ3(σ (t))

⎞

⎟
⎠ ,

and so

‖Aσ,η(0, t)‖ ≤
∫ t

0
‖aσ,η(u)‖du

≤ C
∫ t

0

⎛

⎜
⎝(1 + ‖η(u)‖∞)2

⎛

⎝
n∑

j=1

eξ2, j (σ (t))

⎞

⎠

2

+ e2ξ3(σ (u))

⎞

⎟
⎠ du. (4.6)
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But, in L2(0, t),

∫ t

0

⎛

⎝
n∑

j=1

eξ2, j (σ (u))

⎞

⎠

2

du =
∥
∥
∥

n∑

j=1

eξ2, j (σ (·))
∥
∥
∥

2

2
≤
⎛

⎝
n∑

j=1

∥
∥
∥eξ2, j (σ (·))

∥
∥
∥

2

⎞

⎠

2

≤ n
n∑

j=1

∥
∥
∥eξ2, j (σ (·))

∥
∥
∥

2

2
= n Aσ2 (0, t).

The lemma follows. �
LEMMA 4.3. There exists a constant C > 0 such that

D(Aσ,η(s, t)) ≤ C Aσ2,�(s, t)−
1
2 Aσ3 (s, t)−

1
2 ,

where notation is as in (1.8).

Proof. We introduce the integrals of the objects defined in (4.1) and (4.2),

Mσ
j (s, t) =

∫ t

s
mσ

j (u)du, Bσ,η(s, t) =
∫ t

s
bσ,η(u)du,

and

Dσ,η(s, t) =
∫ t

s
dσ,η(u)du.

By (4.5) we get

det Aσ,η(s, t) = 2n+1 det

[
Mσ

2 (s, t) Bσ,η(s, t)
(Bσ,η(s, t))t Dσ,η(s, t)

]

= 2n+1 Aσ2,�(s, t)
∑

j

(∫ t

s
e2ξ2, j (σ (u))η2

j (u)du

− (
∫ t

s e2ξ2, j (σ (u))η j (u)du)2
∫ t

s e2ξ2, j (σ (u))du

)

+ 2n+1 Aσ2,�(s, t)Aσ3 (s, t).

By the Cauchy–Schwarz inequality the expression under the
∑

j is non-negative.

Thus, we get det Aσ,η(s, t) ≥ 2n+1 Aσ2,�(s, t)Aσ3 (s, t). �

Next, we estimate the evolution kernel on Hn generated by Lσt ,

Pσ (t, 0)(m, v) = K σ (t, 0)(0, 0; m, v).

PROPOSITION 4.4. There are positive constants C and D such that

Aσ1,�(0, t)
1
2 Aσ2,�(0, t)

1
2 Aσ3 (0, t)

1
2 Pσ (0, t)(m, v)

≤C(‖m‖ 1
2 +1) exp

(

− D‖v‖2∞
Aσ1 (0, t)

− D‖m‖2

(Aσ2 (0, t)+ Aσ3 (0, t))(‖m‖ 1
2 +‖v‖∞ + 2)2

)

+C Aσ1 (0, t)1/2 exp

(

−‖m‖ + ‖v‖2∞
2Aσ1 (0, t)

)

.
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Proof. We allow the constants C and D to change from line to line. By Lemma 4.1
and Lemma 4.3,

K M,σ,η
t,s (m1,m2) = D(Aσ,η(s, t))e−B(Aσ,η(s,t))(m1−m2)

≤ C Aσ2,�(s, t)−
1
2 Aσ3 (s, t)−

1
2 e− ‖m1−m2‖2

2‖Aσ,η(s,t)‖ .
(4.7)

From Corollary 3.6, (4.7), and (4.3), for mi ∈ M and v1 ∈ V ,
∫

K σ (t, 0)(m1, v1; m2, y)ψ(y) dy =
∫

K M,σ,η
t,0 (m1,m2)ψ(η(t)) dWV,σ

v1 (η)

