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Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of
these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characteri-
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interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.
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1. INTRODUCTION

Ultrashort optical pulses are used in areas of science and
engineering as diverse as spectroscopy, medical research,
plasma physics, quantum optics, and optical telecommuni-
cations. In optical telecommunications, information is en-
coded in the amplitude and/or phase of an optical wave [1].
While information encoding in digital telecommunications
is based on a finite number of values of a physical quantity
(e.g., the presence or absence of energy in a given bit slot), the
ability to measure in detail the waveform of the optical wave
itself is crucial for optimizing the properties of the systems
that generate the signal, and understanding the linear and
nonlinear properties of the systems through which the pulses
propagate. This information is critical in developing strate-
gies to overcome the current limitations of current opti-
cal networks. For example, dispersionmanagement compen-
sates for the chromatic dispersion induced by linear propaga-
tion and can also be used to mitigate nonlinear effects. Sim-
ilarly, the phase distortion imposed on a pulse by the mod-
ulators used in carving the pulse out of a cw- or quasi-cw
source can impact the propagation of the pulse. Finally, mea-
surements of the electric field can be used to characterize the
linear or nonlinear properties of a device. There are various
approaches for temporal waveform measurements. We only
consider here techniques that provide self-referencing char-
acterization of an unknown pulse or a train of unknown but

identical pulses, that is, that do not use a well-characterized
pulse as a reference. While test-plus-reference techniques,
such as spectral interferometry [2, 3, 4], can be easier to im-
plement in some cases, they require a well-characterized ref-
erence pulse mutually coherent with the pulse under test. Al-
though this can be difficult to achieve over long distances,
they have been used to characterize pulses in the telecommu-
nication environment [5]. We will not deal either with sam-
pling techniques. These techniques can provide samples of
the temporal intensity of a source by fast photodetection and
electronics or by nonlinear interaction with a short sampling
pulse (nonlinear optical sampling) [6]. The technique of lin-
ear optical sampling [7] is also sensitive to the electric field of
the source (i.e., it can measure samples of the intensity and
phase of the source under test), and can therefore be used
to measure constellation diagrams [8]. These techniques are
particularly useful when dealing with a data-encoded opti-
cal source because of the randomness of the data stream, but
they constitute a class of their own that is beyond the scope of
this paper. The concepts presented here apply generally to the
characterization of the temporal electric field of short optical
pulses, although the details of experimental implementations
are strongly dependent upon the domain of application.

Since ultrafast optical pulses are faster than the fastest
electronic detection devices, they present a considerable chal-
lenge for measurement. An important additional limitation
is that photodetectors respond to the intensity of the pulse,
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so their output contains no information about the phase of
the incident radiation. To overcome these limitations, a com-
bination of ancillary filters can be used. The data are sim-
ply the photocurrent recorded by a time-integrating detector
as a function of the parameters of the filters. These might
be, for example, the passband frequency for a spectrometer
(a time-stationary linear filter), the modulation index for a
phase modulator (a time-nonstationary linear filter), or the
relative delay between the pulse under test and the mod-
ulation induced by an electroabsorption modulator (also a
time-nonstationary linear filter).

There are a number of quite general strategies for char-
acterizing the electric field of an optical pulse using such fil-
ters. These belong to one of three categories: spectrographic,
tomographic, or interferometric. The categories are distin-
guished by the procedure required for reconstructing the am-
plitude and the phase of the field from the recorded data
[9, 10]. Since the analytic signal of the field is a complex
function of one real variable, time, with finite support, the
data must contain a finite set of complex numbers sampling
the field at a finite set of time points, or equivalently a finite
set of frequency points. It can sometimes be fruitful, how-
ever, to reconstruct pulses by sampling a time-frequency rep-
resentation of the pulse (or its equivalent correlation func-
tion). In this case a two-dimensional set of data is obtained,
from which an inversion algorithm reconstructs an estimate
of the field. This is typically the case for spectrography, which
makes use of a time-frequency distribution, and requires so-
phisticated iterative data inversion algorithms to reconstruct
the field. Tomography also requires a large data set, in the
form of a large number of modulated pulse spectra, but the
inversion is direct (noniterative). Interferometry, in contrast,
measures only a one-dimensional data set and uses direct
data inversion to reconstruct the field.

In this paper, we provide examples of each of these
methods that are relevant to optical telecommunications. In
Section 2, we first discuss the representation of the electric
field of a pulse or train of pulses, and how the various mea-
surement techniques sample the field. Then, in Section 3, we
illustrate both the data acquisition and inversion for each
method.

2. REPRESENTING LIGHT PULSES

The fundamental quantity describing an isolated, individual
pulse of light is the real electric field. This is a function of
time and space, or equivalently frequency and wavevector.
The spatial dependence of the field is often assumed uniform.
This assumption is valid for optical fiber-based telecommu-
nications if the field occupies the lowest-order mode of the
fiber. Therefore in this paper, we concentrate on determining
the time dependence of the electric field.

In practice, it is often difficult to characterize a single
pulse, and one deals with a train of pulses instead of a single
pulse. One must be careful in specifying a field for such an
ensemble. If all of the pulses in the train are identical, the en-
semble is deemed coherent, and the underlying electric field

of an individual remains the quantity of interest. If, on the
other hand, the electric field is stochastic, fluctuating from
pulse to pulse, the ensemble is said to be partially coherent.
When this is the case, the amplitude and phase of the electric
field of an individual pulse brings little information on the
train of pulses, and pulse characterization involves measure-
ments of the statistical properties of the ensemble, for exam-
ple via the two-time or two-frequency correlation function.
We note that a data-modulated train of pulses is not coher-
ent if the data modulation is random (which is the case for a
deployed communication system).

