
Form Methods Syst Des (2016) 49:33–74
DOI 10.1007/s10703-016-0241-z

ModelPlex: verified runtime validation of verified
cyber-physical system models

Stefan Mitsch1,2 · André Platzer1

Published online: 18 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Formal verification and validation play a crucial role in making cyber-physical
systems (CPS) safe. Formal methods make strong guarantees about the system behavior if
accurate models of the system can be obtained, including models of the controller and of
the physical dynamics. In CPS, models are essential; but any model we could possibly build
necessarily deviates from the real world. If the real system fits to the model, its behavior is
guaranteed to satisfy the correctness properties verified with respect to the model. Otherwise,
all bets are off. This article introduces ModelPlex, a method ensuring that verification results
about models apply to CPS implementations. ModelPlex provides correctness guarantees for
CPS executions at runtime: it combines offline verification of CPS models with runtime vali-
dation of system executions for compliance with the model. ModelPlex ensures in a provably
correct way that the verification results obtained for the model apply to the actual system runs
by monitoring the behavior of the world for compliance with the model. If, at some point,
the observed behavior no longer complies with the model so that offline verification results
no longer apply, ModelPlex initiates provably safe fallback actions, assuming the system
dynamics deviation is bounded. This article, furthermore, develops a systematic technique to
synthesize provably correct monitors automatically from CPS proofs in differential dynamic
logic by a correct-by-construction approach, leading to verifiably correct runtime model val-
idation. Overall, ModelPlex generates provably correct monitor conditions that, if checked
to hold at runtime, are provably guaranteed to imply that the offline safety verification results
about the CPS model apply to the present run of the actual CPS implementation.

Keywords Runtime verification · Static verification · Cyber-physical systems ·
Hybrid systems · Differential dynamic logic

B Stefan Mitsch
smitsch@cs.cmu.edu

André Platzer
aplatzer@cs.cmu.edu

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA

2 Present Address: Department of Cooperative Information Systems, Johannes Kepler University,
Linz, Austria

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81728943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0241-z&domain=pdf

34 Form Methods Syst Des (2016) 49:33–74

1 Introduction

Cyber-physical systems (CPS) involve controllers and the relevant dynamics of the environ-
ment. Since safety is crucial for CPS, their models (e. g., hybrid system models [31]) need
to be verified formally. Formal verification guarantees that a model is safe with respect to a
safety property. The remaining task is to validate whether the model is adequate, so that the
verification results for the model transfer to the actual system implementation [18,42]. This
article introduces ModelPlex [24], a method to synthesize correct-by-construction monitors
for CPS by theorem proving automatically: it uses sound axioms and proof rules of differ-
ential dynamic logic [33] to formally verify that a model is safe and to synthesize provably
correct monitors that validate compliance of system executions with that model. The difficult
question answered by ModelPlex is what exact conditions need to be monitored at runtime
to guarantee compliance with the models and thus safety.

System execution, however, provides many opportunities for surprising deviations from
the model: faults may cause the system to function improperly [43], sensors may deliver
uncertain values, actuators may suffer from disturbance, or the formal verification may have
assumed simpler ideal-world dynamics for tractability reasons or made unrealistically strong
assumptions about the behavior of other agents in the environment. Simpler models are often
better for time-critical decisions and optimizations, because they make it possible to compute
predictions at the rate required for real-time decisions. The same phenomenon of simplicity
for predictability is often exploited for themodels in formal verification and validation, where
formal verification results are often easier to obtain for simpler models. It is more helpful
to obtain a verification or prediction result about a simpler model than to fail on a more
complex one. The flipside is that the verification results obtained about models of a CPS only
apply to the actual CPS at runtime to the extent that the system fits to the model. ModelPlex
enables tradeoffs between analytic power and accuracy of models while retaining strong
safety guarantees.

Validation, i. e., checking whether a CPS implementation fits to a model, is an interesting
but difficult problem. Even more so, since CPS models are more difficult to analyze than
ordinary (discrete) programs because of the continuous physical plant, the environment,
sensor inaccuracies, and actuator disturbance, making full model validation quite elusive.

In this article, we, thus, settle for the question of runtime model validation, i. e. validating
whether the model assumed for verification purposes is adequate for a particular system
execution to ensure that the offline safety verification results apply to the current execution.1

But we focus on verifiably correct runtime validation to ensure that verified properties of
models provably apply to the CPS implementation, which is important for safety and certifi-
cation [5]. Only with such a way of validating model compliance is there an unbroken chain
of evidence of safety claims that apply to the actual system, rather than merely to its model.
ModelPlex provides a chain of formal proofs as a strong form of such evidence.

At runtime, ModelPlex monitors check for model compliance. If the observed system
execution fits to the verified model, then this execution is safe according to the offline verifi-
cation result about the model. If it does not fit, then the system is potentially unsafe because
it evolves outside the verified model and no longer has an applicable safety proof, so that a
verified fail-safe action from the model is initiated to avoid safety risks, cf. Fig. 1. System-

1 ModelPlex checks system execution w.r.t. a monitor specification, and thus, belongs to the field of runtime
verification [18]. In this article we use the term runtime validation in order to clearly convey the purpose
of monitoring (i. e., runtime verification monitors properties without offline verification; ModelPlex validates
adequacy of models to transfer offline verification results to the online situation).

123

Form Methods Syst Des (2016) 49:33–74 35

Fig. 1 ModelPlex monitors in a Simplex [39] setting: a fallback action gets executed when sensor readings
and control decisions do not comply with a monitor

level challenges w.r.t. monitor implementation and violation cause diagnosis are discussed
elsewhere [8,21,45].

Checking whether a system execution fits to a verified model includes checking that
the actions chosen by the (unverified) controller implementation fit to one of the choices
and requirements that the verified controller model allows. It also includes checking that
the observed states can be explained by the plant model. The crucial questions are: What
are the right conditions to monitor? Which monitor conditions guarantee safety without
being overly restrictive? How can the correctness of such executable monitor conditions be
proved formally? How can a compliance monitor be synthesized that provably represents all
important aspects of complying with the verified model correctly? How much safety margin
does a system need to ensure that fail-safe actions are always initiated early enough for the
system to remain safe, even if its behavior ceases to comply with the model?

The last question is related to feedback control and can only be answered when assuming
some constraints on the maximum deviation of the real system dynamics from the plant
model [36]. Otherwise, i. e., if the real system might be infinitely far off from the model,
safety guarantees are impossible. By the sampling theorem in signal processing [40], such
constraints further enable compliance monitoring solely on the basis of sample points instead
of the unobservable intermediate states about which no sensor data exists.2

Extension In addition to providing proofs for the results, this article extends the short version
[24] with support for a correct-by-construction approach to synthesize ModelPlex monitors
by a systematic transformation in the differential dynamic logic axiomatization [33]. We
leverage an implementation of this axiomatization in our entirely new theorem prover KeY-
maera X [14] by performing the ModelPlex monitor proof construction in place, as opposed
to splitting it over the branches of its classical sequent calculus [29]. Sequent calculi are
usually preferred for proving properties, because they induce a sequent normal form that
simplifies proof construction by narrowing proof search to proof rules for top-level operators
and splitting the proof over independent branches as needed. Proofs cannot close during
the ModelPlex monitor construction, however, because the proof represents the conditions
on system executions that the verified model imposes. That is why proof branching in our
previous ModelPlex implementation [24] led to sizeable monitors with nontrivial redun-
dancy which were simplified with (unverified) external optimization tools and, thus, had to
be reverified for correctness.

Our newModelPlexmonitor synthesis presented here exploits the flexibility of differential
dynamic logic axioms [33] more liberally to significantly improve locality of the construc-
tion, which leads to reductions of the resulting monitors compared to our previous approach

2 When such constraints are not available, our method still generates verifiably correct runtime tests, which
detect deviation from the model at the sampling points, just not between them. A fail-safe action will then
lead to earliest possible best-effort mitigation of safety risks (rather than guaranteed safety).

123

36 Form Methods Syst Des (2016) 49:33–74

Fig. 2 Water tank model

[24]. The axiomatic ModelPlex construction also preserves the structure in the model bet-
ter. The ModelPlex construction now remains entirely under the auspices of the theorem
prover without external simplification, thereby eliminating the need to reverify correctness
of the resulting monitor. Efficiency during the ModelPlex monitor construction in the prover
is retained using contextual rewriting in the uniform substitution calculus for differential
dynamic logic [35]. We now also implemented optimizations of the ModelPlex monitor
constructions as proof tactics that were previously performed manually. This leads to a fully
automatic synthesis procedure for correct-by-constructionModelPlexmonitors that produces
proofs of correctness for the monitors it synthesizes.

2 Differential dynamic logic by example

This section recalls differential dynamic logic dL [29,31,33], which we use to syntactically
characterize the semantic conditions required for correctness of the ModelPlex approach.
Its proof calculus [29,31,33,35] is also exploited to guarantee correctness of the specific
ModelPlex monitors produced for concrete CPS models. A tactic for the proof calculus
implements the correct-by-construction ModelPlex monitor synthesis algorithm.

This section also introduces a simple water tank that will be used as a running example
to illustrate the concepts throughout (Fig. 2).

The water level in the tank is controlled by a digital controller that can periodically adjust
flow into and from the tank by adjusting two valves. Every time the controller decides on
adjusting the flow, it measures the water level through a sensor (i. e., it samples the water
level). As a safety condition, we want the water tank to never overflow: any control decision
of the controller must be such that the water level stays within 0 and a maximum water level
m at all times. We will use this example to introduce dL and its syntax for modeling hybrid
programs step by step. The final example is repeated in Appendix 1 for easy reference.

2.1 Syntax and informal semantics

Differential dynamic logic has a notation for modeling hybrid systems as hybrid programs.
Table1 summarizes the relevant syntax fragment of hybrid programs together with an infor-
mal semantics. The formal semantics ρ(α) of hybrid program α is a relation on initial and
final states of running α (recalled in Sect. 2.2 below).

Syntax of hybrid programs by example Let us start by modeling the controller of the water
tank example, which can adjust two valves by either opening them or closing them.

(vin := 1 ∪ vin := 0); (vout := 1 ∪ vout := 0)

Here, we use (deterministic) assignment x := θ to assign values to valves: setting a valve
to 1, as in vin := 1 means that the valve is open, while setting it to 0 means that the valve is
closed. Now any valve can either be opened or closed, not both at the same time, which we
indicate using the nondeterministic choice α∪β, as in vin := 1∪vin := 0. The controller first

123

Form Methods Syst Des (2016) 49:33–74 37

Table 1 Hybrid program representations of hybrid systems

Statement Effect

α;β Sequential composition, first run hybrid program α, then hybrid program β

α ∪ β Nondeterministic choice, following either hybrid program α or β

α∗ Nondeterministic repetition, repeats hybrid program α n ≥ 0 times

x := θ Assign value of term θ to variable x (discrete jump)

x := ∗ Assign arbitrary real number to variable x

?F Check that a particular condition F holds, and abort if it does not
(
x ′1 = θ1, . . . , Evolve xi along differential equation system x ′i = θi

x ′n = θn & F
)

Restricted to maximum evolution domain F

adjusts the incoming valve vin, before it adjusts the outgoing valve vout, as modeled using
the sequential composition α; β.

For theorem proving, however, it often makes sense to describe the system at a more
abstract level in order to keep the model simple. Let us, therefore, replace the two valves
with their intended effect of adjusting water flow f .

f := ∗; ?(−1 ≤ f ≤ 1)

Here, we use nondeterministic assignment f := ∗, which assigns an arbitrary real number
to f , so we abstractly model that the controller will somehow choose water flow. Next,
we need to restrict this arbitrary flow to those flows that make sense. Let us assume that
the incoming and the outgoing pipe from our water tank can provide and drain at most
1 liter per second, respectively. For this, we use the test ?(−1 ≤ f ≤ 1), which checks
that −1 ≤ f ≤ 1 holds, and aborts the execution attempt if it does not. Together, the
nondeterministic assignment and test mean that the controller can choose any flow in the
interval f ∈ [−1, 1].

Now that we know the actions of the controller, let us add the physical response, often
called plant, using differential equations. We use x to denote the current water level in the
water tank.

f := ∗; ?(−1 ≤ f ≤ 1); {
x ′ = f & x ≥ 0

}

The idealized differential equation x ′ = f means that the water level evolves according to
the chosen flow. This considerably simplifieswater flowmodels (e. g., it neglects the influence
of water level on flow, and flow disturbance in pipes). The evolution domain constraint x ≥ 0
models a physical constraint that the water level can never be less than empty. Otherwise,
the differential equation would include negative water content in the tank below zero on
negative flow, because differential equations evolve for an arbitrary amount of time (even
for time 0), as long as their evolution domain constraint is satisfied. Note, that when the
tank is empty (x = 0) and the controller still chooses a negative flow f < 0 as permitted
by the test ?(−1 ≤ f ≤ 1), the evolution domain constraint x ≥ 0 in the ODE will abort
immediately. As a result, only non-negative values for f will make progress in case the tank
is empty. This model means that the controller can choose flow exactly once, and then the
water level evolves according to that flow for some time. Next, we include a loop, indicated
by the Kleene star, so that the controller and the plant can run arbitrarily many times.

123

38 Form Methods Syst Des (2016) 49:33–74

(
f := ∗; ?(−1 ≤ f ≤ 1); {

x ′ = f & x ≥ 0
})∗

However, this model provides no guarantees whatsoever on the time that will pass between
two controller executions, since differential equations are allowed to evolve for an arbitrary
amount of time. In order to guarantee that the controller runs at least every ε time, we model
controller periodicity and sampling period by adding the differential equation t ′ = 1 to
capture time, and a constraint t ≤ ε to indicate that at most ε time can pass until the plant
must stop executing and hand over to the controller again. We reset the stopwatch t after each
controller run using t := 0.

(
f := ∗; ?(−1 ≤ f ≤ 1); t := 0; {

x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε
})∗

Note, that through t ≤ ε the sampling period does not need to be the same on every control
cycle, nor does it need to be exactly ε time.

Now thatwe know the sampling period, let usmake onefinal adjustment to the controller: It
actually cannot always be safe to choose positive inflow, as allowed by the test ?−1 ≤ f ≤ 1
(e. g., it would be unsafe if the current water level x is already at the maximum m). Since we
know that the controller will run again at the latest in ε time, we can choose inflow such that
it will not exceed the maximum level m until then, as summarized below.

(
f := ∗; ?

(
−1 ≤ f ≤ m − x

ε

)
; t := 0; {

x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε
})∗

Differential dynamic logic syntax by example Next, we want to prove that this program is
correct. For this, we first need to find a formal safety condition that captures correctness.
Since we want the tank to never overflow, all runs of the program must ensure 0 ≤ x ≤ m,
which in dL is expressed using the box modality [α]φ. The formula [α]φ is not true in all
initial states, only in those that at least satisfy 0 ≤ x <≤ m to beginwith. Themodeling idiom
φ → [α]ψ expresses that, when started in an initial state that satisfies the initial condition φ,
then all runs of the model α result in states that satisfy ψ , similar to a Hoare triple. Formula
(1) below summarizes the water tank model and the safety condition using this idiom.