≤ D(Aσ,η(0, t))
∫

e− ‖m2−m1‖2

2‖Aη,σ (0,t)‖ψ(η(t)) dWV,σ
v1 (η)

≤ C Aσ2,�(0, t)−
1
2 Aσ3 (0, t)−

1
2

×
∫

e− ‖m2−m1‖2

2‖Aσ,η(s,t)‖ψ
(
η1(A

σ
1,1(0, t)), . . . , ηn(A

σ
1,n(0, t))

)
dWv1(η). (4.8)

Then, (4.8) and Lemma 4.2 imply
(

Aσ2,�(0, t)−
1
2 Aσ3 (0, t)−

1
2

)−1
∫

Pσ (t, 0)(m, y)ψ(y)dy

≤ C
∫

e
− D‖m‖2

Aσ2 (0,t)(1+�η(0,t))2+Aσ3 (0,t) ψ(η(t)) dWV,σ
0 (η). (4.9)

For v ∈ R
n given and ε > 0, let ψε(·) = ε−n1Bε(v)(·), where Bε(v) =

∏n
j=1 B1

ε (v j ) and B1
ε (v j ) = [v j − ε/2, v j + ε/2]. We will estimate (4.9) with ψε in

place of ψ as ε tends to zero.
Let Eηv denote expectation with respect to dWV,σ

v (η). For k = 1, 2, . . . , define the
sets of paths in V,

Ak =
{

η : k − 1 ≤ �η(0, t) = sup
0≤u≤t

‖η(u)‖∞ < k

}

.

The integral on the right in (4.9) can be written as an infinite sum and estimated as
follows

∞∑

k=1

Eη0 exp

(

− D‖m‖2

Aσ2 (0, t)(1 +�η(0, t))2 + Aσ3 (0, t)

)

ψε(η(t))1Ak (η)

≤
∞∑

k=1

exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2

)

Eη0ψε(η(t))1Ak (η). (4.10)

To simplify notation we introduce

ck = exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2

)

,

Ek(ε) = Eη0ψε(η(t))1Ak (η) = ε−nWV,σ
0 (η ∈ Ak and η(t) ∈ Bε(v)).
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Let v �= 0 and choose ε/2 < ‖v‖∞. If η ∈ Ak , then ‖η(t)‖∞ ≥ ‖v‖∞ − ε/2.
Hence, Ek = 0 for k < ‖v‖∞ − ε/2.

Let, for k = 1, 2, . . . ,

�η j (0, t) = sup
0≤u≤t

|η j (u)| and A j
k = {η : k − 1 ≤ �η j (0, t) < k}.

Since the coordinates η j (t) of η(t) are independent (Brownian motions with time
changed—see p. 15 after (4.3)), we can estimate (recall that W0 is the law of a clas-
sical Brownian motion),

Ek(ε) ≤ ε−n
n∑

j=1

WV,σ
0

(
η ∈ A j

k and η(t) ∈ Bε(v)
)

=ε−n
n∑

j=1

WV,σ
0

(
η ∈ A j

k and η j (t) ∈ B1
ε (v j )

)
WV,σ

0

(
ηi (t) ∈ B1

ε (vi ) for i �= j
)

=
n∑

j=1

ε−1W0

(
η ∈ A j

k and η j (A
σ
1, j (0, t)) ∈ B1

ε (v j )
)

×
∏

i �= j

(
ε−1W0

(
ηi (A

σ
1,i (0, t)) ∈ B1

ε (vi )
))
. (4.11)

LEMMA 4.5. Assume that a > ‖v‖∞ + δ, δ > 0, and 0 < ε/2 < δ. Then,

ε−nWV,σ
0

(

sup
u∈[0,t]

‖η(u)‖∞ ≥ a and η(t) ∈ Bε(v)

)

≤ Aσ1,�(0, t)−1/2
n∑

j=1

(
e−(2a−v j )

2/2Aσ1, j (0,t) + e−(2a+v j )
2/2Aσ1, j (0,t)

)
.