2.1. Describing an optical pulse by its analytic signal

The real electric field, ε(t), underlying an optical pulse is
twice the real part of its analytic signal E(t) : ε(t) = 2 ×
Re[E(t)]. The analytic signal is the single-sided inverse
Fourier transform of the Fourier transform of the field,

E(t) = 1√
2π

∫∞
0
dω ε̃(ω) exp[−iωt], (1)

where

ε̃(ω) = 1√
2π

∫∞
−∞

dt ε(t) exp[iωt]. (2)

The electric field is considered to have compact support in
the time domain, and is further assumed to have no spectral
component atω = 0 so ε̃(0) = 0 (since a pulse propagating in
a charge-free region of space has no dc spectral component,
the electric field must have zero area). The analytic signal is
complex and therefore can be expressed uniquely in terms of
an amplitude and phase:

E(t) = ∣∣E(t)∣∣ exp [iφt(t)] exp [iφ0] exp [− iω0t
]
, (3)

where |E(t)| is the time-dependent envelope, ω0 is the carrier
frequency (usually chosen near the center of the pulse spec-
trum), φt(t) is the time-dependent phase, and φ0 a constant.
The square of the envelope, |E(t)|2, is the time-dependent
intensity of the pulse which could be measured by a detec-
tor of sufficient bandwidth. The time-dependent phase ac-
counts for the occurrence of different frequencies at different
times, and the instantaneous frequency is usually defined as
−∂φt/∂t. As an example, Figure 1 shows the temporal inten-
sity and phase of a pair of chirped Gaussian pulses. The time-
dependent phase structure is indicative of a variation of the
instantaneous frequency across the pulse.

The frequency representation of the analytic signal is the
Fourier transform of E(t),

Ẽ(ω) = ∣∣Ẽ(ω)∣∣ · exp [iφω(ω)]
= 1√

2π

∫∞
−∞

dt E(t) exp[iωt]

=
ε̃(ω), ω > 0,

0, ω ≤ 0.

(4)
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Figure 1: Intensity and phase (resp., continuous and dashed line) of a pair of chirped Gaussian pulses in (a) the temporal domain and (b)
the spectral domain.

Here |Ẽ(ω)| is the spectral amplitude and φω(ω) is the spec-
tral phase. The square of the spectral amplitude, |Ẽ(ω)|2, is
the spectral intensity. Strictly speaking this quantity is the
spectral flux—the quantity measured in the familiar way by
means of a spectrometer followed by a photodetector. The
spectral phase describes the relative phases between each of
the frequencies, and the group delay for frequency ω is usu-
ally defined as ∂φω/∂ω.

The sampling requirement for the reconstruction of the
electric field is given by the Whittaker-Shannon theorem
[11], which asserts that if the field has compact support in the
time domain over a range ∆t, then a sampling of Ẽ(ω) at the
Nyquist frequency rate of 2π/∆t is sufficient for reconstruct-
ing the analytic signal E(t) and consequently the electric field
ε(t) exactly.

Figure 1 shows the spectral intensity and spectral phase
of the chirped pair of Gaussian pulses. The spectral fringes
have a period of the inverse of the temporal separation of the
pair of pulses.While the spectrum can reveal some properties
of the waveform, both the spectral intensity and phase must
be measured to fully characterize the electric field.

2.2. The two-time correlation function and its
phase-space representations

If a measurement relies on averaging the detected signal over
a train of pulses, then it is necessary to define the properties
of the pulses in a different way. Although it is formally quite
difficult to formulate rigorously even the simplest of con-
cepts, such as the spectrum [12], for a nonstationary field,
a simple-minded approach can be fruitful. If each pulse in
the train is an independent realization of a stochastic ensem-
ble, then the time average is equivalent to an ensemble av-
erage by definition. This enables the coherence of the train
to be defined operationally in a reasonable way. It is impor-
tant, though, to realize that the electric field amplitude and
phase of an individual pulse does not bring significant infor-
mation about the train of pulses and pulse characterization
efforts must ultimately be directed toward measurement of
the ensemble statistics.

The simplest quantity that quantifies the statistical prop-
erties of the ensemble is the nonstationary two-time field
correlation function

C
(
t1, t2

) = 〈E(t1)E∗(t2)〉, (5)

where the angle brackets indicate an average over the ensem-
ble of pulses, each of the electric fields being defined with
respect to a local time frame. With this definition of the en-
semble, we do not need to adopt procedures along the lines
of those developed by Wiener and Khintchine [13] to define
the correlation function.

C(t1, t2) provides a quantitative description of fluctua-
tions from pulse to pulse in the electric field at times t1 rela-
tive to those at times t2. This is a complete description of the
pulse ensemble so long as the fluctuations obey normal (or
Gaussian) statistics. If not, then it is the simplest of a hierar-
chy of multitime correlation functions defining the ensem-
ble. Furthermore, for a train of identical pulses, C(t1, t2) fac-
torizes into E(t1)E∗(t2) and the electric field amplitude and
phase are readily obtained.