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
φ

→
[(

f := ∗; ?

(
−1 ≤ f ≤ m − x

ε

)
;

t := 0; {
x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε

})∗] ψ
︷ ︸︸ ︷
(0 ≤ x ≤ m)

(1)

This formula expresses that, when started with a safe water level between 0 and maximum
(0 ≤ x ≤ m) and with some positive sampling period (ε > 0), our water tank model will
keep the water level between 0 and maximum. It is provable in the dL proof calculus.

Syntax summary Sequential composition α;β says that β starts after α finishes. The nonde-
terministic choice α ∪ β follows either α or β. The nondeterministic repetition operator α∗
repeats α zero or more times. Assignment x := θ instantaneously assigns the value of term
θ to the variable x , while x := ∗ assigns an arbitrary value to x . The test ?F checks that a
condition F holds, and aborts if it does not. x ′ = θ & F describes a continuous evolution of
x within the evolution domain F .

The set of dL formulas is generated by the following grammar (∼ ∈ {<,≤,=,≥,>}
and θ1, θ2 are arithmetic expressions in +,−, ·, / over the reals):

φ ::=θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

123

Form Methods Syst Des (2016) 49:33–74 39

dL allows us to make statements that we want to be true for all runs of a hybrid program
([α]φ) or for at least one run (〈α〉φ). Both constructs are necessary to derive safe monitors:
we need [α]φ proofs so that we can be sure all behavior of a model are safe; we need 〈α〉φ
proofs to find monitor specifications that detect whether or not a system execution fits to
the verified model. Differential dynamic logic comes with a verification technique to prove
correctness properties of hybrid programs (cf. [33] for an overview of dL and KeYmaera,
and [14] for an overview of KeYmaera X).

2.2 Formal semantics of dL

ModelPlex is based on a transition semantics instead of trace semantics [31], since it is easier
to handle and fits to checking monitors at sample points.

The semantics ofdL , as defined in [29], is aKripke semantics inwhich states of theKripke
model are states of the hybrid system. Let R denote the set of real numbers, and V denote
the set of variables. A state is a map ν : V → R; the set of all states is denoted by Sta. We
write ν |� φ if formulaφ is true at state ν (Definition 2). Likewise, [[θ]]ν denotes the real value
of term θ at state ν, while ν(x) denotes the real value of variable x at state ν. The semantics
of HP α is captured by the state transitions that are possible by running α. For continuous
evolutions, the transition relation holds for pairs of states that can be interconnected by a
continuous flow respecting the differential equation and invariant region. That is, there is a
continuous transition along x ′ = θ & H from state ν to state ω, if there is a solution of the
differential equation x ′ = θ that starts in state ν and ends inω and that always remains within
the region H during its evolution.

Definition 1 (Transition semantics of hybrid programs) The transition relation ρ specifies
which stateω is reachable from a state ν by operations of α. It is defined as follows.

1. (ν, ω) ∈ ρ(x := θ) iff ω(x) = [[θ]]ν and ν(z) = ω(z) for all state variables z �= x .
2. (ν, ω) ∈ ρ(x := ∗) iff ν(z) = ω(z) for all state variables z �= x .
3. (ν, ω) ∈ ρ(?φ) iff ν = ω and ν |� φ.
4. (ν, ω) ∈ ρ(x ′1 = θ1, . . . , x ′n = θn & H) iff for some r ≥ 0, there is a (flow) function

ϕ:[0, r] → Sta with ϕ(0) = ν, ϕ(r) = ω, such that for each time ζ ∈ [0, r] the differ-
ential equation holds and the evolution domain is respected ϕ(ζ) |� x ′i = θi&H , see
[29,34] for details

5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

6. ρ(α;β) = {(ν, ω) : (ν, μ) ∈ ρ(α), (μ, ω) ∈ ρ(β) for a state μ}
7. ρ(α∗) = ⋃

n∈N ρ(αn) where αi+1 =̂ (α;αi) and α0 =̂ ?true.

Definition 2 (Interpretation of dL formulas) The interpretation |� of a dL formula with
respect to state ν is defined as follows.

1. ν |� θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤,<,≥,>}
2. ν |� φ ∧ ψ iff ν |� φ and ν |� ψ , accordingly for ¬,∨,→,↔
3. ν |� ∀x φ iff ω |� φ for all ω that agree with ν except for the value of x
4. ν |� ∃x φ iff ω |� φ for some ω that agrees with ν except for the value of x
5. ν |� [α]φ iff ω |� φ for all ω with (ν, ω) ∈ ρ(α)

6. ν |� 〈α〉φ iff ω |� φ for some ωwith (ν, ω) ∈ ρ(α)

We write |� φ to denote that φ is valid, i. e., that ν |� φ for all states ν.

123

40 Form Methods Syst Des (2016) 49:33–74

2.3 Notation and supporting lemmas

BV(α) denotes the bound variables [35] in α, i. e., those written to in α, FV(ψ) are free
variables [35] in ψ , Σ is the set of all variables, and A\B denotes the set of variables being
in some set A but not in some other set B. Furthermore, ν|A denotes the state ν projected to
just the variables in A, whereas ν

y
x denotes the state ν in which x is interpreted as y.

In the proofs throughout this article, we will use the following lemmas specialized from
[35, Lemmas 12, 14, and 15]. Hybrid programs only change their bound variables:

Lemma 1 (Bound effect lemma) If (ν, ω) ∈ ρ(α), then ν = ω on Σ\BV(α).

The truth of formulas only depends on their free variables:

Lemma 2 (Coincidence lemma) If ν = ν̃ on FV(φ) then ν |� φ iff ν̃ |� φ.

Similar states (that agree on the free variables) have similar transitions:

Lemma 3 (Coincidence lemma) If ν = ν̃ on V ⊇ FV(α) and (ν, ω) ∈ ρ(α), then there is
an ω̃ such that (ν̃, ω̃) ∈ ρ(α) and ω = ω̃ on V .

The notation ν|V = ν̃|V is used interchangeably with ν = ν̃ agree on V .

3 ModelPlex approach for verified runtime validation

CPS are almost impossible to get right without sufficient attention to prior analysis, for
instance by formal verification and formal validation techniques. We assume to be given a
verified model of a CPS, i. e. formula (2) is proved valid,3 for example using the differential
dynamic logic proof calculus [29,33] implemented in KeYmaera [37] and KeYmaera X [14]:

φ → [α∗]ψ (2)

Formula (2) expresses that all runs of the hybrid system α∗, which start in states that
satisfy the precondition φ and repeat α arbitrarily many times, only end in states that satisfy
the postcondition ψ . Note, that in this article we discuss models of the form α∗ for compre-
hensibility reasons. The approach is also applicable to more general forms of models (e. g.,
models without loops, or models where only parts are executed in loops).

The model α∗ is a hybrid system model of a CPS, which means that it describes both
the discrete control actions of the controllers in the system and the continuous physics of
the plant and the system’s environment. For example, our running example of a water tank
repeated below models a hybrid system, which consists of a controller that chooses flow and
a plant that determines how the water level changes depending on the chosen flow.

α∗ ≡
(
f := ∗; ?

(
−1 ≤ f ≤ m − x

ε

)
; t := 0; {x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε}

)∗

Formula (2) is proved using some form of induction with invariant ϕ, i. e., a formula for
which the following three formulas are provable:

ϕ is an invariant for (2), i. e., ϕ → [α]ϕ φ → ϕ ϕ → ψ (3)

3 We use differential dynamic logic (dL) and KeYmaera and KeYmaera X as a theorem prover to illus-
trate our concepts throughout this article. The concept of ModelPlex is not predicated on the use of
KeYmaera/KeYmaera X to prove (2). Other verification techniques could be used to establish validity of
this formula. The flexibility of the underlying logic dL , its support for both [α]φ and 〈α〉φ, and its proof
calculus, however, are exploited for systematically constructing monitors from proofs in the rest of the article.

123

Form Methods Syst Des (2016) 49:33–74 41

which shows that a loop invariant ϕ holds after every run of α if it was true before (i. e.,
ϕ → [α]ϕ), that the loop invariant holds initially (φ → ϕ) and implies the postcondition
(ϕ → ψ).

However, since we usually made approximations when modeling the controller and the
physics, and since failures and other deviations may occur in reality (e. g., a valve could fail),
we cannot simply transfer this safety proof to the real system. The safety guarantees that we
obtain by proving formula (2) about the model α∗ transfer to the real system, if the actual
CPS execution fits to α∗.

Example 1 (What to monitor) Let us recall the water tank example. First, since failures may
occur we need to monitor actual evolution, such as that the actual water level corresponds to
the level expected by the chosen valve positions and the actual time passed between controller
executions does not exceed the modeled sampling period. The monitor needs to allow some
slack around the expected water level to compensate for the neglected physical phenomena.
Sections 3.2 and 3.5 describe how to synthesize such model monitors automatically. Second,
the controller implementation differs from the model, e.g., it might follow different filling
strategies, so we need to check that the implemented controller only chooses flows f that
satisfy −1 ≤ f ≤ m−x

ε
. Section3.4 describes how to synthesize such controller monitors

automatically. Finally, we canmonitor controller decisions for the expected real-world effect,
since the hybrid system model contains a model of the physics of the water tank. Section3.6
describes how to synthesize such prediction monitors automatically. The controller in the
model, which is verified to be safe, gives us a fail-safe action that we can execute instead of
the unverified controller implementation when one of the monitors is not satisfied.

Since we want to preserve safety properties, a CPS γ fits to a model α∗, if the CPS reaches
at most those states that are reachable by the model, i. e., ρ(γ) ⊆ ρ(α∗) [27], because all
states reachable by α∗ from states satisfying φ are safe by (2). For example, a controller that
chooses inflow more cautiously, such as only half the maximum inflow from the model, i. e.,
f ≤ m−x

2ε , would also be safe. So would be running the controller more frequently than every
ε time, but not less frequently.

However, we do not know the true CPS γ precisely,4 so we cannot use refinement-based
techniques (e. g., [27]) to prove that the true CPS γ refines the model α∗. Therefore, we need
to find a condition based on α∗ that we can check at runtime to see if concrete runs of the
true CPS γ behave like the model α∗.

Example 2 (Canonical monitor candidates) Amonitor condition that would be easy to check
is to monitor the postcondition ψ (e. g., monitor the safety condition of the water tank 0 ≤
x ≤ m). But that monitor is unsafe, because if ψ is violated at runtime, the system is already
unsafe and it is too late to do anything about it (e. g., the water tank did already overflow).
Another monitor that would be easy to check is the invariant ϕ used to prove Formula (2). But
that monitor is also unsafe, because once ϕ is violated at runtime, the controller is no longer
guaranteed to be safe, since Formula (3) only proves it to be safe when maintaining invariant
ϕ (e. g., in the water tank example, the invariant ϕ ≡ 0 ≤ x ≤ m is not even stronger than
the safety condition). But if we detect when a CPS is about to deviate from α before leaving
ϕ, we can still switch to a fail-safe controller to avoid ¬ψ from ever happening (see Fig. 3).
Yet even so, the invariant ϕ will not even contain all conditions that need to be monitored,
since ϕ only reflects what will not change when running the particular model α, which says
nothing about the behavior of the true CPS γ .

4 It is an annoying fact of physics that there will never quite be a perfect model of γ .

123

42 Form Methods Syst Des (2016) 49:33–74

Fig. 3 States when safety measures are required according to postcondition ψ , invariant ϕ, and monitor. The
water tanks illustrate water levels corresponding to these conditions

The basic idea behind ModelPlex is based on online monitoring: we periodically sample
γ to obtain actual system states νi . A state νi includes values for each of the bound variables
(i. e., those that are written) from the model α∗. For example, for our water tank we need
to sample flow f (written to in f := ∗), water level x (written to in x ′ = f), and time t
(written to in t := 0 and t ′ = 1). We then check pairs of such states for being included in the
reachability relation of the model, which is expressed in dL semantics as (νi−1, νi) ∈ ρ(α∗).
We will refer to the first state in such a pair by prior state and to the second one by posterior
state. This is the right semantic condition to check, but not computationally represented. The
important question answered by ModelPlex through automatic synthesis is how that check
can be represented in a monitor condition in an easily and efficiently computable form.

Example 3 (Desired arithmetic monitor representation) For example, by manually analyzing
the hybrid program of the water tank example, the result is expected to be the following real
arithmetic formula. The annotations under the braces refer to the part of the hybrid program
of the water tank that points us to the corresponding condition.

−1 ≤ νi (f) ≤ m − νi−1(x)

ε︸ ︷︷ ︸
(i) f := ∗; ?

(
−1≤ f≤m−x

ε

)

∧ νi (x) = νi−1(x) + νi (f)νi (t)︸ ︷︷ ︸
(ii) x ′= f, t ′=1

∧ νi−1(x) ≥ 0 ∧ νi (x) ≥ 0 ∧ 0 ≤ νi (t) ≤ ε
︸ ︷︷ ︸

(iii) t := 0, & x ≥ 0∧ t ≤ ε

This formula describes that (i) the flow νi (f) in the posterior state has to obey certain
bounds, depending on the prior water level νi−1(x), resulting from the nondeterministic
assignment and the test; (ii) the posterior water level νi (x) is given by the solution of the
differential equation x + ∫

f dt = x + f t , i. e., the posterior water level should be equal to
the prior water level νi−1(x) plus the amount resulting from flow νi (f) in time νi (t); finally,
(iii) the evolution domain constraints must be true, meaning the posterior water level must be
non-negative and the time νi (t)must be between 0 and ε. Note, that it is tempting to just read
off a wrong condition νi (t) = 0 from hybrid program t := 0. Since t is not constant in the
ODE following the assignment (t := 0; t ′ = 1), this condition must be phrased 0 ≤ νi (t).
Also note, that it is very easy to get the evolution domainwrong: evolution domain constraints
have to hold throughout the ODE, which includes the beginning and the end, so the check
must include both νi−1(x) ≥ 0 and νi (x) ≥ 0. The sound proof calculus of dL prevents
such mistakes when deriving monitor conditions.

123

Form Methods Syst Des (2016) 49:33–74 43

Fig. 4 Use of ModelPlex monitors along a system execution

The question is: How to find such an arithmetic representation automatically from just
the formula (1)? And how to prove its correctness? ModelPlex derives three kinds of such
formulas as monitors (model monitor, controller monitor, and prediction monitor, cf. Fig. 4)
that check the behavior of the actual CPS at runtime for compliance with its model. These
monitors have the following characteristics.