Proof. Reasoning as in (4.11) we see that the left side of the above inequality is
bounded by

C
n∑

j=1

⎛

⎝
∏

i �= j

Aσ1,i (0, t)

⎞

⎠

−1/2

× ε−1W0

⎛

⎝ sup
u∈[0,Aσ1, j (0,t)/2]

|η j (u)| ≥ a and η j (A
σ
1, j (0, t)) ∈ B1

ε (v j )

⎞

⎠ .

By our assumption it follows that for every j, a > |v j | + δ. Hence, the result follows
by Corollary 2.7. �

LEMMA 4.6.

Aσ2,�(0, t)
1
2 Aσ3 (0, t)

1
2 Pσ (0, t)(m, v) ≤ C I, where I = lim sup

ε→0+

∑

k≥‖v‖∞
ckEk(ε).

Furthermore, the sum converges uniformly in ε.
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Proof. The inequality follows by letting ε tend to 0 in (4.10). The uniform convergence
follows from Lemma 4.5. �

Let no be the smallest natural number such that no ≥ ‖v‖∞.

LEMMA 4.7. We have the following estimates

lim sup
ε→0+

Eno(ε) ≤ C Aσ1,�(0, t)−1/2e−‖v‖2∞/2Aσ1 (0,t),

while for k ≥ no + 1,

lim sup
ε→0+

Ek(ε) ≤ C Aσ1,�(0, t)−1/2 exp

(

− (2(k − 1)− ‖v‖∞)2

2Aσ1 (0, t)

)

.

Proof. Consider En0 . Let j ∈ {1, . . . , n} be fixed. Suppose first that |v j | < no − 1.
Then, using Corollary 2.8, the j th term in (4.11) (with k = no) can be dominated by a

multiple of Aσ1,�(0, t)−1/2e
− (2(no−1)−|v j |)2

2Aσ1, j (0,t)
∏

i �= j e
− |vi |2

2Aσ1,i (0,t) . Notice that |v j | cannot be
equal to ‖v‖∞. Thus, we are done in this case.

Now suppose that |v j | ≥ no − 1. Then, using Corollary 2.8 again, we dominate the

j th term in (4.11) by C Aσ1,�(0, t)−1/2e
− |v j |2

2Aσ1, j (0,t)
∏

i �= j e
− |vi |2

2Aσ1,i (0,t) . The result for E0

follows.
Now we consider Ek . Since k ≥ no + 1 it follows that k − 1 ≥ |v j | for every j.

Therefore, by Corollary 2.8 the j th term in (4.11) is estimated by

C Aσ1,�(0, t)−1/2e
− (2(k−1)−|v j |)2

2Aσ1, j (0,t)
∏

i �= j

e
− |vi |2

2Aσ1,i (0,t) .

�

Next, we estimate I = lim supε→0+
∑

k≥‖v‖∞ ckEk(ε). From Lemma 4.7,

Aσ1,�(0, t)1/2 I

= Aσ1,�(0, t)1/2 lim sup
ε→0+

⎛

⎝cnoEno(ε)+
∑

k≥no+1

ckEk(ε)

⎞

⎠

≤ C exp

(

− ‖v‖2∞
2Aσ1 (0, t)

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))n2
o

)

+
∞∑

k=no+1

exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2 − (2(k − 1)− ‖v‖∞)2

2Aσ1 (0, t)

)

. (4.12)

For a, b non-negative a + b ≥ √
a2 + b2. Also, for k ≥ no + 1,

(k − 1)+ (k − 1)− ‖v‖∞ ≥ no + (k − 1 − ‖v‖∞),
k − 1 − ‖v‖∞ ≥ no − ‖v‖∞ ≥ 0.



Vol. 12 (2012) Poisson kernel and the evolution on the Heisenberg group 347

Hence the summation in the last line of (4.12) is bounded by

∞∑

k=no+1

exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2 − (no + (k − 1)− ‖v‖∞)2

2Aσ1 (0, t)

)

≤ e
− n2

o
2Aσ1 (0,t)

∞∑

k=no+1

exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2 − (k − 1 − ‖v‖∞)2

2Aσ1 (0, t)

)

.