It is frequently useful to work with a variation of the
correlation function that uses a two-dimensional space of
time and frequency—the chronocyclic phase-space. The in-
tuitive concept of chirp (i.e., time-dependent frequency in
the pulse) can be most easily seen within this space. The rela-
tionships between the two-time correlation function and the
chronocyclic (time/frequency) and frequency-domain repre-
sentations of the ensemble may be derived by rewriting (5)
in terms of a center-time coordinate, t, and a difference-time
coordinate, ∆t:

C(t,∆t) = C
(
t1, t2

)
, (6)

where t = (t1 + t2)/2 and ∆t = t1 − t2. The two-frequency
field correlation function is obtained by taking the two-
dimensional Fourier transform of the two-time correlation
function

˜̃C(∆ω,ω) = 1
2π

∫∫
dt d∆t C(t,∆t) exp

[
i(t∆ω + ∆tω)

]
. (7)
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Figure 2: Wigner function of a pulse with (a) linear chirp and (b) quadratic chirp.
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Figure 3:Wigner function of the pair of chirped Gaussian pulses when the two pulses are (a) mutually coherent and (b)mutually incoherent.

The center-frequency and difference-frequency coordinates
in (7) are given by ω = (ω1+ω2)/2 and∆ω = ω1−ω2, respec-
tively. The pulse ensemble may also be represented within
the chronocyclic phase spaces defined by the complimentary
variables t, ω and ∆ω, ∆t. The chronocyclic Wigner function,
W(t,ω), and ambiguity or Wigner characteristic function,
A(∆ω,∆t), provide two particularly useful descriptions of the
pulse train statistics in these spaces. The relationship between
the various representations of the correlation function has
been discussed in the context of spatially localized fields in
[14], and in the context of signal analysis in [15]. Chrono-
cyclic phase-space distributions have found increasing appli-
cation in ultrafast optics. The Wigner function has been de-
scribed in [16, 17, 18], and the Page distribution in [19]. An-
other distribution of interest is the ambiguity function that is
used in radar technology [20]. These functions are also used
in many areas of physics and engineering, and their relations
and properties are discussed in [21]. The Wigner function is
obtained by taking the one-dimensional Fourier transform
of C(t,∆t) over the time-difference coordinate

W(t,ω) = 1√
2π

∫
d∆t C(t,∆t) exp[iω∆t], (8)

whereas the ambiguity function is obtained from C(t,∆t) by
performing the Fourier transform over the average-time co-
ordinate

A(∆ω,∆t) = 1√
2π

∫
dt C(t,∆t) exp[i∆ωt]. (9)

These representations are uniquely related to one another by
Fourier transformations. The Wigner function has many in-
teresting properties, for example, the ability to represent a

chirp, as can be seen in Figure 2a. It is a real, but not nec-
essarily positive function, which complicates its interpreta-
tion as a density function in the time-frequency space. For
example, the Wigner function of a Gaussian pulse with a
quadratic chirp (i.e., a third-order spectral phase), as dis-
played in Figure 2b, is negative over a significant portion of
the chronocyclic space. An example of the Wigner function
of the pair of chirped Gaussian pulses in Figure 1 is shown in
Figure 3a. The side lobes are the phase-space representations
of the individual pulses, and the cross-terms between the two
fields lead to a central feature with fringes that indicate that
the pulses have a definite phase relation to one another—they
are coherent. The Wigner function for an incoherent pair of
pulses is also show in Figure 3b. In this case the ensemble
has a random phase between the pair, which causes a wash-
ing out of the interference pattern when the signal is averaged
over the ensemble. The coherence can be quantified using the
Wigner function, as explained in the next section.

Information regarding the shapes of ultrafast optical
pulses is generally inferred from the output of a square-law
detector after some filtering. Therefore it is of practical inter-
est to establish the relationship between measurable detector
output and the various descriptions of the pulse ensemble.
The average pulse time-dependent intensity is obtained from
the two-time correlation function by setting ∆t = 0. Alter-
natively, it is a projection of the Wigner function onto the
frequency axis, or the Fourier transform of the ∆t = 0 line of
the ambiguity function

I(t) = C(t, 0)

=
∫
dωW(t,ω)

=
∫
d∆ωA(∆ω, 0) exp[−i∆ωt].

(10)
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Furthermore, the average pulse spectral intensity is obtained
from the two-frequency correlation function by setting ∆ω =
0, or by projecting the Wigner function onto the frequency
axis, or by taking the Fourier transform of the ∆ω = 0 line of
the ambiguity function:

I(ω) = ˜̃C(0,ω)
=
∫
dtW(t,ω)

=
∫
d∆t A(0,∆t) exp[−i∆tω].

(11)

It is important to recognize that the various time-frequency
distributions and their relations are central to the character-
ization of pulses in the optical domain, since they are sim-
ply related to the measured data. In optics, direct measure-
ment of the waveform is not possible. This is in contrast to
the more usual application of these distributions in signal
processing, where they are commonly used as mathematical
tools for signal representation, for example, to track the pres-
ence of various instantaneous frequencies in a known (mea-
sured) sound waveform.