Model monitor The model monitor checks the previous state νi−1 and current state νi
for compliance with the model, i. e.. whether the observed transition from νi−1 to νi
is compatible with the model. In each state νi we test the sample point νi−1 from the
previous execution γi−1 for deviation from α∗, i. e., test (νi−1, νi) ∈ ρ(α∗). If violated,
other verified properties may no longer hold for the system so a failsafe action is initiated.
The system itself, however, still satisfies safety conditionψ if the prediction monitor was
satisfied at νi−1. Frequent violations indicate an inadequate model that should be revised
to better reflect reality.

Controller monitor The controller monitor checks the output of a controller implemen-
tation against the correct controller model. If the controller implementation performs
an action that the controller model allows in the present state, then it has been verified
offline to be safe by Formula (2). Otherwise, the action is discarded and replaced by
a default action that has been proved safe. In intermediate state ν̃i we test the cur-
rent controller decisions of the controller implementation γctrl for compliance with
the model, i. e., test (νi , ν̃i) ∈ ρ(αctrl). The controller αctrl will be obtained from the
model α∗ through proof steps. Controller monitors have some similarities with Sim-
plex [39], which is designed for switching between verified and unverified controllers.
The controller monitor, instead, corresponds to the more general idea of testing con-
tracts dynamically at runtime while defaulting to a specified default action choice if the
contract fails. If a controller monitor is violated, commands from a fail-safe controller
replace the current controller’s decisions to ensure that no unsafe commands are ever
actuated.

Prediction monitor The model monitor detects deviations from the model as soon as pos-
sible on the measured data, but that may already have made the system unsafe. The role
of the prediction monitor is to check the impact of bounded deviations from the model
to predict whether the next state could possibly become unsafe upon deviation from the
model so that a corrective action is advised. If the actual execution stays far enough away
from unsafe states, the prediction monitor will not intervene because no disturbance
within the bound could make it unsafe. In intermediate state ν̃i we test the safety impact
of the current controller decisionw.r.t. the predictions of a bounded deviation plantmodel
αδplant, which has a tolerance around the model plant αplant, i. e., check νi+1 |� ϕ for all
νi+1 such that (ν̃i , νi+1) ∈ ρ(αδplant). Note, that we simultaneously check all νi+1 by
checking a characterizing condition of αδplant at ν̃i . If violated, the current control choice

123

44 Form Methods Syst Des (2016) 49:33–74

is not guaranteed to keep the system safe under all disturbances until the next control
cycle and, thus, a fail-safe controller takes over.

A simulation illustrating the effect of these monitors on the water tank running example
will be discussed in Fig. 11, where an unsafe controller and small deviation from the idealistic
model would result in violation of the safety property, if not corrected by the monitors
synthesized in this article.

The assumption for the prediction monitor is that the real execution is not arbitrarily far
off the plant models used for safety verification, because otherwise safety guarantees can
be neither made on unobservable intermediate states nor on safety of the future system evo-
lution [36]. We propose separation of disturbance causes in the models: ideal plant models
αplant for correctness verification purposes, implementation deviation plant models αδplant for
monitoring purposes. We support any deviation model (e. g., piecewise constant disturbance,
differential inclusion models of disturbance), as long as the deviation is bounded and differ-
ential invariants can be found. We further assume that monitor evaluations are at most some
ε time units apart (e. g., along with a recurring controller execution). Note that disturbance
in αδplant is more manageable compared to a model of the form α∗, because we can focus on
single runs α instead of repetitions for guaranteed monitoring purposes.

3.1 Characterizing semantic relations between states in logic

All ModelPlex monitors relate states, albeit for different purposes to safeguard different
parts of the CPS execution (Fig. 4). States are semantic objects and as such cannot be related,
manipulated, or even just represented precisely in a program. This section develops a sys-
tematic logical characterization as syntactic expressions for such state relations, which will
ultimately lead to computable programs for the corresponding monitor conditions. We sys-
tematically derive a check that inspects states of the actual CPS to detect deviation from the
model α. We first establish a notion of state recall and show that compliance of an execution
from state ν to ω with α can be characterized syntactically in dL .

The ModelPlex monitoring principle illustrated in Fig. 4 is intuitive, but its sequence of
states νi is inherently semantic and, thus, inaccessible in syntactic programs. Our first step is
to introduce a vector of logical variables x and x+ for the symbolic prior and posterior state
variables. The basic idea is that ModelPlex monitors identify conditions on the relationships
between the values of prior and posterior state expressed as a logical formula involving the
variables x and x+. Concrete states νi−1 and νi can then be fed into the monitor formula as
the real values for the variables x and x+ to check whether the monitor is satisfied along the
actual system execution.

Definition 3 and Lemma 4 below describe central ingredients for online monitoring in this
article and are true for models β of arbitrary form (not just for models α∗ with a loop).

Definition 3 (State recall) Let V denote the set of variables whose state we want to recall.
We use the formula Υ + ≡ ∧

x∈V x = x+ to express a characterization of the values of
variables x in a state posterior to a run of β, where we always assume the fresh variables
x+ to occur solely in Υ +. The variables in x+ can be used to recall this state. We define the
satisfaction relation (ν, ω) |� φ of dL formula φ for a pair of states (ν, ω) as φ evaluated
in the state resulting from ν by interpreting x+ as ω(x) for all x ∈ V , i. e., (ν, ω) |� φ iff
ν

ω(x)
x+ |� φ.

This enables a key ingredient for ModelPlex: establishing a direct correspondence of a
semantic reachability of states with a syntactic logical formula internalizing that semantic
relationship by exploiting the 〈·〉 modality of dL .

123

Form Methods Syst Des (2016) 49:33–74 45

Lemma 4 (Logical state relation) Let V = BV(β). Two states ν, ω that agree on Σ \ V ,
i. e., ν|Σ\V = ω|Σ\V , i. e., ν(z) = ω(z) for all z ∈ Σ \ V , satisfy (ν, ω) ∈ ρ(β) iff
(ν, ω) |� 〈β〉Υ +.

Proof “⇒ ” Let (ν, ω) ∈ ρ(β). Since ν and ν
ω(x)
x+ agree except on x+, which are not free

variables of β, (ν, ω) ∈ ρ(β) also implies by coincidence Lemma 3 that there is a ω̃

such that (νω(x)
x+ , ω̃) ∈ ρ(β) andω = ω̃ except on x+. Now (ν

ω(x)
x+ , ω̃) ∈ ρ(β) implies

that νω(x)
x+ = ω̃ agree except on BV(β) by bound effect Lemma 1. Hence, νω(x)

x+ = ω̃

agree on x+ since x+ /∈ BV(β) and, thus, also ω
ω(x)
x+ = ω̃ on x+. Since ω = ω̃ agree

except on x+ and ω
ω(x)
x+ = ω̃ agree on x+, also ω

ω(x)
x+ = ω̃ agree everywhere, which

implies, (νω(x)
x+ , ω

ω(x)
x+) ∈ ρ(β), because (ν

ω(x)
x+ , ω̃) ∈ ρ(β). As ω

ω(x)
x+ |� x = x+ for

all x , so ω
ω(x)
x+ |� Υ +. Consequently, νω(x)

x+ |� 〈β〉Υ +, which is (ν, ω) |� 〈β〉Υ +.
“⇐ ” Let (ν, ω) |� 〈β〉Υ +, that is, νω(x)

x+ |� 〈β〉Υ +. So there is a ω̃ such that (νω(x)
x+ , ω̃) ∈

ρ(β) and ω̃ |� Υ +. Now ω̃ |� Υ + implies that ω̃(x) = ω̃(x+). By the bound effect
Lemma 1, ν

ω(x)
x+ = ω̃ agree except on BV(β). Thus, ω̃(x+) = ν

ω(x)
x+ (x+) = ω(x)

for all x ∈ BV(β) as x+ /∈ BV(β). Combining both yields that ω̃ = ω agree on all
x ∈ BV(β). Since (ν

ω(x)
x+ , ω̃) ∈ ρ(β) and ν

ω(x)
x+ = ν agree except on x+ /∈ FV(β),

coincidence Lemma 3 implies there is a μ such that (ν, μ) ∈ ρ(β) and μ = ω̃ agree
except on x+. So, μ = ω̃ = ω agree on x ∈ BV(β). And μ = ν agree except on
x ∈ BV(β) by bound effect Lemma 1. From the assumption that ν = ω agree except
on BV(β), it follows thatμ = ω also onΣ \BV(β), soμ = ω. Hence, (ν, μ) ∈ ρ(β)

implies (ν, ω) ∈ ρ(β). ��
Suppose the CPS executed for some period of time and made it from state ν to a state ω.

That transition fits to the verified model α∗ iff the semantic condition (ν, ω) ∈ ρ(α∗) holds,
i. e., the states ν, ω are in the transition relation induced by the semantics of α∗. The syntactic
formula 〈α∗〉Υ + expresses something like that. Lemma 4 enables us to use formula (4) as a
starting point to find compliance checks systematically.

〈α∗〉Υ + (4)

The logical formula (4) relates a prior state of a CPS to its posterior consecutive state
through at least one path through the model α∗.5 The formula (4) is satisfied in a state ν,
if there is at least one run of the model α∗ starting in the state ν and resulting in a state ω

recalled using Υ +. In other words, at least one path through α∗ explains how the prior state
ν got transformed into the posterior state ω.

In principle, formula (4) would already be a perfect monitor for the question whether the
state change to Υ + can be explained by model α∗. But formula (4) is hard if not impossible
to evaluate at runtime efficiently, because it refers to a hybrid system α∗, which includes
loops, nondeterminism, and differential equations and is, thus, difficult to execute without
nontrivial backtracking and differential equation solving. Yet, any formula that is equivalent
to or implies (4) but is easier to evaluate in a state is a correct monitor as well.

To simplify formula (4), we use theorem proving to find a quantifier-free first-order real
arithmetic form so that it can be evaluated efficiently at runtime. The resulting first-order
real arithmetic formula can be easily implemented in a runtime monitor that is evaluated by

5 Consecutive states for α∗ mean before and after executions of α (i. e., in α
↓
;α

↓
;α

↓
; at the positions indicated

with an arrow, not within α).

123

46 Form Methods Syst Des (2016) 49:33–74

Fig. 5 Semantical representation, logic characterization, and arithmetical form of a model monitor. Monitor
synthesis translates between these representations offline

plugging the concrete values in for x and x+. A monitor is executable code that only returns
true if the transition from the prior system state to the posterior state is compliant with
the model. Thus, deviations from the model can be detected at runtime, so that appropriate
fallback and mitigation strategies can be initiated.

3.2 Model monitor synthesis

This section introduces the nature of ModelPlex monitor specifications, which form the basis
of our correct-by-construction synthesis procedure for ModelPlex monitors. Here, we focus
on the ModelPlex model monitor, but its principles continue to apply for the controller and
prediction monitors, as elaborated subsequently.

Figure5 gives an overview of the offline synthesis process for model monitors. Semanti-
cally, a monitor is a check that a pair of states (ν, ω) is contained in the transition relation
ρ(α∗) of the monitored hybrid systems model α∗ (Fig. 6). This corresponds to our intuitive
understanding of a monitor: through sensors, we observe states of a system, and want to
know if those observations fit to the model α∗ of the system. By Lemma 4, the syntactic
counterpart in the logic dL of this semantic condition (ν, ω) ∈ ρ(α∗) is the logical formula
〈α∗〉Υ + from (4). The dL formula (4) syntactically characterizes the semantic statement
that the hybrid system model α∗ can reach a posterior state6 characterized by x+ from the
prior state characterized by x . The dL formula (4) is a perfect logical monitor but difficult to
execute quickly, so we are looking for easier logical formulas F(x, x+) that are equivalent
to or imply formula (4). ModelPlex uses theorem proving to systematically synthesize a
provably correct real arithmetic formula F(x, x+) in a correct-by-construction approach.7

The intuition is that formula (4) holds because all conditions hold that are identified as
implying formula (4) in its proof. Some of these conditions hold always (subgoals that can
be proved to be valid always) while others will be checked at runtime whether they hold
(subgoals that do not always hold but only during executions that fit to the particular hybrid
system α∗). If the ModelPlex monitor is satisfied at runtime, then the proof implying formula
(4) holds in the current CPS execution.

Note, that computationally expensive operations, such as quantifier elimination, are per-
formed offline in this process and only arithmetic evaluation for concrete state values remains
to be done online. If the ModelPlex specification (4) does not hold for the variable values
from a prior and posterior state during the CPS execution (checked by evaluating F(x, x+)

on observations), then that behavior does not comply with the model (e. g., the wrong control
action was taken under the wrong circumstances, unanticipated dynamics in the environment

6 Recall that Υ + ≡ ∧
x∈V x = x+ for variables V .

7 The formula F(x, x+) implies 〈α∗〉Υ +, becausewewill use non-equivalence proof steps to derive F(x, x+)

from 〈α∗〉Υ+.

123

Form Methods Syst Des (2016) 49:33–74 47

Fig. 6 Amodel monitor checks that two states ν and ω are contained in the transition relation of the program
(ν, ω) ∈ ρ(α∗); the posterior state ω is captured in x+ through Υ+

occurred, sensor uncertainty led to unexpected values, or the system was applied outside the
specified operating environment).

Intuitively, a model monitor χm is correct when the monitor entails safety if it is satisfied
on consecutive observations, which is formalized in Theorem 1 below. Note, that Theorem 1
for models β without loops follows immediately from Lemma 4 and the safety proof. Thanks
to Lemma 4, correctness of model monitors is also easy to prove:

Theorem 1 (Model monitor correctness) Let α∗ be provably safe, so |� φ → [α∗]ψ and
let V = BV(α∗). Let ν0, ν1, ν2, ν3 . . . ∈ R

n be a sequence of states that agree on Σ\V , i. e.,
ν0|Σ\V = νk |Σ\V for all k, and that start in ν0 |� φ. If (νi , νi+1) |� χm for all i < n, then
νn |� ψ where

χm ≡ 〈α∗〉Υ + (5)

Proof Show (ν0, νn) ∈ ρ(α∗) by induction over n, such that |� φ → [α∗]ψ and ν0 |� φ

imply νn |� ψ . If n = 0 then (ν0, ν0) ∈ ρ(α∗) trivially by Definition 1. For n + 1 > 0
assume (ν0, νn) ∈ ρ(α∗) and (νn, νn+1) |� 〈α∗〉Υ +. By Lemma 4, (νn, νn+1) |� 〈α∗〉Υ +
implies that (νn, νn+1) ∈ ρ(α∗). Now (ν0, νn) ∈ ρ(α∗) and (νn, νn+1) ∈ ρ(α∗) imply
(ν0, νn+1) ∈ ρ(α∗). Hence we conclude νn+1 |� ψ from ν0 |� φ and φ → [α∗]ψ . ��
By Theorem 1, any formula implying χm is also a correct model monitor, such as 〈α〉Υ +,
which more conservatively limits acceptable executions of the real γ to those that correspond
to just one iteration of α∗ as opposed to arbitrarily many.