(4.13)

We split the sum in (4.13) into two parts: no+1 ≤ k ≤ no+‖m‖ 1
2 and k > no+‖m‖ 1

2 ,

and estimate the corresponding parts by the following two terms:

‖m‖ 1
2 e

− n2
o

2Aσ1 (0,t) exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))(‖m‖ 1
2 + ‖v‖∞ + 2)2

)

and

e
− n2

o
2Aσ1 (0,t)

∑

k≥no+‖m‖ 1
2 +1

exp

(

− D‖m‖2

4(Aσ2 (0, t)+ Aσ3 (0, t))k2 − (k − 1 − no)
2

2Aσ1 (0, t)

)

.

The above expression is bounded by

e
− n2

o
2Aσ1 (0,t)

∫ ∞

‖m‖ 1
2

e
− r2

2Aσ1 (0,t) dr ≤ √
2Aσ1 (0, t)1/2e

− ‖v‖2∞
2Aσ1 (0,t)

− ‖m‖
2Aσ1 (0,t) .

Proposition 4.4 follows. �

As a corollary we get the following result, where the notation is as in (1.9) and (1.10).

COROLLARY 4.8. There are positive constants C and D such that in the region

‖v‖∞ ≤ ‖m‖ 1
2 ,

A0 Pσ (0, t)(m, v) ≤ C(‖m‖1/2 + 1) exp

(

−D
‖v‖2∞

A1
− D

‖m‖
A2

φ(m)

)

+C A1/2 exp

(

−D
‖m‖ + ‖v‖2∞

A1

)

while in the region ‖v‖∞ ≥ ‖m‖ 1
2 ,

A0 Pσ (0, t)(m, v) ≤ C(‖m‖1/2 + 1 + A1/2) exp

(

−D
‖m‖ + ‖v‖2∞

A1

)

.

Theorem 1.4 follows immediately from this corollary along with the observations
that φ(m) ≤ 1, A1 ≤ A3 and A2 ≤ A3.
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5. Upper estimate for the Poisson kernel

Let ν(h) = ν(x, y, z), x, y ∈ R
n, z ∈ R, be the Poisson kernel on Hn for the

operator Lα in (1.4). Then, from (1.2)

Lα =
n∑

j=1

(
e2ξ1, j (a)∂2

x j
+ e2ξ2, j (a)∂2

y j
+ 2e2ξ2, j (a)x j∂y j ∂z + e2ξ2, j (a)x2

j ∂
2
z

)

+ e2ξ3(a)∂2
z +�α.

Recall that we assume that ξi, j (α) > 0. Hence α belongs to the positive Weyl cham-
ber A+. The operator �α generates the Brownian motion σ(u) with drift −2α, i.e.,
σ(u) = b(u) − 2αu, where b(u) is the k-dimensional standard Brownian motion
normalized so that Var bu = 2u.

Let νa be as in (2.7). Recall that h = (x, y, z) = (m, v)with v = x and (y, z) = m.

THEOREM 5.1. For all compact subsets K �� e of Hn, all ρ ∈ A+, and all ε > 0
there exists a constant C = C(K , ρ, ε) > 0 such that for all s < 0,

νsρ(h) ≤ Ce−ρ0(sρ)es min1≤ j≤n ξ1, j (ρ)min1≤ j≤n(ξ1, j (α)/ξ
2
1, j )/2

×es min1≤ j≤n(ξ1, j (ρ),ξ2, j (ρ))min j (ξ1, j (α)/ξ
2
1, j ,ξ2, j (α)/ξ

2
2, j ,ξ3/ξ

2
3 )/2

if h ∈ K ∩ {φ(m) ≥ ε, ‖v‖∞ ≥ ε}, (5.1)

νsρ(h) ≤ Ce−ρ0(sρ)

×es min1≤ j≤n ξ1, j (ρ)min1≤ j≤n(ξ1, j (α)/ξ
2
1, j )

if h ∈ K ∩ {‖v‖∞ ≥ ε} (5.2)

and

νsρ(h) ≤ Ce−ρ0(sρ)

× es min1≤ j≤n(ξ1, j (ρ),ξ2, j (ρ))min1≤ j≤n(ξ1, j (α)/ξ
2
1, j ,ξ2, j (α)/ξ

2
2, j ,ξ3/ξ

2
3 )

if h ∈ K ∩ {φ(m) ≥ ε}, (5.3)

where φ(m) is defined in (1.10).