2.3. The integral degree of coherence:
when is a pulse field useful?

Since a field amplitude and phase may be defined in a unique
way only for identical pulses, it is important to quantify the
degree to which the pulses in the ensemble are alike. A useful
quantity for this purpose is the integral degree of coherence,
µ. µ is readily derived from the time-domain analogue of
Born andWolf ’s [13] degree of coherence γ(t+∆t/2, t−∆t/2),
defined as

γ(t +
∆t

2
, t − ∆t

2
) = C(t,∆t)[

C(t + ∆t/2, 0)C(t − ∆t/2, 0)
]1/2 . (12)

Using the Schwarz inequality, it is straightforward to show
that 0 ≤ |γ(t + ∆t/2, t − ∆t/2)| ≤ 1. Consider the n-

dimensional vectors �a and �b, with components {ai} and {bi}
where i ∈ (1,n). Then

0 ≤
∣∣∣∣∣

n∑
i=1

a∗i bi

∣∣∣∣∣
2

≤
( n∑

i=1
a∗i ai

)( n∑
i=1

b∗i bi

)
. (13)

Allowing ai = Ei(t−∆t/2)/
√
n and bi = Ei(t+∆t/2)/

√
n, that

is, the ith realization of the field amplitude at times t − ∆t/2
and t + ∆t/2, respectively, it is clear that

0 ≤
∣∣∣∣∣ 1n

n∑
i=1

E∗i
(
t − ∆t

2

)
Ei

(
t +

∆t

2

)∣∣∣∣∣
2

≤
(
1
n

n∑
i=1

E∗i

(
t +

∆t

2

)
Ei

(
t +

∆t

2

))

×
(
1
n

n∑
i=1

E∗i

(
t − ∆t

2

)
Ei

(
t − ∆t

2

))
.

(14)

In the limit that n → ∞, the summations in (14) lead to an
average over the ensemble and the inequality simplifies to

0 ≤ ∣∣C(t,∆t)∣∣2 ≤ C
(
t +

∆t

2
, 0
)
C
(
t − ∆t

2
, 0
)
. (15)

The upper and lower bounds on the degree of coherence fol-
low from (15). However, it is difficult to determine γ(t +
∆t/2, t − ∆t/2) experimentally since it becomes singular for
times at which C(t,∆t) is zero. A practically more useful def-
inition is offered by integrating equation (15) over the entire
t, ∆t space, and dividing by the quantity on the right-hand
side, leading to the integral degree of coherence, µ,

0 ≤ µ =
∫∫
dt d∆t

∣∣C(t,∆t)∣∣2[ ∫
dt C(t, 0)

]2 ≤ 1. (16)

Equivalent relations follow for the frequency domain and
chronocyclic representations, for example, in the case of the
ambiguity function

µ =
∫∫
d∆t d∆ω

∣∣A(∆ω,∆t)∣∣2[
A(0, 0)

]2 . (17)

An integral degree of coherence less than one corre-
sponds to a partially coherent train in which the pulse shape
and/or phase fluctuate, in which case C(t,∆t) is the funda-
mental quantity of interest. When µ = 1 the ensemble is said
to be fully coherent (the pulses in the ensemble are identi-
cal within a constant phase factor) and C(t,∆t) factorizes.
In the latter case the electric field becomes the fundamental
quantity of interest and is readily retrieved from the two-time
correlation function using

∣∣E(t)∣∣ = √C(t, 0), (18)

and with t2 held fixed,

Arg
[
E(t)

] = tan−1
[
ImC

((
t + t2

)
/2, t − t2

)
ReC

((
t + t2

)
/2, t − t2

) ] + φ0, (19)

where φ0 is an undetermined constant. For example, the inte-
gral degree of coherence corresponding to the Wigner func-
tion in Figure 3a is equal to one, while that of the Wigner
function in Figure 3b is equal to 0.5. It is important to note
that (18) and (19) are valid only if the integral degree of co-
herence has been explicitly demonstrated to be equal to unity,
which of course requires that the two-time correlation func-
tion or equivalent representation in frequency or phase space
be measured. Thus in cases where an ensemble or train of
pulses, rather than an individual pulse, is used for applica-
tion or experimentation, pulse-shape characterization efforts
must ultimately be directed toward measurement of the en-
semble statistics.
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For a coherent train of pulses, (18) and (19) reveal that
the electric field is retrieved from a single line of the correla-
tion function. Hence, if the ensemble is assumed a priori to
be coherent, the amount of collected data can be greatly re-
duced. This is a luxury afforded only to measurement tech-
niques that directly measure one of the correlation func-
tions.

2.4. Measurement strategies

The electric field of optical pulses can be characterized us-
ing various strategies, derived from, and with implications
for, other measurement problems, such as wavefront diag-
nosis and quantum state reconstruction. These strategies can
be organized into phase-space techniques, that is, techniques
that attempt to measure either the Wigner or ambiguity
function by exploring the entire two-dimensional chrono-
cyclic phase space, and direct techniques, that obtain the elec-
tric field of a coherent field from a single slice of a second-
order correlation function.

The minimal requirement for the complete exploration
of the chronocyclic space required in phase-space techniques
is the presence of two filters. The analysis details of phase-
space techniques are found in [9]. There are two subclasses of
phase-space techniques; those that make simultaneous mea-
surements of the complementary variables in an attempt to
reconstruct one of the phase-space distributions, and those
that recordmarginals of theWigner function after rotation in
the phase space, from which the Wigner function can be ob-
tained. The former method is known as spectrographic while
the latter is referred to as tomographic. Spectrography is dis-
cussed in Sections 3.1 and 3.2, and tomography is discussed
in Sections 3.5 and 3.6.

In contrast, direct techniques do not require this com-
plete exploration of the phase space occupied by the correla-
tion function. This is a significant advantage of direct tech-
niques compared to phase-space techniques. Moreover, if the
pulse train is assumed a priori to consist of identical pulses, as
is most always assumed in reconstructing pulses from spec-
trographic or tomographic data, only one slice of the corre-
lation function is required to obtain the amplitude and phase
of the electric field [10]. Such slices are precisely what is mea-
sured in interferometry. This is usually achieved by mixing
the field under test with a modified version of itself, or more
generally by mixing two modified versions of the field un-
der test. Thus, while phase-space techniques must explore
the entire chronocyclic space even when the electric field is
the fundamental quantity of interest, direct techniques need
only return a single slice of the correlation function in or-
der to construct the simpler quantity. Roughly speaking, if
one wishes to reconstruct the field at N time points, then at
least 2N independent data points are required. While direct
techniques are capable of reconstructing the field by record-
ing only the necessary 2N points, phase-space techniques re-
quire the measurement ofN2 points. Of course, an overcom-
plete data set is available from direct measurement of the en-
tire correlation function as well. Direct interferometric tech-
niques are discussed in Sections 3.3 and 3.4.