Example 4 (Arithmetical model monitor condition) As illustrated in Fig. 5 and shown con-
cretely below, we can simplify formula (5) into an arithmetical representation F(x, x+)

such that F(x, x+) ⇒ 〈α∗〉Υ +, by applying the axioms of dL . The synthesis algorithm to
automatically generate the condition F(x, x+) is presented in Section3.3.

F(x,x+)︷ ︸︸ ︷
−1 ≤ f + ≤ m−x

ε
∧ x+ = x + f +t+ ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ f +t+ + x ≥ 0

⇒ 〈(f := ∗; ?
(−1 ≤ f ≤ m−x

ε

) ;
t := 0; {x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε})∗

︸ ︷︷ ︸
α∗

〉(f = f + ∧ x = x+ ∧ t = t+)
︸ ︷︷ ︸

Υ +

The formula F(x, x+) says that (i) only valid flows should be chosen for the posterior state,
i. e.,−1 ≤ f + ≤ m−x

ε
, (ii) that the posterior water level x+ must be determined by the prior

level x and the flow over time x+ = x + f +t+, and (iii) that the evolution domain constraint
must be satisfied in both prior and posterior state, i. e., x ≥ 0∧ε ≥ t+ ≥ 0∧ f +t+ + x

︸ ︷︷ ︸
x+

≥ 0.

This formula corresponds to the expected result from Example3, since x corresponds to
νi−1(x) and x+ corresponds to ν(x), and so forth.

123

48 Form Methods Syst Des (2016) 49:33–74

The formula in Example4 contains checks for water level x , flow f , and time t , because
these are the variables changed by the model. If we want to additionally monitor that the
model does not change anything except these variables, we can use Corollary 1 to include
frame constraints for specific variables into a monitor (e. g., the value of variable ε is not
changed by the water tank model, and therefore not supposed to change in reality).

Corollary 1 Theorem 1 continues to apply when replacing V by any superset V ⊇ BV(α∗).

Proof Any variable z ∈ V \BV(α∗) can be added to Theorem 1 by considering (z : =z;α)∗
instead of α∗, which has the same behavior but one more bound variable. ��

So far, Theorem 1 assumed that everything stays constant, except for the water level
x , the flow f , and the time t . This assumption is stronger than absolutely necessary, and,
strictly speaking, prevents us from using the monitor in an environment where values that
are irrelevant to the model and its safety condition change (e. g., the water temperature).
Corollary 2 ensures monitor correctness in environments where irrelevant variables change
arbitrarily. Theorem 2 and 3 can be extended with corollaries similar to Corollaries 1 and 2.

Corollary 2 When replacing V by any superset V ⊇ BV(α∗) ∪ FV([α∗]ψ) ∪ FV(χm),
Theorem 1 continues to hold without the assumption that the νk agree on Σ\V .

Proof Assume the conditions of Theorem 1 with any sequence of states ν0, ν1, ν2, ν3 . . . ∈
R
n , with ν0 |� φ. Consider a modified sequence of states ν̄0, ν̄1, ν̄2, ν̄3 . . . such that for

all k: νk agrees with ν̄k on V and ν̄k agrees with ν0 on Σ\V , which, thus, satisfies the
assumptions of Theorem 1. Hence, (νi , νi+1) |� χm implies (ν̄i , ν̄i+1) |� χm by Lemma 2
using V ⊇ FV(χm). Thus, (νi , νi+1) |� χm for all i < n implies (ν̄i , ν̄i+1) |� χm for all
i < n, so Theorem 1 implies ν̄n |� ψ . Since V ⊇ FV(ψ), Lemma 2 implies that νn |� ψ .

��
Theorem 1 ensures that, when the monitor is satisfied, the monitored states are safe, i. e.,

ψ holds. We can get an even stronger result by Corollary 3, which says that a model monitor
also ensures that inductive invariants ϕ of the model are preserved.

Corollary 3 Under the conditions of Theorem 1 it is also true that νn |� ϕ for an invariant
ϕ s.t. φ → ϕ, ϕ → [α]ϕ, and ϕ → ψ .

Proof From |� φ → [α∗]ψ it follows that there exists a ϕ s.t. φ → ϕ, ϕ → [α]ϕ, and
ϕ → ψ . Hence |� φ → [α∗]ϕ and Theorem 1 applies with ϕ in place of ψ . ��

Now that we know the correctness of the logical monitor representation, let us turn to
synthesizing its arithmetical form.

3.3 Monitor synthesis algorithm

Our approach to generate monitors from hybrid system models is a correct-by-construction
approach. This section explains how to turn monitor specifications into monitor code that
can be executed at runtime along with the controller. We take a verified dL formula (2) and
a synthesis tactic choice (whether to synthesize a model, controller, or prediction monitor)
as input and produce a monitor F(x, x+) in quantifier-free first-order form as output. The
algorithm, listed in Algorithm 1, involves the following steps:

1. A dL formula (2) about a model α∗ of the form φ → [α∗]ψ is turned into a specification
conjecture (5) of the form 〈α∗〉Υ +.

123

Form Methods Syst Des (2016) 49:33–74 49

Algorithm 1:ModelPlex monitor synthesis
input : A hybrid program α∗, a set of variables V ⊇ BV(α∗), a tactic choice τ (model monitor,

controller monitor, prediction monitor)
output: A monitor F(x, x+) that is first-order and implies 〈α∗〉Υ +
begin

Υ + ←− ∧
x∈V x = x+ with fresh variables x+i // Specification conjecture

G ←− {〈α∗〉Υ+} // Set of proof goals
S ←− ∅ // Specification goals

1 while G �= ∅ do // Analyze specification conjecture
choose any goal g ∈ G
G ←− G \ {g}
if g is first-order then

if �|� g then S ←− S ∪ {g} // Monitor at runtime if unprovable
else

g̃ ←− apply dL proof rule according to tactic τ to g // Simplification step
G ←− G ∪ {g̃}

F(x, x+) ←− ∧
s∈S s // Collect all open goals

2. Theorem proving according to the tactic choice is applied on the specification conjec-
ture (5) until no further dL proof rules are applicable and only first-order real arithmetic
formulas remain open.

3. The monitor specification F(x, x+) is the conjunction of the unprovable first-order real
arithmetic formulas from open sub-goals. The intuition behind this is that goals, which
remain open in the offline proof, are proved online through monitoring. Although this do
not yield a proof for all imaginable runs, that way we obtain a proof for the current run
of the real CPS.

The correctness of the monitoring conditions obtained through Algorithm 1 is guaranteed
by the soundness of the dL calculus. In the remainder of the section, we will exemplify
Algorithm 1 by turning the model of the water tank example into a model monitor.

Generate the specification conjectureWemap dL formula (2) syntactically to a specification
conjecture of the form (5), i. e., 〈α∗〉Υ +. By design, this conjecture will not be provable. But
the unprovable branches of a proof attempt will reveal information that, had it been in the
premises, would make (5) provable. Through Υ +, those unprovable conditions collect the
relations of the posterior state of model α∗ characterized by x+ to the prior state x , i. e., the
conditions are a representation of (4) in quantifier-free first-order real arithmetic.

Example 5 (Specification conjecture) The specification conjecture for the water tank model
monitor is:

〈(f := ∗; ? (−1 ≤ f ≤ m−x
ε

) ; t := 0; {
x ′ = f, t ′ =1 & x ≥ 0 ∧ t ≤ ε

})∗〉
Υ+

︷ ︸︸ ︷
(x= x+ ∧ f = f + ∧ t = t+)

It is constructed by Algorithm 1 in steps “specification conjecture” and “set of proof goals”
from the model by flipping the modality and formulating the specification requirement as
a property, since we are interested in a relation between two consecutive states ν and ω

(recalled by x+, f + and t+).

Use theorem proving to analyze the specification conjecture We use the axioms and proof
rules of dL [29,33,35] to analyze the specification conjecture 〈α∗〉Υ +. These proof rules

123

50 Form Methods Syst Des (2016) 49:33–74

syntactically decompose a hybrid model into easier-to-handle parts, which leads to sequents
with first-order real arithmetic formulas towards the leaves of a proof. Using real arithmetic
quantifier elimination we close sequents with logical tautologies, which do not need to be
checked at runtime since they always evaluate to true for any input. The conjunction of the
remaining open sequents is the monitor specification; it implies formula (4).

In the remainder of this article, we follow a synthesis style based on the axiomatization
of dL . Axiomatization-style synthesis differs from the sequent-style synthesis of the short
version [24] in themechanics of the simplification step of Algorithm 1. The axiomatization of
dL allows working in place with fast contextual congruences. This leads to simpler monitors
and simpler proofs since the synthesis proof does not branch and thus keeps working on the
same goal (g̃ = g, so |G| = 1), as opposed to the sequent-style synthesis, which may create
new goals (|G| ≥ 1). For comparison, the corresponding sequent-style synthesis techniques
of the short version [24] of this article is elaborated in Appendix 3. The complete proof
calculus is reported in the literature [29,33,35]. We explain the requisite proof rules on-the-
fly while discussing their use in the running example.

Example 6 (Analyzing loops, assignments, and tests) The analysis of the water tank con-
jecture from Example5 uses 〈∗〉 elim to eliminate the loop, 〈;〉 to handle the sequential
composition, followed by 〈:= ∗〉 to analyze the nondeterministic assignment 〈 f := ∗〉. The
hybrid program plant is an abbreviation for t := 0; {x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε},
whereas Υ + is an abbreviation for x = x+ ∧ f = f + ∧ t = t+. The nondeterministic
assignment axiom 〈:= ∗〉 introduces an existential quantifier. Note that rewriting can still
continue in-place, as demonstrated by rewriting the sequential composition and test inside
the quantifier.

(〈;〉) 〈α;β〉φ ↔ 〈α〉〈β〉φ (〈:=∗〉) 〈x :=∗〉φ(x) ↔ ∃x φ(x)

(〈?〉) 〈?H〉ψ ↔ (H ∧ ψ) (〈∗〉 elim) 〈α〉φ → 〈α∗〉φ

� ∃ f (−1 ≤ f ≤ m−x
ε

∧ 〈plant〉Υ +)

〈?〉 � ∃ f 〈?− 1 ≤ f ≤ m−x
ε

〉〈plant〉Υ +
〈;〉 � ∃ f 〈?− 1 ≤ f ≤ m−x

ε
; plant〉Υ +

〈:= ∗〉 � 〈 f :=∗〉〈?− 1 ≤ f ≤ m−x
ε

; plant〉Υ +
〈;〉 � 〈 f :=∗; ?− 1 ≤ f ≤ m−x

ε
; plant〉Υ +

〈∗〉 elim � 〈(f :=∗; ?− 1 ≤ f ≤ m−x
ε

; plant)∗〉Υ +

Let us look more closely into the first step of Example 6, i. e., 〈∗〉 elim. Usually, proving
properties of the form 〈α∗〉φ about loops requires an inductive variant in order to prove
arbitrarily many repetitions of the loop body. With monitoring in mind, though, we can
unwind the loop and execute the resulting conditions repeatedly instead, as elaborated in
Lemma 5.

Lemma 5 (Loop elimination) Let α be a hybrid program and α∗ be the program that repeats
α arbitrarily many times. Then 〈α〉φ → 〈α∗〉φ is valid.

Proof We prove in dL using loop unwinding 〈∗〉, monotonicity [] mon and propositional
reasoning as follows.

123

Form Methods Syst Des (2016) 49:33–74 51

(〈∗〉) 〈α∗〉φ ↔ φ ∨ 〈α〉〈α∗〉φ ([] mon)
φ � ψ

[α]φ � [α]ψ (→l)
Γ � φ, Δ Γ,ψ � Δ

Γ, φ → ψ � Δ

� 〈α〉φ
→l,ax〈α〉φ → 〈α〉(φ ∨ 〈α〉〈α∗〉φ) � φ ∨ 〈α〉(φ ∨ 〈α〉〈α∗〉φ)

∗
� φ → φ ∨ 〈α〉〈α∗〉φ

[] mon � 〈α〉φ → 〈α〉(φ ∨ 〈α〉〈α∗〉φ)
cut � φ ∨ 〈α〉(φ ∨ 〈α〉〈α∗〉φ)
〈∗〉 � φ ∨ 〈α〉〈α∗〉φ
〈∗〉 � 〈α∗〉φ

��
Lemma 5 allows us to check compliance with the model α∗ by checking compliance on

each execution of α (i. e., online monitoring [18]), which is easier than for α∗ because the
loop was eliminated.

We will continue Example 6 in subsequent examples. The complete sequence of proof
rules applied to the specification conjecture of the water tank is described in Appendix
2. Most steps are simple when analyzing specification conjectures: sequential composition
(〈; 〉), nondeterministic choice (〈∪〉), deterministic assignment (〈:=〉) replace current facts
with simpler ones (or branch the proof as propositional rules do). Challenges arise from
handling nondeterministic assignment and differential equations in hybrid programs.

Let us first consider nondeterministic assignment x := ∗. The proof rule for nonde-
terministic assignment (〈:= ∗〉) results in a new existentially quantified variable. Using
axiomatic-style synthesis, we can postpone instantiating the quantifier until enough infor-
mation about what exact instance to use is discovered, see Example7. The sequent-style
synthesis, in contrast, must instantiate the quantifier right away, in order to continue synthe-
sis on the existentially quantified formula. Appendix 3 discusses ways on how to instantiate
such quantifiers ahead of time.

Next, we handle differential equations. Even when we can solve the differential equation,
existentially and universally quantified variables remain. Let us inspect the corresponding
proof rule from the dL calculus [33] in its axiomatic form.

(〈′〉) (
y(0) = x ∧ [T ′ = 1]y(T)′ = θ(y(T))

) →(
〈x ′ = θ & H〉φ ↔ ∃T≥0

(
(∀0≤t̃≤T 〈x := y(t̃)〉H) ∧ 〈x := y(T)〉φ)) 1

(QE)
QE(φ)

φ
2

1 T and t̃ are fresh logical variables
2 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is an equivalent quantifier-free formula
computable by [7]

When solving differential equations, we first have to prove the correctness of the solution,
as indicated by the left-hand side of the implication in axiom 〈′〉. Then, we have to prove
that there exists a duration T , such that the differential equation stays within the evolution
domain H throughout all intermediate times t̃ and the result satisfies φ at the end. At this
point we have four options:

– we can postpone handling the quantifier until additional facts about a concrete instance
are discovered, which is the preferred tactic in axiomatic-style synthesis;

– we can instantiate the existential quantifier, if we know that the duration will be t+;

123

52 Form Methods Syst Des (2016) 49:33–74

– we can introduce a new logical variable, which is the generic case in sequent-style
synthesis that always yields correct results, but may discover monitor specifications that
are harder to evaluate;

– we can use quantifier elimination (QE) to obtain an equivalent quantifier-free result (a
possible optimization could inspect the size of the resulting formula).