Proof. First we consider elements h = (m, v) from the set K1 = K ∩ {(m, v) :
φ(m) ≥ ε}. Let A j be defined as in (1.9) but with t = ∞. By Theorem 1.4, we have

νsρ ≤ CEsρ A−1
0 exp

(

− D

A1
− D

A3

)

+ CEsρ A−1
0 A1/2

1 exp

(

− D

A1
− D

A3

)

. (5.4)

We estimate the first expectation on the right.

Esρ A−1
0 exp

(

− D

A1
− D

A3

)

≤
(

Esρ(A
−1
0 )2

)1/2
(

Esρ exp

(

−2D

A1
− 2D

A3

))1/2

≤
(

Esρ(A
−1
0 )2

)1/2
(

Esρ exp

(

−4D

A1

))1/4 (

Esρ exp

(

−4D

A3

))1/4

. (5.5)
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We estimate the first expectation above. By the Cauchy–Schwarz inequality we get,

Esρ(A
−1
0 )2 = Esρ(A

σ
1,�)

−1(Aσ2,�)
−1(Aσ3 )

−1

= e−2ρ0(sρ)E0(A
σ
1,�)

−1(Aσ2,�)
−1(Aσ3 )

−1

≤ e−2ρ0(sρ)(E0(A
σ
1,�)

−4)1/4(E0(A
σ
2,�)

−4)1/4(E0(A
σ
3 )

−2)1/2. (5.6)

The expectation E0(Aσ3 )
−2 is finite by Lemma 2.3. Since by Lemma 2.3, for k = 1, 2

and j = 1, . . . , n, and all d > 0, the expected values E0(Aσk, j )
−d are also finite,

we can apply the Cauchy–Schwarz inequality n − 1 times to each of the remaining
expectation in (5.6) and conclude their finiteness.

Now we consider Esρ exp(−4D1/A1) and Esρ exp(−4D2/A3) from (5.5).
Clearly,

Esρ exp(−4D1/A1) ≤E0 exp(−4D1/(M(sρ)A1), (5.7)

where M(sρ) = max1≤ j≤n e2ξ1, j (sρ) = e2s min1≤ j≤n ξ1, j (ρ).

Proceeding exactly in the same way as in the proof of [12, Lemma 6.2] we show
that (5.7) is bounded by

C M(sρ)min1≤ j≤n(ξ1, j (α)/ξ
2
1, j ) = Ce2s min1≤ j≤n ξ1, j (ρ)min1≤ j≤n(ξ1, j (α)/ξ

2
1, j ). (5.8)

The expectation Esρ exp(−4D2/A3) is similar. Again, in the same way as in
the proof of [12, Lemma 6.2] we show that Esρ exp(−4D2/A3) is bounded by

C M1(sρ)
min j (ξ1, j (α)/ξ

2
1, j ,ξ2, j (α)/ξ

2
2, j ,ξ3(α)/ξ

2
3 ), where

M1(sρ) = max
1≤ j≤n

(
e2ξ1, j (sρ), e2ξ2, j (sρ), e2ξ3(sρ)

)
= e2s min1≤ j≤n(ξ1, j (ρ),ξ2, j (ρ)).