3. SELF-REFERENCING TEMPORAL CHARACTERIZA-
TION OF SHORT OPTICAL PULSES

From a practical point of view, one first measures an experi-
mental trace (e.g., the current from a photodiode as a func-
tion of various parameters of the experimental setup, e.g.,
the central frequency of a passband spectral filter), then ap-
plies a set of mathematical operations to the measured data
in order to reconstruct the electric field. The design of the
experimental setup and the type of experimental trace deter-
mine the recovery algorithm, and more generally the possi-
bility of such recovery. In this section we take a closer look
at the concepts of spectrography, tomography, and interfer-
ometry, and examples of experimental implementations and
results are given.

3.1. Spectrography

Spectrographic techniques make use of two sequential fil-
ters, one time-stationary (spectral filter) and one time-
nonstationary (time gate) followed by a square-law detec-
tor (Figure 4). The recorded signal is either a measure of the
spectrum of a series of time slices (spectrogram) or a mea-
sure of the time of arrival of a series of spectral slices (sono-
gram) depending upon the ordering of the filters. There is no
difference in principle between the two possible filter order-
ings and thus this type of apparatus should be thought of as
one that makes simultaneous measurements of the conjugate
variables rather than sequential measurements. Since precise
measurements of the conjugate variables cannot be made si-
multaneously, a spectrographic apparatus can measure only
a smoothed out version of the Wigner function—theWigner
function convolved with an apparatus blurring or window
function. In principle, if the window function is known, the
Wigner function itself can be obtained via deconvolution but
this is usually impractical because of the severe signal-to-
noise requirements. Thus the spectrographic class of phase-
space pulse characterization techniques supply only qualita-
tive insight into pulse train statistics. However, if the pulses in
the ensemble are assumed a priori to be identical, the resul-
tant two-dimensional phase-retrieval problem can be solved
iteratively. The success of this approach has been extensively
demonstrated in the technique of frequency-resolved optical
gating (FROG) [22].

A typical implementation of spectrography uses a tempo-
ral gate for the signal under test (e.g., the action of the pulse
under test with one or several other pulses in a nonlinear op-
tical medium [22], or a “shutter” function provided by a tem-
poral modulator [23]) and a device capable of measuring the
optical spectrum (e.g., an optical spectrum analyzer based
on a diffraction grating and imaging optics, or a scanning
Fabry-Perot etalon, together with a time-integrating photo-
diode). The spectrogram of the electric field of the test pulse
is obtained by measuring the optical spectrum of the pulse
after temporal gating for various relative delays between the
pulse and the gate. The experimental trace is therefore

S(ω, τ) =
∣∣∣∣∫ E(t)R(t − τ) exp(iωt)dt

∣∣∣∣2, (20)
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Figure 4: Conceptual implementation of (a) a spectrogram and (b) sonogram.

where ω is the optical frequency and τ the relative delay be-
tween the gate and the test pulse. It is important that the res-
olution of the spectral filter is very high in order to ensure
that the measured trace is effectively the spectrogram of the
test pulse.

A sonogram can be measured by reversing the order of
the temporal and spectral gate [24, 25]. Typically, the pulse
is first spectrally filtered using a spectrometer with variable
central frequency Ω. The temporal intensity of the filtered
pulse is then measured, and the sonogram is constructed as
the set of the measured temporal intensities for various cen-
tral frequenciesΩ:

S(Ω,T) =
∣∣∣∣∫ Ẽ(ω)R̃(ω−Ω) exp(−iωT)dω

∣∣∣∣2. (21)

In this case the temporal resolution should be very high to
ensure that the measured trace is a true sonogram. In prac-
tice, one usually implements the sonogram by means of a
nonlinear cross-correlation of the spectrally gated signal with
the test pulse, which has a shorter duration than the filtered
pulse. Therefore, the experimental trace is given by a convo-
lution of the sonogram of (21) with the unknown temporal
intensity of the pulse under test, a fact that can be included
in the inversion algorithm [25].

It can be shown that the spectrogram is the correlation of
theWigner function of the pulse with theWigner function of
the gate with a change of sign on the frequency variable [15]:

S(ω, τ) =
∫∫

WE(t′,ω′)WR(t′ − τ,ω− ω′)dt′dω′. (22)

The data can therefore be viewed in the chronocyclic space as
a measurement of the overlap of the Wigner function of the
pulse with the Wigner function of the gate (whose position
in the space is related to the variables ω and τ, which must
vary over the entire region of phase space occupied by the
pulse), and the latter therefore appears as the apparatus win-
dow function in spectrographic measurements. As a Wigner
function has a lower bound of support in the time-frequency
space (i.e., it always occupies a region of phase space greater
than π), the spectrogram is always a “blurred” version of the
Wigner function of the pulse. In principle the test pulse can
be completely characterized very simply by direct Fourier de-
convolution if the gate (and therefore its Wigner function)
is known [17, 21, 26, 27]. In practice such deconvolution is
highly sensitive to noise, since it involves the division of the
Fourier transform of themeasured spectrogramwith the am-
biguity function of the gate.