Example 7 (Analyzing differential equations) Continuing Example6, in the analysis of the
water tank example,we solve the differential equation, see 〈′〉. The condition y(0) = x∧[T ′ =
1]y(T)′ = θ(y(T)), with the solution y(T) = f T + x of this example, is closed on a side
branch. Next, we have an existential quantifier with an equality t = 0, so we can instantiate
t with 0 by ∃σ . In the next step, we instantiate the existential quantifier ∃T with t+, as now
revealed in the last conjunct t+ = T ; we do the same for ∃ f by f = f +. Finally, we use
quantifier elimination (QE) to reveal an equivalent quantifier-free formula.

(∃σ) φ(θ)

∃x = θ φ(x)
1

1 Logical variable x does not appear in term θ

� −1 ≤ f + ≤ m−x
ε

∧ x+ = x + f +t+ ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ f +t+ + x ≥ 0
QE � −1 ≤ f + ≤ m−x

ε
∧ ∀0≤t̃≤t+ (x + f + t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ f + = f + ∧ x+ = x + f +t+ ∧ t+ = t+

∃σ � ∃ f (−1 ≤ f ≤ m−x
ε

∧ ∀0≤t̃≤t+ (x + f t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ f = f + ∧ x+ = x + f t+ ∧ t+ = t+
)

∃σ � ∃ f (−1 ≤ f ≤ m−x
ε

∧ ∃T ≥ 0
(∀0≤t̃≤T (x + f t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ f = f + ∧ x+ = x + f T ∧ t+ = T

))

∃σ � ∃ f (−1 ≤ f ≤ m−x
ε

∧ ∃t = 0∃T≥0(∀0≤t̃≤T (x + f t̃ ≥ 0 ∧ t̃ + t ≤ ε)

∧ f = f + ∧ x+ = x + f T ∧ t+ = T + t)
)

〈′〉 � ∃ f (−1 ≤ f ≤ m−x
ε

∧ ∃t = 0〈{x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε
}〉Υ +)

〈;〉,〈:=〉 � ∃ f (−1 ≤ f ≤ m−x
ε

∧ 〈t := 0; {
x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε

}〉Υ +)

The analysis of the specification conjecture finisheswith collecting the open sequents from

the proof to create the monitor specification F(x, x+)
def≡ ∧

(open sequent). The axiomatic-
style synthesis operates fully in-place, so there is only one open sequent to collect. In contrast,
the sequent-style synthesis usually splits into multiple branches. Moreover, the collected
open sequents may include new logical variables and new (Skolem) function symbols that
were introduced for nondeterministic assignments and differential equations when handling
existential or universal quantifiers. These can be handled in a final step by re-introducing and
instantiating quantifiers, see Appendix 3.

Let us now recall our desired result from Example3 and compare it to the formula syn-
thesized in Examples 6 and 7. Also recall that νi−1 denotes the prior state and νi denotes
the posterior state of running the model, so we have the following correlations of symbols:
νi−1(f) corresponds to f , νi−1(t) to t , νi−1(x) to x , whereas νi (f) corresponds to f +, νi (t)
to t+, and νi (x) to x+.

−1 ≤ νi (f) ≤ m − νi−1(x)

ε︸ ︷︷ ︸
−1≤ f +≤m−x

ε

∧ νi (x) = νi−1(x) + νi (f)νi (t)︸ ︷︷ ︸
x+=x+ f +t+

∧ νi−1(x) ≥ 0
︸ ︷︷ ︸

x≥0

∧ νi (x) ≥ 0︸ ︷︷ ︸
f +t++x≥0

∧ 0 ≤ νi (t) ≤ ε︸ ︷︷ ︸
ε≥t+≥0

123

Form Methods Syst Des (2016) 49:33–74 53

Fig. 7 Semantical representation, logical characterization, and arithmetical form of a controller monitor.
Monitor synthesis translates between these representations offline

The conjuncts from the synthesized formula cover all the desired conditions nicely, con-
sidering that x+ is expanded to its lengthier equal form x+ = x + f +t+.

Remark 1 (Monitor evaluation at runtime) The complexity of evaluating an arithmetic
formula over the reals for concrete numbers (such as a monitor for the concrete numbers cor-
responding to the current state) is linear in the formula size, as opposed to deciding the validity
of such formulas, which is doubly exponential [10]. Evaluating the same formula on floating
point numbers is inexpensive, but may yield incorrect results due to rounding errors; on exact
rationals the bit-complexity can be non-negligible. We use interval arithmetic to obtain cor-
rect results while retaining the efficiency of floating-point computations. Interval arithmetic
over-approximates a real value using an interval of two floating-point values that contains the
real, which means the monitors become more conservative (e. g., to evaluate x ≤ m in inter-
val arithmetic, consider x ∈ [xl , xu] and m ∈ [ml ,mu], so [xl , xu] ≤ [ml ,mu] if xu ≤ ml ,
which in turn implies x ≤ m). This leads to an interval-arithmetic formula F̂(x, x+) that
implies F(x, x+) and, thus, also implies the required monitor condition Formula (5).

3.4 Controller monitor synthesis

For a hybrid systemα∗ of the canonical form (αctrl;αplant)
∗, a controllermonitor χc, cf. Fig. 8,

checks that two consecutive states ν and ν̃ are reachable with one controller execution αctrl,
i. e., (ν, ν̃) ∈ ρ(αctrl) with V = BV(αctrl). This controller monitor is to be executed before
a control choice by the controller is sent to the actuators. The program αctrl is derived from
α by skipping differential equations according to Lemma 6 below. Recall that a differential
equation {x ′ = θ & H} can be followed for a nondeterministic amount of time, including
0, which lets us skip it as long as its evolution domain constraint H is satisfied in the
beginning, as captured by 〈αctrl〉(Υ + ∧ H). That way, a controller monitor ensures that the
states reachable by a controller enable subsequent runs of the plant, see Theorem 2. We
systematically derive a controller monitor from the specification formula 〈α∗〉Υ +, see Fig. 7.

Fig. 8 A controller monitor checks that two states ν and ν̃ are contained in the transition relation of the
controller portion of the model (ν, ν̃) ∈ ρ(αctrl); the posterior state ν̃ is captured in x+ through Υ+

123

54 Form Methods Syst Des (2016) 49:33–74

A controller monitor can be used to initiate controller switching similar to Simplex [39], yet
in provably correct-by-construction ways.

Lemma 6 (Differential skip) Let x ′ = θ denote a set of differential equations with evolution
domain H. Then H ∧ φ → 〈x ′ = θ & H〉φ is valid.

Proof We prove in dL using [′] skip derived from DW [35].

(¬¬) ¬¬φ ↔ φ (¬∧) ¬(φ ∧ψ) ↔ ¬φ ∨¬ψ (→) (φ → ψ) ↔ ¬φ ∨ψ

([] skip) [x = θ & H]φ → (H → φ) () a φ ↔ ¬[a]¬φ

∗
x = θ & H φ x = θ & H φ
[x = θ & H](¬φ) x = θ & H φ

[] skip (H → ¬φ) x = θ & H φ
¬¬,¬∧,→ H ∧φ x = θ & H φ

��
Theorem 2 (Controller monitor correctness) Let α be of the canonical form αctrl;αplant with
the continuous model αplant ≡ x ′ = θ & H and let V = BV(αctrl). Assume |� φ → [α∗]ψ
has been proven with invariant ϕ as in (3), i. e., φ → ϕ, ϕ → [α]ϕ, and ϕ → ψ . Let ν |� ϕ,
as is checked by χm (Corollary 3). Furthermore, let ν̃ be the state after running the actual
CPS controller implementation and let ν̃ agree with ν on Σ\V , i. e., ν|Σ\V = ν̃|Σ\V . If
(ν, ν̃) |� χc with

χc ≡ 〈αctrl〉(Υ + ∧ H)

then (ν, ν̃) ∈ ρ(αctrl), ν̃ |� ϕ, and there exists a state ω such that (ν̃, ω) ∈ ρ(αplant).

Proof By Lemma 4, (ν, ν̃) |� 〈αctrl〉Υ + implies (ν, ν̃) ∈ ρ(αctrl). The assumption (ν, ν̃) |�
〈αctrl〉(Υ + ∧ H) furthermore implies ν̃ |� H , (ν, ν̃) |� 〈αctrl;αplant〉Υ + by Lemma 6, hence
(ν, ν̃) |� 〈α〉Υ + and (ν, ν̃) ∈ ρ(α) by Lemma 4. Since ν |� ϕ by assumption, we get ν̃ |� ϕ

from ϕ → [α]ϕ. Now ν̃ |� ϕ ∧ H , so there exists ω s.t. (ν̃, ω) ∈ ρ(αplant). ��
The corollaries to Theorem 1 carry over to Theorem 2 accordingly.

3.5 Monitoring in the presence of expected uncertainty and disturbance

Up to now we considered exact ideal-world models. But real-world clocks drift, sensors
measure with some uncertainty, and actuators are subject to disturbance. Thismakes the exact
models safe but too conservative, whichmeans thatmonitors for exactmodels are likely to fall
back to a fail-safe controller rather often. In this section we discuss how we find ModelPlex
specifications in the sequent-style synthesis techniques so that the safety property (2) and
the monitor specification become more robust to expected uncertainty and disturbance. That
way, only unexpected deviations beyond those captured in the normal operational uncertainty
and disturbance of model α∗ cause the monitor to initiate fail-safe actions.

In dL , we can, for example, use nondeterministic assignment from an interval to
model sensor uncertainty and piece-wise constant actuator disturbance (e. g., as in [26]),

123

Form Methods Syst Des (2016) 49:33–74 55

or differential inequalities for actuator disturbance (e. g., as in [38]). Such models include
nondeterminism about sensed values in the controller model and often need more complex
physics models than differential equations with polynomial solutions.

Example 8 (Modeling uncertainty and disturbance)We incorporate clock drift, sensor uncer-
tainty and actuator disturbance into the water tank model to express expected deviation.
The measured level xs is within a known sensor uncertainty u of the real level x (i.e.
xs ∈ [x − u, x + u]). We use differential inequalities to model clock drift and actuator
disturbance. The clock, which wakes the controller, is slower than the real time by at most a
time drift of c; it can be arbitrarily fast. The water flow disturbance is at most d , but the water
tank is allowed to drain arbitrarily fast (may even leak when the outgoing valve is closed).
To illustrate different modeling possibilities, we use additive clock drift and multiplicative
actuator disturbance.

0 ≤ x ≤ m ∧ ε > 0 ∧ c < 1 ∧ 0 ≤ u ∧ 0 < d

→
[(

xs := ∗; ? (x − u ≤ xs ≤ x + u) ; f := ∗; ? (−1 ≤ f ≤ m−xs−u
dε

(1− c)
)
;

t := 0;
{
x ′ ≤ f d, 1− c ≤ t ′ & x ≥ 0 ∧ t ≤ ε

})∗]
(0 ≤ x ≤ m)

We analyze Example 8 in the same way as the previous examples, with the crucial
exception of the differential inequalities. We cannot use the proof rule 〈′〉 to analyze this
model, because differential inequalities do not have polynomial solutions. Instead, we use
DM (cf. Lemma 7) and the DE proof rule of dL [31] to turn differential inequalities into
a differential-algebraic constraint form that lets us proceed with the proof. Rule DE turns a
differential inequality x ′ ≤ θ into a quantified differential equation ∃d̃(x ′ = d̃ & d̃ ≤ θ)

with an equivalent differential-algebraic constraint. Rule DM turns a fluctuating disturbance
〈∃d̃ x ′ = d̃ & H〉φ into a mean disturbance ∃d̄〈x ′ = d̄ & H〉φ, see Lemma 7.

Lemma 7 (Mean disturbance) Reachability with mean disturbance d̄ throughout approxi-
mates fluctuating disturbance d̃ : (DM) ∃d̄〈x ′ = θ(d̄) & H〉φ → 〈∃d̃ x ′ = θ(d̃) & H〉φ.
Proof We prove in dL using differential refinement DR [31].

(DR)
D → E 〈D〉φ

〈E 〉φ
1 (∃l) Γ, φ(s(X1, . . . , Xn)) � Δ

Γ, ∃x φ(x) � Δ
2 (∃inst) p(t ()) → ∃x p(x)

1 differential refinement: differential-algebraic constraints D , E have the same changed variables
2 s is a new (Skolem) function symbol and X1, . . . , Xn are all free variables of ∃x φ(x)

∗
∃inst,ax � ∀x, x ′(x ′ = θ(d̄()) & H → ∃d̃ (x ′ = θ(d̃) & H))

∗
ax〈x ′ = θ(d̄()) & H〉φ � 〈x ′ = θ(d̄()) & H〉φ

DR 〈x ′ = θ(d̄()) & H〉φ � 〈∃d̃ x ′ = θ(d̃) & H〉φ
∃l ∃d̄〈x ′ = θ(d̄) & H〉φ � 〈∃d̃ x ′ = θ(d̃) & H〉φ

Example 9 (Analyzing differential inequalities) Loops, assignments and tests are analyzed
as in the previous examples. We continue with differential inequalities as follows. First, we
eliminate the differential inequalities by rephrasing them as differential-algebraic constraints
in step (DE). Then, we refine by extracting the existential quantifiers for flow disturbance d̃
and time drift t̃ , so that they becomemean disturbance andmean time drift in step (DM).Note,
that the existential quantifier moved from inside the modality 〈∃d̃(x ′ = d̃〉, ...) to the outside
∃d̄〈x ′ = d̄, . . .〉, which captures that the states reachable with fluctuating disturbance could

123

56 Form Methods Syst Des (2016) 49:33–74

also have been reached by following amean disturbance throughout. The resulting differential
equation has polynomial solutions and, thus, we can use 〈′〉 and proceed with the proof as
before.

(DM) ∃d̄ x = θ(d̄) & H φ d̃ x = θ(d̃) & H φ

(DE)

∀X(∃d̃(X = d̃∧ d̃ ≤ θ ∧H) → X ≤ θ ∧H)
d̃(x = d̃& d̃ ≤ θ ∧H) φ

x ≤ θ &H φ
1

1 differential inequality elimination: special case of DR, which rephrases the differential inequalities ≤ as
differential-algebraic constraints (accordingly for other or mixed inequalities systems).

∗
QE x,t(∃d̃, t̃(x= d̃∧ t = t̃ ∧ d̃ ≤ f d∧1− c ≤ t̃ ∧ d̃ ≥ 0∧ t̃ ≤ ε)

→ x ≤ f d∧1− c ≤ t ∧x ≥ 0∧ t ≤ ε)

. . .