Hence,

Esρ exp(−4D2/A3)

≤ Ce2s min1≤ j≤n(ξ1, j (ρ),ξ2, j (ρ))min j (ξ1, j (α)/ξ
2
1, j ,ξ2, j (α)/ξ

2
2, j ,ξ3(α)/ξ

2
3 ). (5.9)

Now we estimate the second expectation on the right in (5.4) by

n∑

j=1

Esρ A−1
0 A1/2

1, j exp

(

− D

A1
− D

A3

)

=
n∑

j=1

Esρ A−1/2
2,� A−1/2

3

∏

k �= j

A−1/2
1,k exp

(

− D

A1
− D

A3

)

=
n∑

j=1

e−∑k ξ2,k (sρ)e−ξ3(sρ)e−∑k �= j ξ2,i (sρ)

× E0 A−1/2
2,� A−1/2

3

∏

k �= j

A−1/2
1,k exp

(

− D

A1
− D

A3

)

.
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Since s < 0, e−∑k ξ2,k (sρ)e−ξ3(sρ)e−∑k �= j ξ2,i (sρ) ≤ e−ρ0(sρ). To estimate the last one
expectation above we proceed as in (5.5) and (5.6) and get the same estimate. Hence,
the estimate (5.1) holds on K1.

Now we have to consider the set K2 = K ∩ {(m, v) : ‖v‖∞ ≥ ε}. On this set (5.5)
simplifies and, using Lemma 2.3, (5.6), (5.7) and (5.8) as above, we get

Esρ A−1
0 exp

(

− D1

A1

)

≤
(

Esρ(A
−1
0 )2

)1/2
(

Esρ exp

(

−2D1

A1

))1/2

≤ e−ρ0(sρ)es min1≤ j≤n ξ1, j (ρ)min1≤ j≤n(ξ1, j (α)/ξ
2
1, j ).

As in the previous case the second expectation in (5.4) has the same estimate. Hence,
the estimate (5.2) holds on K2. Finally, we consider the set K3 = K ∩ {(m, v) :
φ(m) ≥ ε}. Then,

Esρ A−1
0 exp

(

− D2

A3

)

≤
(

Esρ(A
−1
0 )2

)1/2
(

Esρ exp

(

−2D2

A3

))1/2

≤ e−ρ0(sρ)es min1≤ j≤n(ξ1, j (ρ),ξ2, j (ρ))min j (ξ1, j (α)/ξ
2
1, j ,ξ2, j (α)/ξ

2
2, j ,ξ3/ξ

2
3 ).

Again, the second expectation in (5.4) has the same estimate. Thus, (5.3) is proved. �

5.1. Proof of Theorem 1.2

Proof of Theorem 1.2. Recall that we have h = (x, y, z) = (m, v) with v = x and
(y, z) = m. It is clear that for h with the norm |h|ρ ≤ 1 we have ν(h) ≤ Cρ. Let
δ
ρ
t = Ad((log t)ρ). Then, |δρt h|ρ = t |h|ρ. Let h = δ

ρ

exp(−s)h0 with |h0|ρ = 1 and

s < 0. Then |h|ρ = e−s > 1. Let K = {h0 : |h0|ρ = 1}. By definition (2.7), ν(h) =
ν(δ

ρ

exp(−s)h0) = ν((sρ)−1h0(sρ)) = eρ0(sρ)νsρ(h0),whereρ0 =∑ j (ξ1, j +ξ2, j )+ξ3,

and the result follows from Theorem 5.1. �

5.2. Example

Here we compare the above upper bound given by Theorem 1.2 with the result
from [12]. Consider k = 2 and ξ1, j = (1, 0), ξ2, j = (0, 1). Theorem 1.1 gives

ν(x, y, z) ≤ C(1 + |(x, y, z)|ρ)−
C1ρ0(ρ)γ (α)

4 , where γ (α) = 2 min(α1, α2) for some
constant C1 which depends on ρ and can be computed. Take ρ = (1, 2). To compute
C1 we proceed similarly as in [12, Example 1] getting that [12] gives

ν(x, y, z) ≤ C(1 + |(x, y, z)|ρ)−
min(α1,α2)

2 ,

whereas Theorem 1.2 gives, for example for φ(y, z) > 1 and ‖y‖∞ > 1,

ν(x, y, z) ≤ C(1 + |(x, y, z)|ρ)−
α1
2 − min(α1,α2)

2 .
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