The spectrogram or sonogram can be used to obtain the
instantaneous frequency and group delay of the signal. For
example, the average frequency of the pulse for a given rela-
tive delay τ between the pulse and the gate provides a mea-
sure of the chirp, and can be obtained from the spectrogram
via [21]

〈ω〉τ =
∫
S(ω, τ)ωdω∫
S(ω, τ)dω

= −
∫ ∣∣E(t)∣∣2∣∣R(t − τ)

∣∣2{ϕ′E(t) + ϕ′R(t − τ)
}
dt∫

S(ω, τ)dω
.

(23)

If the gate function is real (i.e., it does not have a phase) and
is much shorter than any variation of the electric field of the
pulse under test, then it can be replaced in the integral with
a Dirac delta function, and the average frequency calculated
from the spectrogram approaches−ϕ′E(τ), that is, the instan-
taneous frequency of the electric field at the delay τ. Such
gate can be implemented by cross-correlating the pulse un-
der test with a much shorter optical pulse without temporal
phase distortion, though this is often impractical. The diffi-
culty with this approach is that the uncertainty in the local
average frequency becomes very large, since the spectral con-
tent of the spectrogram is dominated by the broad spectrum
of the gate. Such approach was initially developed for short
optical pulses [28, 29], and similar approaches are still being
used in optical telecommunications [30, 31].

A better way to reconstruct the pulse field from a spectro-
gram is to use phase retrieval. In fact, this is the only option
if the gate is unknown. The spectrogram of (20) is the mod-
ulus square of the short-time Fourier transform of the pulse.
The trick in phase retrieval is to estimate the phase of the
transform. Once this is known, a Fourier transform directly
leads to the recovery of both the pulse under test and the gat-
ing function. Phase retrieval is often ambiguous in one di-
mension, but is usually unique in two dimensions [32]. The
excess data available in the spectrogram enables iterative re-
construction ofN complex numbers specifying the field from
theN2 data points, and this can also lead to the simultaneous
reconstruction of the gate [23, 33]. Furthermore, in the case
of the nonlinear spectrogram, there is often a known func-
tional relation between the pulse and the gate, since the gate
is implemented as a nonlinear interaction with replicas of the
pulse under test. Also, other information might be available,
such as the spectrum of the pulse or the transfer function of
the gate. These constraints enable the recovery of the field
by means of several algorithms. A very robust inversion al-
gorithm is based on the principal component general projec-
tions algorithm [34], which uses projections derived from the
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Figure 5: Example of the implementation of (a) spectrography and (b) spectrogram measured on a 40GHz alternate-chirp return-to-zero
signal with an electroabsorption modulator driven at 10GHz .
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Figure 6: (a) Intensity and phase of the optical signal (resp., continuous and dashed line). (b) Transmission and phase of the gate (resp.,
continuous and dashed line) extracted from the previous spectrogram.

experimentally measured spectrogram and from the func-
tional form of the spectrogram as the modulus square of the
integral

∫
E(t)R(t − τ) exp(iωt)dt.

3.2. Experimental spectrography for
telecommunication applications

Spectrograms and sonograms are popular tools for ultra-
short optical pulse characterization. FROG generates a non-
linear spectrogram for the pulse by means of a nonlinear op-
tical interaction of the pulse under test with one or several of
its replicas [22]. This has the experimental advantage of using
pump-probe geometries that are commonly used in ultrafast
spectroscopy. Adaptations of FROG to pulse characterization
in the telecommunication environment can be found, for ex-
ample, in [35, 36, 37, 38].

For picosecond pulses, such as those used in telecommu-
nications, a gate of smaller bandwidth than needed for fem-
tosecond pulses, such as those typically found in ultrafast op-
tics applications, suffices. It is possible to implement the gate
using a temporal modulator, which has the important ad-
vantage of making the entire process linear. It is therefore ex-
tremely sensitive to small input pulse energies, yet insensitive
to polarization and wavelength [23, 39].

The experimental implementation of spectrography with
a temporal modulator is straightforward. The pulse under

test is gated by a temporal modulator driven by a control
signal synchronized to the pulse under test, as shown in
Figure 5a. For example, an electroabsorption modulator can
be driven by a sinusoidal voltage with well-defined phase
relative to the test pulse. The relative delay τ between the
signal under test and the gate is modified by changing the
phase of the driving RF sine wave using a voltage-controlled
phase shifter. The spectra after the modulator are recorded
as a function of the optical frequency ω with a scanning
monochromator, or with a Fabry-Perot etalon followed by
a photodiode. An example of a measured spectrogram is dis-
played in Figure 5b. The characteristics of the pulse train and
gate are extracted from the spectrogram, and examples of the
retrieved signal and gate when characterizing an alternate-
chirp signal [40] are plotted in Figure 6.

3.3. Interferometry

Interferometry is a well-known approach to the characteri-
zation of optical fields in the spatial domain. It is a simple
method for converting phase information into amplitude
information that can then be read using square-law detec-
tors. For temporal waveform measurement, interferometry,
in contrast to spectrography, measures a single line of the
two-time or two-frequency correlation function of the pulse
under test. This is sufficient to characterize completely a
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Figure 7: Conceptual approach for spectral shearing interferome-
try.

single pulse or a coherent pulse train, yielding N samples of
the field from αN data points (α > 1). It therefore makes op-
timal use of the experimental data.