. . .
,Opt. 1,QE xs, f ,t . . .∧∃d̄, t̄ x = d̄,t = t̄ & d̄ ≤ f d∧1− c ≤ t̄ ∧x ≥ 0∧ t ≤ ε ϒ+

DM xs, f ,t . . . d̃, t̃(x = d̃,t = t̃ & d̃ ≤ f d∧1− c ≤ t̃ ∧x ≥ 0∧ t ≤ ε ϒ+

DE xs, f ,t (. . . x ≤ f d,1− c ≤ t & x ≥ 0∧ t ≤ ε ϒ+)
. . . (analyze as in previous examples)
(xs := ∗; . . . ; {x ≤ f d, 1− c ≤ t & x ≥ 0∧ t ≤ ε})∗ ϒ+

As expected, we get amore permissivemonitor specification. Such amonitor specification
says that there exists a mean disturbance d̄ and a mean clock drift c̄ within the allowed
disturbance bounds, such that the measured flow f +, the clock t+, and the measured level x+
can be explained with the model. These existential quantifiers will be turned into equivalent
quantifier-free form in subsequent steps by QE.

So far, we discussed proof rule 〈′〉 to solve differential equations when synthesizing
model monitors. Recent advances [41] on proving 〈·〉φ properties (where φ is phrased using
equalities) point to an interesting direction for synthesizing model monitors without solving
differential equations. In the next section, we will use dL techniques based on differen-
tial invariants, differential cuts [30], and differential auxiliaries [32] to handle differential
equations and inequalities without requiring any closed-form solutions when synthesizing
prediction monitors.

3.6 Monitoring compliance guarantees for unobservable intermediate states

With controller monitors, non-compliance of a controller implementation w.r.t. the modeled
controller can be detected right away. With model monitors, non-compliance of the actual
systemdynamicsw.r.t. themodeled dynamics can be detectedwhen theyfirst occur.We switch
to a fail-safe action, which is verified using standard techniques, in both non-compliance
cases. The crucial question is: can such a method always guarantee safety? The answer is
linked to the image computation problem in model checking (i. e., approximation of states
reachable from a current state), which is known to be not semi-decidable by numerical
evaluation at points; approximation with uniform error is only possible if a bound is known
for the continuous derivatives [36]. This implies thatweneed additional assumptions about the
deviation between the actual and the modeled continuous dynamics to guarantee compliance
for unobservable intermediate states. Unbounded deviation from the model between sample

123

Form Methods Syst Des (2016) 49:33–74 57

Fig. 9 Semantical representation, logical characterization, and arithmetical form of a prediction monitor.
Monitor synthesis translates between these representations offline

Fig. 10 A prediction monitor checks that none of the potential states ω reachable from state ν̃ by following
the plant with some disturbance δ for up to time ε is unsafe; the posterior state ν̃ is captured in x+ through
Υ +

points just is unsafe, no matter how hard a controller tries. Hence, worst-case bounds capture
how well reality is reflected in the model.

We derive a prediction monitor, cf. Figs. 9 and 10, to check whether a current control
decision will be able to keep the system safe for time ε even if the actual continuous dynamics
deviate from the model. A prediction monitor checks the current state, because all previous
states are ensured by a model monitor and subsequent states are then safe by (2).

In order to derive a prediction monitor, we use Lemma 8 to introduce a plant with distur-
bance as additional predicate into our logical representation.

Lemma 8 (Introduce predicate) Formula 〈α〉 (φ ∧ ψ) → 〈α〉φ is valid.

Proof Follows from φ ∧ ψ → φ using the diamond variant of [] mon. ��
Definition 4 (ε-bounded plant with disturbance δ) Let αplant be a model of the form
x ′ = θ & H . An ε-bounded plant with disturbance δ, written αδplant, is a plant model of
the form x0 := 0; (

f (θ, δ) ≤ x ′ ≤ g(θ, δ)& H ∧ x0 ≤ ε
)
for some f , g with fresh variable

ε > 0 and with a clock x ′0 = 1. We say that disturbance δ is constant if x /∈ FV(δ); it is
additive if f (θ, δ) = θ − δ and g(θ, δ) = θ + δ.

Theorem 3 (Prediction monitor correctness) Let α be of the canonical form αctrl;αplant with
the continuous model αplant ≡ x ′ = θ & H and let V = BV(α) ∪ FV([αδplant]ϕ). Let α∗ be
provably safe, i. e., |� φ → [α∗]ψ has been proved using invariant ϕ as in (3). Let ν |� ϕ,
as checked by χm from Corollary 3. If (ν, ν̃) |� χp with

χp ≡ 〈αctrl〉(Υ + ∧ H ∧ [αδplant]ϕ)

then we have ω |� ϕ for all ω s.t. (ν, ω) ∈ ρ(αctrl;αδplant).

123

58 Form Methods Syst Des (2016) 49:33–74

Proof Assume (ν, ν̃) |� χp, i. e., ν
ν̃(x)
x+ |� χp. By Theorem 2, (ν, ν̃) |� 〈αctrl〉Υ + implies

ν̃ |� ϕ, since ν |� ϕ. Furthermore, then there exists μ such that μ |� Υ + ∧ H ∧ [αδplant]ϕ
with (ν

ν̃(x)
x+ , μ) ∈ ρ(αctrl) and the two states ν and μ agree on all variables except the ones

modified by αctrl, i. e., ν
ν̃(x)
x+ |Σ\BV(αctrl) = μ|Σ\BV(αctrl). Now μ |� Υ + implies μ(x) =

μ(x+) = ν
ν̃(x)
x+ (x+) = ν̃(x). (in other words, μ|V = ν̃|V). Also μ |� [αδplant]ϕ. Thus,

by Lemma 2, ν̃ |� [αδplant]ϕ since V ⊇ FV([αδplant]ϕ) and hence we have ω |� ϕ for all
(ν̃, ω) ∈ ρ(αδplant). ��

Observe that this is also true for all intermediate times ζ ∈ [0, ω(t)] by the transition
semantics of differential equations, where ω(t) ≤ ε because αδplant is bounded by ε.

Remark 2 By adding a controller execution 〈αctrl〉 prior to the disturbed plant model, we
synthesize predictionmonitors that take the actual controller decisions into account. For safety
purposes, we could just as well use a monitor definition without controller χp ≡ [αδplant]ϕ.
But that would result in a rather conservativemonitor, which has to keep the CPS safe without
knowledge of the actual controller decision.

3.7 Decidability and computability

One useful characteristic of ModelPlex beyond soundness is that monitor synthesis is com-
putable, which yields a synthesis algorithm, and that the correctness of those synthesized
monitors w.r.t. their specification is decidable, cf. Theorems 4 and 5.

FromLemma 5 it follows that onlinemonitoring [18] (i. e., monitoring the last two consec-
utive states) is permissible. So, ModelPlex turns questions 〈α∗〉φ into 〈α〉φ. For decidability,
we first consider canonical hybrid programs α of the form α ≡ αctrl;αplant where αctrl and
αplant are free of further nested loops. To handle differential inequalities in dL formulas of
the form [αδplant]φ, the subsequent proofs additionally use the rules for handling differential-
algebraic equations [31].

Theorem 4 (Monitor correctness is decidable)We assume canonical models of the formα ≡
αctrl;αplant without nested loops, with solvable differential equations in αplant and disturbed
plantsαδplant with constant additive disturbance δ (seeDefinition 4) and F(x, x+), ϕ, H to be
first-order formulas. Then, monitor correctness is decidable, i. e., the formulas F(x, x+) →
〈α〉Υ +, F(x, x+) → 〈αctrl〉(Υ + ∧ H), and F(x, x+) → 〈α〉(Υ + ∧ H ∧ [αδplant]ϕ) are
decidable.

Proof From relative decidability of dL [33, Theorem 11] we know that sentences of dL
(i. e., dL formulas without free variables) are decidable relative to an oracle for discrete
loop invariants/variants and continuous differential invariants/variants. Since neither αctrl

nor αplant contain nested loops, we manage without an oracle for loop invariants/variants.
Further, since the differential equation systems in αplant are solvable, we have an effective
oracle for differential invariants/variants. Let Cl∀(φ) denote the universal closure of dL
formula φ (i. e., Cl∀(φ) ≡ ∀z∈FV(φ)z.φ). Note that when |� F then also |� Cl∀(F) by a
standard argument.

Model monitor F(x, x+) → 〈α〉Υ +: Follows from relative decidability of dL [33,
Theorem 11], because Cl∀(F(x, x+) → 〈α〉Υ +) contains no free variables.
Controller monitor F(x, x+) → 〈αctrl〉(Υ + ∧ H): Follows from relative decidability
of dL [33, Theorem 11], because Cl∀(F(x, x+) → 〈αctrl〉(Υ + ∧ H)) contains no free
variables.

123

Form Methods Syst Des (2016) 49:33–74 59

Predictionmonitor F(x, x+) → 〈αctrl〉(Υ +∧H∧[αδplant]ϕ): First assume that [αδplant]ϕ
can be represented in a first-order formula B such that B → [αδplant]ϕ. Then, by

(〈α〉φ ∧ [α](φ → ψ)) → 〈α〉(φ ∧ ψ)

decidability splits into two cases:

Case F(x, x+) → 〈αctrl〉(Υ +∧H ∧ B): follows from case F(x, x+) → 〈αctrl〉(Υ +∧
H) (controller monitor) above.
Case (Υ +∧H∧B) → [αδplant]ϕ: Since the disturbance δ in αδplant is constant additive
and the differential equations in αplant are solvable, we have the disturbance functions
f (θ, δ) and g(θ, δ) applied to the solution as an oracle8 for differential invariants (i. e.,
the differential invariant is a pipe around the solutionwithout disturbance). Specifically,
to show (Υ +∧H∧B) → [αδplant]ϕ byDefinition 4we have to show (Υ +∧H∧B) →
[x0 := 0; (θ − δ ≤ x ′ ≤ θ + δ& H ∧ x0 ≤ ε)]ϕ. We proceed with only (Υ + ∧ H ∧
B) → [x0 := 0; (x ′ ≤ θ + δ& H ∧ x0 ≤ ε)]ϕ since the case θ − δ ≤ x ′ follows
in a similar manner. By definition of αδplant we know 0 ≤ x0, and hence continue
with (Υ + ∧ H ∧ B) → [x ′ ≤ θ + δ& H ∧ 0 ≤ x0 ≤ ε]ϕ by differential cut 0 ≤ x0.
Using the differential cut rule [31], we further supply the oracle solx +δx0, where solx
denotes the solution of x ′ = θ in αplant and δx0 the solution for the disturbance since
δ is constant additive. This leads to two proof obligations:

Prove oracle (Υ + ∧ H ∧ B) → [x ′ ≤ θ + δ& H ∧ 0 ≤ x0 ≤ ε]x ≤ solx + δx0,
which by rule differential invariant [31] is valid if we can show 0 ≤ x0 ≤ ε →
x ′ ≤ sol′x + (δx0)′ where the primed variables are replaced with the respective
right-hand side of the differential equation system. From Definition 4 we know
that x ′0 = 1 and δ′ = 0 and since solx is the solution of x ′ = θ in αplant we further
know that sol′x = θ ; hence we have to show 0 ≤ x0 ≤ ε → θ + δ ≤ θ + δ, which
is trivially true.
Use oracle (Υ +∧H∧B) → [x ′ ≤ θ + δ& H ∧ 0 ≤ x0 ≤ ε ∧ x ≤ solx + δx0]ϕ,
which by rule differential weaken [31] is valid if we can show

(Υ + ∧ H ∧ B) → ∀α ((H ∧ 0 ≤ x0 ≤ ε ∧ x ≤ solx + δx0) → ϕ)

where∀α denotes the universal closurew.r.t.α, i. e.,∀x . But since B → [αδplant]ϕ is
valid, this is provable by quantifier elimination. Furthermore, we cannot get a better
result than differential weaken, because the evolution domain constraint contains
the oracle’s answer for the differential equation system,which characterizes exactly
the reachable set of the differential equation system.

We conclude that the oracle is proven correct and its usage is decidable.

It remains to show that [αδplant]ϕ can be represented in a first-order formula B such
that B → [αδplant]ϕ. We know from Lemma 7 that any fluctuating disturbance can be
approximated by its mean disturbance throughout. So for all fluctuating disturbances
in [−δ, δ] we have a corresponding constant additive mean disturbance from [−δ, δ],
which yields solvable differential equations. Hence, there exists a first-order formula
B such that B → [αδplant]ϕ is valid. For the constant additive case, there even is a
first-order formula B that is equivalent to [αδplant]ϕ, because every constant additive
disturbance can be replaced equivalently by a mean disturbance using the mean-value
theorem for the disturbance as a (continuous!) function of time [30]. Consequently, the

8 By design, the disturbed plant αδplant also includes a clock x0, so the oracle additionally includes the trivial
differential invariant x0 ≥ 0.

123

60 Form Methods Syst Des (2016) 49:33–74

above cut to add B is possible if and only if the monitor χp is correct, leading to a decision
procedure. ��
For computability, we start with a theoretical proof on the basis of decidability, before we

give a constructive proof, which is more useful in practice.

Theorem 5 (Monitor synthesis is computable) We assume canonical models of the form α ≡
αctrl;αplant without nested loops, with solvable differential equations in αplant and disturbed
plants αδplant with constant additive disturbance δ (see Definition 4). Then, monitor synthesis
is computable, i. e., the functions synthm : 〈α〉Υ + → F(x, x+), synthc : 〈αctrl〉(Υ +∧H) →
F(x, x+), and synthp : 〈αctrl〉(Υ + ∧ H ∧ [αδplant]ϕ) → F(x, x+) are computable.

Proof Follows immediately from Theorem 4 with recursive enumeration of monitors. ��
We give a constructive proof of Theorem 5. The proof is based on the observation that,

except for loop and differential invariants/variants, rule application in the dL calculus is
deterministic: from [31, Theorem 2.4] we know that, relative to an oracle for first-order
invariants and variants, the dL calculus gives a semidecision-procedure for dL formulas
with differential equations having first-order definable flows.

Proof For the sake of a contradiction, suppose thatmonitor synthesis stoppedwith some open
sequent not being a first-order quantifier-free formula. Then, by [31, Theorem 2.4] the open
sequent either contains a hybrid program with nondeterministic repetition or a differential
equation at top level, or it is not quantifier-free. But this contradicts our assumption that
both αctrl and αplant are free from loops and that the differential equations are solvable and
disturbance is constant, in which case for

Model monitor synthesis χm: the solution rule 〈′〉 would make progress, because the
differential equations in αplant are solvable; and for
Prediction monitor synthesis χp: the disturbance functions f (θ, δ) and g(θ, δ) applied to
the solution provide differential invariants (see proof of Theorem4) so that the differential
cut rule, the differential invariant rule, and the differential weakening rule [31] would
make progress.

In the case of the open sequent not being quantifier-free, the quantifier elimination rule QE
would be applicable and turn the formula including quantifiers into an equivalent quantifier-
free formula. Hence, the open sequent neither contains nondeterministic repetition, nor a
differential equation, nor a quantifier. Thus we conclude that the open sequent is a first-order
quantifier-free formula. ��
3.8 A proof tactic for automatic monitor synthesis

Based on the decidability and computability results above, this section explains how to
implement ModelPlex monitor synthesis (Algorithm 1) as an automatic proof tactic for
correct-by-construction monitor synthesis. This proof tactic is formulated in the tactic
language of our theorem prover KeYmaera X [14]. KeYmaera X features a small soundness-
critical core for axiomatic reasoning. On top of that core, tactics steer the proof search:
axiomatic tactics constitute the most basic constructs of a proof, while tactic combinators
(e. g., sequential tactic execution) are a language to combine tactics into more powerful proof
procedures. The tactic language of KeYmaera X provides operators for sequential tactic com-
position (;), tactic repetition (∗), optional execution (?), and alternatives (|) to combines basic
dL tactics, see [14].