It is possible to construct the spectral equivalent of spa-
tial shearing interferometry, in which the spatial phase pro-
file of a beam is determined by interfering it with a laterally
shifted (or sheared) replica. The resulting intensity interfer-
ogram can be measured with a square-law detector and the
phase simply extracted. The spectral analogue, in which two
spectrally sheared pulses are interfered, also allows direct re-
construction of the electric field in the spectral domain us-
ing the measured spectral phase and a pulse spectrum. Be-
cause a single slice of the correlation function is sufficient to
characterize the electric field of a pulse that has a continu-
ous spectral support, interferometry is viable for most appli-
cations. We will focus here on techniques that use the two-
time frequency correlation function (or its sampled version)
Ẽ(ω)Ẽ∗(ω −Ω), whose phase ϕ(ω) − ϕ(ω −Ω) can be con-
catenated or integrated to get the spectral phase of the initial
pulse [41, 42]. For a continuous spectral density, the spectral
shear Ω is set by the sampling theorem, and it is typically a
few percent of the total bandwidth of the pulse under test.
Too large a shear would lead to undersampling of the pulse
spectrum, while too small a shear could lead to increased sen-
sitivity to noise, and thus reduced accuracy of the reconstruc-
tion. For a periodic source with high duty cycle, it suffices to
measure the intensity and phase of the spectral modes, and
the shear can usually be set to the value of the separation be-
tween the modes, that is, the repetition rate. The spectral in-
tensity can be obtained either from a separate measurement
using the spectrometer, or can be extracted from the correla-
tion function directly.

A variety of interferometric techniques are known. The
relative phase between adjacent spectral modes can, for ex-
ample, be extracted in the time domain after spectral filter-
ing [43, 44, 45, 46, 47], or in the spectral domain after proper
temporal modulation [48]. The latter class of techniques also
includes spectral shearing interferometry, where the quantity
Ẽ(ω)Ẽ∗(ω − Ω) is obtained by measuring the interference
of the pulse under test with its sheared replica with an opti-
cal spectrum analyzer (Figure 7). The frequency shear Ω can
be implemented using a linear temporal phase modulation
exp(iΩt). The spectral intensity of the two interfering pulses
is |Ẽ(ω)|2+|Ẽ(ω−Ω)|2+Ẽ(ω)Ẽ∗(ω−Ω)+Ẽ∗(ω)Ẽ(ω−Ω). If
a delay is introduced between the nonshifted and the shifted
replica, this leads to spectral fringes with small spacing, by
virtue of the phase ϕ(ω) − ϕ(ω − Ω) + ωτ. In this case, the
interferometric component can be directly extracted using
Fourier processing of a single interferogram [49, 50].

Phase modulator
Optical
spectrum
analyzer

Figure 8: Experimental implementation of spectral shearing inter-
ferometry.

3.4. Experimental interferometry for
telecommunication applications

There are numerous implementations of interferometry for
the self-referencing characterization of optical pulses. For
spectral shearing interferometry, a spectral shear of arbitrary
value can be induced by mixing the test pulse with, for ex-
ample, a highly chirped pulse in a nonlinear medium. This
is known as spectral phase interferometry for direct electric
field reconstruction [49]. A spectral shear can also be in-
duced, as explained above, by linear temporal phase mod-
ulation of the pulse under test. Such modulation can be ob-
tained using an electro-optic phase modulator driven by an
appropriate voltage [50, 51]. The generation of a strictly lin-
ear voltage at a high frequency is in practice difficult, and it
is easier to use a sinusoidal voltage synchronized so that the
pulse is at the zero-crossing of the modulation, therefore ex-
periencing linear temporal phase modulation. One possible
implementation is described in Figure 8.

The pulse under test is split into two replicas. These two
replicas, separated by a delay τ are sent to a phase modulator
driven by a sinusoidal voltage with period 2τ. The synchro-
nization is performed so that the two pulses stand at differ-
ent zero-crossings of the modulation. Therefore, the pulses
are sheared in opposite directions along the frequency axis.
If Ω is the shear imposed on one of the pulses, the extracted
spectral phase difference is ϕ(ω +Ω) − ϕ(ω −Ω) + ωτ. The
carrier term ωτ can be removed either by turning the mod-
ulation off [50] or by measuring a second phase difference
when the relative pulse under test and the sine wave driv-
ing the modulator has been modified by τ [51]. In this case
the extracted spectral phase is ϕ(ω − Ω) − ϕ(ω + Ω) + ωτ;
so that the difference between the two extracted phases is
2ϕ(ω +Ω)− 2ϕ(ω−Ω). Figure 9 displays an experimentally
measured interferogram. The rapidly varying fringes due to
the delay between the two interfering pulses are evident. An
example of the intensity and phase measured using spectral
shearing interferometry is also shown.

3.5. Tomography

As with spectrographic methods, the so-called tomo-
graphic techniques require in-series time-stationary and
time-nonstationary filters so that the entire phase space can
be explored. However, unlike spectrographic techniques, the
first filter in a tomographic apparatus is a phase-only filter
(either a quadratic temporal phase modulator or a quadratic
spectral phase modulator). The inclusion of a quadratic
phase-only filter results in a distinctly different interpretation
of the measurement, leading to a fundamentally different
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Figure 9: (a) Experimental interferogram and close-up on the fringes. (b) Reconstructed spectral intensity and phase (resp., continuous and
dashed line).

inversion algorithm. To see this, notice that a phase-only fil-
ter does not provide any information on the frequency or the
arrival time of a pulse ensemble and hence, does not consti-
tute a measurement of either the spectral or temporal extent
of the pulse. So, a tomographic apparatus does not make a
simultaneous measurement of the conjugate variables time
and frequency. Rather, the quadratic phase modulation acts
to rotate the phase space. The square-law detector in com-
bination with the amplitude-only filter records the resulting
intensity distribution, that is, the projection of the rotated
Wigner function. A sufficiently large number of phase-space
rotations between −π/2 and π/2 allows, in principle, recon-
struction of theWigner function via the inverse Radon trans-
form [52]. Numerical versions of this inversion algorithm
were developed for applications of tomography in areas such
as medical imaging, where one aims at reconstructing an ob-
ject from a set of its projections (typically, 2D projections of
a 3D object, or 1D projections of a 2D object) [53]. A typi-
cal implementation of chronocyclic tomography would use a
combination of quadratic temporal and spectral phase mod-
ulations to rotate the phase space, and optical spectrummea-
surements to project the Wigner function. The Wigner func-
tion of the signal under test can be reconstructed from the

measured projections, regardless of the degree of coherence
of the pulse ensemble. This capability is unique to tomogra-
phy among the techniques presented in this paper. This capa-
bility has not been realized experimentally, however, because
of the relative difficulty of implementing variable temporal
and spectral phase modulations.

The time-to-frequency converter [54, 55] operates by ro-
tating the Wigner function by π/2, so that a measurement
of the frequency marginal after rotation leads to the tem-
poral marginal, that is, one obtains the temporal intensity
of the signal under test via an optical spectrum measure-
ment. However, no phase information is obtained, and this
approach requires a large rotation of the Wigner function,
which is difficult to obtain.

The assumption that the pulse train is coherent, as is
done in othermethods, reduces the requirement on the num-
ber of projections needed to reconstruct the pulse field. This
leads to the concept of simplified chronocyclic tomography.
This technique does not require a large rotation of the phase-
space density, and reconstructs the amplitude and phase of
the signal from only two projections of the Wigner function.
It is based on a particular relation between the frequency
marginal of the rotatedWigner function and the electric field
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Figure 10: Experimental implementation of simplified chronocyclic tomography.
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Figure 11: (a) Two spectra measured for small positive and negative quadratic temporal phase modulation (continuous and dashed line).
(b) Reconstructed spectral intensity and phase (continuous and dashed line).

[56, 57]. The fractional power spectrum of the pulse is ob-
tained from the rotated Wigner function:

Iα(ω) =
∫
W
[
t cos(α)+ω sin(α),ω cos(α)−t sin(α)]dt. (24)

The derivative of this function with respect to the angle of
rotation α at α = 0 leads to

∂Iα
∂α

=
∫ ⌊

ω
∂W

∂t
− t

∂W

∂ω

⌋
dt = − ∂

∂ω

∫
tW dt, (25)

and therefore to

∂Iα
∂α

= − ∂

∂ω

⌊
I
∂ϕ

∂ω

⌋
. (26)

A rotation of the phase-space of the pulse requires a com-
bination of a quadratic temporal and spectral phase modula-
tions. However, the relation in (26) also holds for a shear of
the phase-space, in which ω is transformed into ω + ψt, and
the temporal coordinate is unchanged. This can be accom-
plished by means of a parabolic temporal phase modulation
(1/2)ψt2 alone. In this case, one finds

∂I0
∂ψ

= ∂

∂ψ

∫
W(ω + ψt, t)dt = ∂

∂ω

⌊
I
∂ϕ

∂ω

⌋
. (27)

This is the form most amenable to experiment, since the
bandwidth required to generate a small shear using a phase
modulator is modest.

3.6. Experimental chronocyclic tomography

Various implementations of the time-to-frequency converter
have been performed using either a phase modulator or non-
linear optics. A phase modulator driven by a sinusoidal volt-
age can provide quadratic temporal phase modulation to a
pulse synchronized with one of its extrema. A nonlinear in-
teraction can also provide such modulation.

Simplified chronocyclic tomography has been imple-
mented using a temporal phase modulator [57]. The pulse
under test was synchronized with a maximum of the phase
modulation, and the optical spectrum aftermodulationmea-
sured, as displayed in Figure 10. The pulse under test was
then synchronized with a minimum of the phase modula-
tion, and the corresponding optical spectrummeasured. The
derivative ∂I0/∂ψ and the spectrum I(ω) are obtained, re-
spectively, by taking the difference and the sum of the two
measured spectra. Equation (26) is then used to reconstruct
the phase ϕ(ω). Figure 11 displays an experimental pair of
measured spectra and the reconstructed intensity and phase
for a short optical pulse. The technique can also be improved
using synchronous detection of the derivative ∂I0/∂ψ, which
enables an increased signal-to-noise ratio [58].

4. CONCLUSION

Correlation functions and time-frequency distributions are
important concepts for both representation and characteri-
zation of ultrashort optical pulses. Aside from their utility in
analyzing the properties of the electric field of the pulse and
for reconstructing the field from experimental data, they are
necessary for representing the coherence properties of a train
of optical pulses. The concepts of spectrography, tomogra-
phy, and interferometry serve as useful major classifications
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for pulse-shape characterization, and each may be imple-
mented using appropriate linear optical elements. For pulses
typical in telecommunications applications, the use of linear
temporal modulators as time-nonstationary filters in these
classes of measurement has been detailed and experimental
implementations for characterization in the telecommunica-
tion environment have been presented. As research in both
signal analysis and ultrafast optics is in continual develop-
ment, it can be expected that further exciting discoveries will
be made in the near future.
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