123

Form Methods Syst Des (2016) 49:33–74 61

For ModelPlex, we combine propositional axiomatic tactics with tactics for handling
hybrid programs into a single tactic called synthesize, which performs the steps of Algo-
rithm 1 in place such that the monitor is synthesized on a single proof branch by successively
transforming the model. The synthesize tactic finds modalities with hybrid programs, and
uses contextual equivalence rewriting to replace these modalities in place while retaining a
proof of correctness of those transformations.

synthesize ≡ locate(prepare)∗; locate (rewriteHP)∗ ; local QE?; (∃σ)∗ (6)

prepare ≡
{

(〈;〉) | (∪) | (〈∗〉 elim) model monitor

(〈;〉) | (∪) | (〈∗〉 elim) | (〈′〉 skip) controller monitor
(7)

rewriteHP ≡ (〈:=〉) | (〈:=∗〉) | (〈:=〉 eq) | (〈?〉) | (〈′〉 solve) (8)

The synthesize tactic operates on a specification conjecture 〈α∗〉Υ +. It combines tactic
selection as in a regular expression with search, so that formulas are turned into axioms
step-by-step (backwards search). Synthesize starts with prepare, which determines whether
to synthesize a controller monitor (unwinds loops and skips differential equations) or a
model monitor (unwinds loops). Then, it repeats rewriting hybrid programs until none of the
hybrid program tactics is applicable anymore, indicated by locate(rewriteHP)∗. Note, that
the synthesize tactic does not need to instantiate existential quantifiers at intermediate steps,
since it can continue rewriting inside existential quantifiers. After rewriting hybrid programs
is done, an optional local quantifier elimination step is made, cf. (6), in case that any universal
quantifiers remained from the ODE in the innermost sub-formula, followed by instantiating
the existential quantifiers using ∃σ .

At the heart of the synthesize tactic is locate, which searches for the topmost formula
that includes a hybrid program (i. e., a diamond modality) and chooses the appropriate tactic
to reduce that program. The proof search itself is backward in sequent-style, which starts
from the monitor specification conjecture and searches for steps that transform the conjecture
gradually into axioms. This tactic seems like a natural way of synthesizing monitors, since
it starts from the conjecture and repeatedly applies proof steps until no more progress can
be made (i. e., no more steps are applicable). However, repeated search for the topmost
hybrid program operator incurs considerable computation time overhead, as we will see in
Sect. 4.

To avoid repeated search, we provide another tactic using a forward chase. The forward
chase uses proof-as-computation and is based onunification and recursive forward application
of axioms, which allows us to construct a proof computationally from axioms until we
reach the monitor specification conjecture. Each step of the recursive computation knows the
position where to apply the subsequent step, so that no search is necessary.

4 Evaluation

4.1 Monitor synthesis

Wedeveloped two software prototypes: A sequent-style synthesis prototype uses KeYmaera 3
[37] and Mathematica. It uses Mathematica to simplify redundant monitor conditions after
synthesizing the monitor in KeYmaera 3, and therefore must recheck the final monitor for

123

62 Form Methods Syst Des (2016) 49:33–74

Table 2 Case study overview

Case study Characteristics Dim. Proof steps Branches

Water tank 1 control branch, solvable ODE 5 38 4

Cruise control [20] 3 control branches,solvable ODE 11 969 124

Speed limit [25] 6 control branches,solvable ODE 9 410 30

ETCS safety [38] 8 control branches,solvable ODE 16 193 10

Robot [26] 3 control branches,non-solvable ODE 14 3350 225

correctness. An axiomatic-style prototype is implemented as a tactic in KeYmaera X [14],
which generates controller and model monitors fully automatically and avoids branching by
operating on sub-formulas in a single sequent. The axiomatic-style prototype synthesizes
correct-by-construction monitors and produces a proof of correctness during the synthesis
without the need to recheck.

To evaluate our method, we synthesize monitors for prior case studies of nondetermin-
istic hybrid models of autonomous cars, train control systems, and robots (adaptive cruise
control [20], intelligent speed adaptation [25], the European train control system [38], and
ground robot collision avoidance [26]), see Table2. For the model, we list the dimension
in terms of the number of function symbols and state variables, as well as the size of the
safety proof for proving (2), i. e., number of proof steps and the number of proof branches.
The safety proofs of Formula (2) transfer from KeYmaera 3 and were not repeated in
KeYmaera X.

Table3 summarizes the evaluation results. The main result is the completely automatic,
correct-by-construction synthesis in KeYmaera X with a single open branch on which the
monitor is being synthesized. The monitor sizes in KeYmaera X are usually smaller than

Table 3 Monitor synthesis case studies

Case Study Dim. Manual/steps (Open/branches) Rechecking Unsimpl. Size
with Opt. 1 without Opt. 1 (branches)

Axiomatic-style synthesis

χ m Water tank 3 0/1698 (1/344) 0/1858 (1/377) 58

χ c

Water tank 3 0/157 (1/32) see left 12
Cruise control 7 0/759 (1/189) 0/809 (1/204) 78
Robot 11 0/6425 (1/2730) see left 108
Speed limit 6 0/7312 (1/2835) see left 163

Sequent-style synthesis

χ m

Water tank 3 12/16 (2/2) 3/20 (2/2) 64 (5) ≈ ×2 32
Cruise control 7 98/133 (13/13) 52/597 (21/21) 19514 (1058) 1111 1111
Speed limit 6 335/487 (32/32) 648/5016 (126/126) 64311 (2294) 19850 19850

χ c

Water tank 1 8/12 (2/2) 0/14 (2/2) 40 (3) ≈ ×2 20
Cruise control 7 48/83 (13/13) 0/518 (106/106) 5840 (676) ≈ ×10 84
Robot 11 68/98 (10/10) 0/1210 (196/196) 26166 (2854) ≈ ×10 121
Speed limit 6 247/377 (32/32) N/A 226543 (31832) 2452 2452
ETCS safety 13 114/156 (13/16) 0/359 (31/37) 16770 (869) ≈ ×10 153

χ p Water tank 1 31/135 (4/10) N/A 307 (12) ≈ ×2 43

http://www.cs.cmu.edu/~smitsch/resource/modelplex_fmsd_study.zip

123

http://www.cs.cmu.edu/~smitsch/resource/modelplex_fmsd_study.zip

Form Methods Syst Des (2016) 49:33–74 63

Table 4 Monitor synthesis
duration

a Synthesis with Opt.1, not
counting for manual interaction

Case study Axiomatic-style Sequent-style

Search Chase Synth. +Check

Water tank 0.9 0.3 1.3 4.9

Cruise control [20] 22.9 3.3 12.7 >1,000

Robot [26] 72.1 23.4 23.5 >1,000

Speed limit [25] 30.4 2.1 0.6a 204.9

those of KeYmaera 3, because the structure is preserved better so no external simplifica-
tion is needed, cf. last column “unsimplified”. Without external simplification, very similar
conditions with only small deviations are repeated on each open branch, For example, the
controller monitor sizes listed the sequent-style synthesis need to be multiplied roughly by
the number of open branches, in order to get the monitor size before external simplification.

A detailed analysis follows in subsequent paragraphs below. For the monitor, we list
the dimension of the monitor specification in terms of the number of variables, compare
the number of manual steps among all steps and branches left open among all branches
when deriving the monitor with or without Opt. 1, as well as the number of steps when
rechecking monitor correctness. Finally, we list the monitor size in terms of the number of
arithmetic, comparison, and logical operators in the monitor formula. The number of proof
steps of KeYmaera 3 and KeYmaera X are not directly comparable, because both implement
different calculi. KeYmaera X leads to more but simpler proof steps.

Performance Analysis We analyze the computation time for deriving controller monitors
fully automatically in the axiomatic-style synthesis technique, comparing both the backward
tactic and forward chase implementations introduced in Section3.8 above. The computation
time measurements were taken on a 2.4GHz Intel Core i7 with 16GB of memory, averaged
over 20 runs. Table4 summarizes the performance measurements for the axiomatic-style
synthesis in KeYmaera X and the sequent-style synthesis in KeYmaera 3. Unsurprisingly,
the repeated search for applicable positions in the backward tactic results in a considerable
computation time overhead, when compared to the forward chase. Additional performance
gains in the forward chase are rooted in (i) its ability to largely use derived axioms, which
need only be proven once during synthesis (instead of repeatedly on each occurrence, as in
the backward tactic); and (ii) its ability to postpone assignment processing and thus avoid
intermediate stuttering assignments, which are necessary for successful uniform substitution
[35], but result in additional proof steps if performed early.

For the sequent-style synthesis technique we list the time needed to perform the fully
automated stepswithoutOpt. 1 inKeYmaera. The raw synthesis times are comparable to those
in the chase-based axiomatic-style synthesis, because the sequent-style technique always
operates on the top-level operator and does not need search. Recall, however, that in the
sequent-style synthesis technique the monitors are simplified with an unverified external
procedure and, therefore, need to be re-checked for correctness in KeYmaera. This check
needs considerable time, as listed in the last column of Table4.

KeYmaera X The axiomatic-style synthesis prototype supports proof search steering with
fine-grained tactics, and applies tactics in-place on sub-formulas, without branching on top-
level first. As a result, synthesis both with and without Opt. 1 is fully automatic and avoids
redundancies in monitor conditions. The reasoning style of KeYmaera X, as illustrated in

123

64 Form Methods Syst Des (2016) 49:33–74

Proof 3, uses frequent cuts to collect all monitoring conditions in a single open branch,
which results in a larger overall number of branches than in sequent-style synthesis. The
important characteristic is that these side branches all close, so that only a single branch
remains open. This means that synthesis does not require untrusted procedures to simplify
monitoring conditions that were duplicated overmultiple branches, which also entails that the
final rechecking of the monitor is not required, see column “proof steps (branches)”. Having
only one branch and operating on sub-formulas also means that Opt. 1 does not need to be
executed at intermediate stages in the synthesis process. Remaining existential quantifiers
can be instantiated once at the end of the synthesis process, so that synthesis with and without
Opt. 1 become identical.

KeYmaera X, however, is still in an early development stage and, so far, does not sup-
port differential inequalities and arbitrary differential equations in diamond modalities, so
we cannot evaluate prediction monitor and model monitor synthesis fully. As development
progress continues, these restrictions will diminish and we will analyze the model moni-
tor and prediction monitor case studies with the axiomatic-style synthesis prototype once
available.

KeYmaera 3 In the sequent-style synthesis prototype we support model monitor and predic-
tionmonitor synthesis for awider range of systems, albeit at the cost of significantly increased
manual interaction: for example, Opt. 1 has to be applied manually, since KeYmaera 3 does
not provide sufficiently fine-grained steering of its automated proof search. Since optimiza-
tion occurs after non-deterministic assignments and differential equations (i. e., in the middle
of a proof), most of the synthesis process is user-guided as a consequence. For controller
monitors, the sequent-style synthesis prototype without Opt. 1 is fully automatic (see num-
ber of manual steps in column “without Opt. 1” in lines 4-7, marked χc). In full automation,
however, the proof search of KeYmaera 3 results in increased branching, since propositional
steps during proofs are usually cheap (see number of branches in column “without Opt. 1”).
As a consequence, even though the relative number of manual proof steps is reduced, the
massive branching of the automatic proof search implies that in absolute terms more manual
steps might be necessary than in the completely manual process (see number of manual steps
in line 3, Speed limit case study, where local quantifier elimination after solving ODEs is
performed manually). This can be avoided with fine-grained tactic support, as is achieved in
the axiomatic-style synthesis prototype.

Although the number of steps and open branches differ significantly betweenmanual inter-
action for Opt. 1 and automated synthesis, the synthesized monitors are logically equivalent.
But applying Opt. 1 usually results in structurally simpler monitors, because the conjunction
over a smaller number of open branches (cf. Table3) can still be simplified automatically.
The model monitors for cruise control and speed limit control are significantly larger than the
othermonitors, because their size already prevents automated simplification byMathematica.
Here, the axiomatic-style synthesis approach is expected to provide significant advantage,
since it does not duplicate conditions over many branches and, thus, computes small monitors
even without further simplification.

4.2 Model simulation with monitoring

We tested the ModelPlex monitors with a simulation in Mathematica9 on hybrid system
models of the water tank example used throughout this article.

9 http://www.wolfram.com/mathematica.

123

http://www.wolfram.com/mathematica

Form Methods Syst Des (2016) 49:33–74 65

Fig. 11 Water tank simulation with monitor illustration, is maximum level (m), is current level
(x), is commanded flow (f), is the output of monitor χm for the complete model, and is
the output of monitor χc for the controller

To illustrate the behavior of the water tank model with a fallback controller, we created
two monitors: Monitor χm validates the complete model (as in the examples throughout
this article) and is executed at the beginning of each control cycle (before the controller
runs). Monitor χc validates only the controller of the model α∗ (compares prior and pos-
terior state of f := ∗; ? − 1 ≤ f ≤ m−x

ε
) and is executed after the controller but before

control actions are issued. Thus, monitor χc resembles conventional runtime verification
approaches, which do not check CPS behavior for compliance with the complete hybrid
model. This way, we detect unexpected deviations from the model at the beginning of each
control cycle, while we detect unsafe control actions immediately before they are taken.
With only monitor χm in place we would require an additional control cycle to detect unsafe
control actions10, whereas with only monitor χc in place we would miss deviations from the
model.

Figure11 shows a plot of the variable traces of one simulation run. In the simulation, we
ran the controller every 2 s (ε = 2s, indicated by the grid for the abscissa and the marks
on sensor and actuator plots). The controller was set to adjust flow to 5(m−x0)

2ε = 5
2 for

the first three controller cycles, which is unsafe on the third controller cycle. Monitor B
immediately detects this violation at t = 4, because on the third controller cycle setting
f = 5

2 violates f ≤ m−x1
ε

. The fail-safe action at t = 4 drains the tank and, after that,
normal operation continues until t = 12. Unexpected disturbance x ′ = f + 1

20 occurs
throughout t = [12, 14], which is detected by monitor χm. Note, that such a deviation would

10 We could run monitor χm in place of χc to achieve the same effect. But monitor χm implements a more
complicated formula, which is unnecessary when only the controller output should be validated.

123

66 Form Methods Syst Des (2016) 49:33–74

remain undetected with conventional approaches (monitor χc is completely unaware of the
deviation). In this simulation run, the disturbance is small enough to let the fail-safe action
at t = 14 keep the water tank in a safe state.

5 Related work

Runtime verification and monitoring for finite state discrete systems has received significant
attention (e. g., [9,16,23]). Other approachesmonitor continuous-time signals (e. g., [11,28]).
We focus on hybrid systems models of CPS to combine both.

Several tools for formal verification of hybrid systems are actively developed (e. g.,
SpaceEx [13], dReal [15], extended NuSMV/MathSat [6]). For monitor synthesis, however,
ModelPlex crucially needs the rewriting capabilities and flexibility of (nested) [α] and 〈α〉
modalities in dL [31] and KeYmaera [37]; it is thus an interesting question for future work
if other tools could be adapted to ModelPlex.

Runtime verification is the problem of checking whether or not a trace produced by a
program satisfies a particular formula (cf. [18]). In [44], a method for runtime verification of
LTL formulas on abstractions of concrete traces of a flight data recorder is presented. The RV
system for Java programs [22] predicts execution traces from actual traces to find concurrency
errors offline (e. g., race conditions) even if the actual trace did not exhibit the error. We,
instead, use prediction on the basis of disturbed plant models for hybrid systems at runtime
to ensure safety for future behavior of the system and switch to a fail-safe fallback controller
if necessary. Adaptive runtime verification [4] uses state estimation to reduce monitoring
overhead by sampling while still maintaining accuracy with Hidden Markov Models, or
more recently, particle filtering [17] to fill the sampling gaps. The authors present interesting
ideas for managing the overhead of runtime monitoring, which could be beneficial to transfer
into the hybrid systems world. The approach, however, focuses purely on the discrete part of
CPS.

The Simplex architecture [39] (and related approaches, e. g., [1,3,19]) is a control sys-
tem principle to switch between a highly reliable and an experimental controller at runtime.
Highly reliable control modules are assumed to be verified with some other approach. Sim-
plex focuses on switching when timing faults or violation of controller specification occur.
Our method complements Simplex in that (i) it checks whether or not the current system
execution fits the entire model, not just the controller; (ii) it systematically derives provably
correct monitors for hybrid systems; (iii) it uses prediction to guarantee safety for future
behavior of the system.

Further approaches with interesting insights on combined verification and monitor or
controller synthesis for discrete systems include, for instance, [2,12].

Although the related approaches based on offline verification derive monitors and switch-
ing conditions from models, none of them validates whether or not the model is adequate for
the current execution. Thus, they are vulnerable to deviation between the real world and the
model. In summary, this article addresses safety at runtime as follows:

– Unlike [39], who focus on timing faults and specification violations, we propose a sys-
tematic principle to derive monitors that react to any deviation from the model.

– Unlike [4,17,19,22], who focus on the discrete aspects of CPS, we use hybrid system
models with differential equations to address controller and plant.

– Unlike [19,39], who assume that fail-safe controllers have been verified with some other
approach and do not synthesize code, we can use the same technical approach (dL) for
verifying controllers and synthesizing provably correct monitors.

123

Form Methods Syst Des (2016) 49:33–74 67

– ModelPlex combines the leight-weight monitors and runtime compliance of online run-
time verification with the design time analysis of offline verification.

– ModelPlex synthesizes provably correct monitors, certified by a theorem prover.
– To the best of our knowledge, our approach is the first to guarantee that verification

results about a hybrid systems model transfer to a particular execution of the system by
verified runtime validation. We detect deviation from the verified model when it first
occurs and, given bounds, can guarantee safety with fail-safe fallback. Other approaches
(e. g., [3,19,39]) assume the system perfectly complies with the model.

6 Conclusion

ModelPlex is a principle to build and verify high-assurance controllers for safety-critical
computerized systems that interact physically with their environment. It guarantees that
verification results about CPS models transfer to the real system by safeguarding against
deviations from the verified model. Monitors created by ModelPlex are provably correct and
check at runtimewhether or not the actual behavior of a CPS complies with the verifiedmodel
and its assumptions. Upon noncompliance, ModelPlex initiates fail-safe fallback strategies.
In order to initiate those strategies early enough, ModelPlex uses prediction on the basis
of disturbed plant models to check safety for the next control cycle. This way, ModelPlex
ensures that verification results about a model of a CPS transfer to the actual system behavior
at runtime.

The new axiomatic-style monitor synthesis performs monitor construction in place,
which enables correct-by-construction synthesis entirely within the theorem prover, con-
structing a proof as evidence of the correctness of the monitor. The axiomatic-style
synthesis retains efficiency using contextual rewriting in a uniform substitution calcu-
lus for differential dynamic logic. It also preserves structure, leading to smaller monitor
sizes.

Future research directions include extending ModelPlex with advanced dL proof rules
for differential equations [33,41], so that we not only synthesize prediction monitors from
differential equations without polynomial solutions, but also model monitors. An interest-
ing question for certification purposes is end-to-end verification from the model to the final
machine code,which this article reduces to the problemof a verified translation from themon-
itor formula to themonitor code. This last step is conceptually straightforward but technically
nontrivial in languages like C.

Acknowledgments Open access funding provided by Johannes Kepler University Linz. This material is
based on research sponsored by DARPA under agreement number DARPA FA8750-12-2-0291. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The research received funding from NSF, grant agreement CNS-1054246.
The research leading to these results has received funding from the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no.
PIOF-GA-2012-328378.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

68 Form Methods Syst Des (2016) 49:33–74

Appendix 1: Running example: water tank

The running example for this article is a simple water tank that will be used to illustrate
the concepts throughout. The water level in the tank is controlled by a digital controller that
can periodically adjust flow into and from the tank by adjusting two valves. Every time the
controller decides on adjusting the flow, it measures the water level through a sensor (i. e., it
samples the water level). As a safety condition, we want the water tank to never overflow:
any control decision of the controller must be such that the water level stays within 0 and a
maximum water level m at all times.

For proving safety, we model this example as a hybrid system model in (9).

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
φ

→
[(

f := ∗; ?

(
−1 ≤ f ≤ m − x

ε

)
;

t := 0; {
x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε

}
)∗] ψ

︷ ︸︸ ︷
(0 ≤ x ≤ m)

(9)

The water tank has a current water level x and a maximum water level m. The water
tank controller, which runs at least every ε time units, nondeterministically chooses any flow
f (written f := ∗) between a maximum outflow −1 and a maximum inflow m−x

ε
(by the

subsequent test ?
(−1 ≤ f ≤ m−x

ε

)
). Note, that when the tank is empty (x = 0) and the

controller still chooses a negative flow f < 0 as permitted by the test ?
(−1 ≤ f ≤ m−x

ε

)
,

the evolution domain constraint x ≥ 0 in the ODE, which models a physical constraint that
water level cannot be negative, will abort immediately. As a result, only non-negative values
for f will make progress in case the tank is empty. Choosing flow directly simplifies the
behavior of the actual water tank implementation (a single flow value models two valves).11

The water level in the tank evolves according to the idealized differential equation x ′ =
f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε. Besides the water level changing according to the flow x ′ = f ,
the differential equation system includes time t ′ = 1 to model controller periodicity (t ≤ ε).
This considerably simplifies water flow models (e. g., it neglects the influence of water level
on flow, and flow disturbance in pipes). The first conjunct x ≥ 0 in the evolution domain
models a physical constraint that the water level can never be below zero (otherwise, the
differential equation would include negative water content in the tank below zero on negative
flow). The second conjunct t ≤ ε models the sampling period of our controller, that is it
allows the ODE to be followed only for at most ε time before interrupting it for a control
decision. Note, that through t ≤ ε the sampling period does not need to be the same on
every control cycle, nor does it need to be exactly ε time. This water tank never overflows,
as witnessed by a proof for the dL formula (1).

However, since we made approximations when modeling the controller and the physics,
and since failures and other deviations may occur in reality (e. g., a valve could fail), we
cannot simply transfer this safety proof to the real system.

First, since failures may occur we need to monitor actual evolution, such as that the actual
water level corresponds to the level expected by the chosen valve positions and the actual
time passed between controller executions does not exceed the modeled sampling period.
The monitor needs to allow some slack around the expected water level to compensate for the

11 In this example, this simplification is admittedly somewhat artificial but reminiscent of aspects of more
general systems. In more complicated systems, such as adaptive cruise control, a controller needs to aim for
passenger comfort, high fuel economy, and other secondary goals besides ensuring safety, so focusing on the
safety-relevant features greatly fosters safety verification.

123

Form Methods Syst Des (2016) 49:33–74 69

neglected physical phenomena. Sections 3.2 and 3.5 describe how to synthesize such model
monitors automatically. Second, the controller implementation differs from the model, so
we need to check that the implemented controller only chooses flows f that satisfy −1 ≤
f ≤ m−x

ε
. Section 3.4 describes how to synthesize such controller monitors automatically.

Finally, we can additionally monitor controller decisions for the expected real-world effect,
since the hybrid system model contains a model of the physics of the water tank. Section 3.6
describes how to synthesize such prediction monitors automatically. The controller in the
model, which is verified to be safe, gives us a fail-safe action that we can execute in place of
the unverified controller implementation when one of the monitors is not satisfied.

Appendix 2: Water tank monitor specification conjecture analysis

(∧r) Γ � φ, Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
(Wr)

Γ � Δ

Γ � φ, Δ
(QE)

QE(φ)

φ
1

(〈;〉) 〈α;β〉φ ↔ 〈α〉〈β〉φ (〈?〉) 〈?H〉ψ ↔ (H ∧ ψ) (〈:=〉) 〈x := θ〉φ(x) ↔ φ(θ)

(〈:=〉 eq) 〈x := θ〉φ(x) ↔ ∀x = θφ(x) (〈:= ∗〉) 〈x := ∗〉φ(x) ↔ ∃xφ(x)

(〈′〉) (
y(0) = x ∧ [T ′ = 1]y(T)′ = θ(y(T))

) →(
〈x ′ = θ & H〉φ ↔ ∃T≥0

(
(∀0≤t̃≤T 〈x := y(t̃)〉H) ∧ 〈x := y(T)〉φ)) 2

1 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is a quantifier-free formula
2 T and t̃ are fresh logical variables

� (−1 ≤ f ≤ m−x
ε ∧ (. . .))

)

Opt. 1 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0 (. . .))

)

QE � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0

(∀0 ≤ s̃ ≤ t̃ (f s̃ + x ≥ 0 ∧ s̃ + t ≤ ε)

∧(f t̃ + x = x+ ∧ f = f + ∧ t̃ + t = t+)
))

〈:=〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0

(∀0 ≤ s̃ ≤ t̃ (f s̃ + x ≥ 0 ∧ s̃ + t ≤ ε)

∧〈t := t̃ + t〉(f t̃ + x = x+ ∧ f = f + ∧ t = t+)
))

〈:=〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0

(∀0 ≤ s̃ ≤ t̃ (f s̃ + x ≥ 0 ∧ s̃ + t ≤ ε)

∧〈x := f t̃ + x〉〈t := t̃ + t〉(x = x+ ∧ f = f + ∧ t = t+)
))

〈:=〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0

(∀0 ≤ s̃ ≤ t̃ 〈t := s̃ + t〉(f s̃ + x ≥ 0 ∧ t ≤ ε)

∧〈x := f t̃ + x〉〈t := t̃ + t〉Υ +))

〈:=〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 ∃t̃ ≥ 0

(∀0 ≤ s̃ ≤ t̃ 〈x := f s̃ + x〉〈t := s̃ + t〉(x ≥ 0 ∧ t ≤ ε)

∧〈x := f t̃ + x〉〈t := t̃ + t〉Υ +))

〈′〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ ∃t = 0 〈x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε〉Υ+)

〈:=〉 eq � ∃ f (−1 ≤ f ≤ m−x
ε ∧ 〈t := 0〉〈x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε〉Υ +)

〈;〉 � ∃ f (−1 ≤ f ≤ m−x
ε ∧ 〈plant〉Υ +)

〈?〉 � ∃ f 〈?− 1 ≤ f ≤ m−x
ε 〉〈plant〉Υ +

〈;〉 � ∃ f (〈?− 1 ≤ f ≤ m−x
ε ; plant〉Υ +)

〈:= ∗〉 � 〈 f := ∗〉〈?− 1 ≤ f ≤ m−x
ε ; plant〉Υ +

〈;〉 � 〈 f := ∗; ?− 1 ≤ f ≤ m−x
ε ; plant〉Υ+

Proof 1: Analysis of the water tank monitor specification conjecture (plant is an abbreviation
for t := 0; x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε, Υ + is an abbreviation for x = x+ ∧ f =
f + ∧ t = t+)

123

70 Form Methods Syst Des (2016) 49:33–74

Appendix 3: Sequent-style monitor synthesis

This section lists the monitor synthesis approach in the sequent style of the short version
[24]. Proof 2 shows a complete sequence of proof rules applied to the water tank specification
conjecture of Example 5 on page 17, with Υ + ≡ x = x+ ∧ f = f + ∧ t = t+.

(∧r) Γ � φ, Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
(Wr)

Γ � Δ

Γ � φ, Δ
(QE)

QE(φ)

φ
1

(〈;〉) 〈α〉〈β〉φ
〈α;β〉φ (〈?〉) H ∧ ψ

〈?H 〉ψ (〈:=〉) φθ
x

〈x := θ〉φ (〈:= ∗〉) ∃X〈x := X〉φ
〈x := ∗〉φ

2

(〈′〉) ∃t≥0
(
(∀0≤t̃≤t 〈x := y(t̃)〉H) ∧ 〈x := y(t)〉φ)

〈x ′ = θ & H〉φ
3 (∃r) Γ � φ(θ), ∃x φ(x), Δ

Γ � ∃x φ(x), Δ
4

(i∃) Γ � ∃X (∧
i (Φi � Ψi)

)
,Δ

Γ,Φ1 � Ψ1, Δ · · · Γ,Φn � Ψn , Δ
5 (∃σ) φθ

x

∃x (x = θ ∧ φ(x))

1 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is a quantifier-free formula
2 X is a new logical variable
3 t and t̃ are fresh logical variables and 〈x := y(t)〉 is the discrete assignment belonging to the solution y of
the differential equation with constant symbol x as symbolic initial value.
4 θ is an arbitrary term, often a new (existential) logical variable X .
5 Among all open branches, free logical variable X only occurs in the branches Γ,Φi � Ψi ,Δ

� −1 ≤ f + ≤ m−x
ε ∧ x+ = x + f +t+ ∧ t+ ≥ 0 ∧ x ≥ 0

∧ε ≥ t+ ≥ 0 ∧ f +t+ + x ≥ 0
∃σ � ∃F(−1 ≤ F ≤ m−x

ε ∧ F = f + ∧ x+ = x + Ft+ ∧ t+ ≥ 0
∧x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0)

i∃ � −1 ≤ F ≤ m−x
ε

� F = f + ∧ x+ = x + Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0
∧ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0

QE � ∀0≤t̃≤t+ (x + Ft̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f +
∧x+ = x + Ft+ ∧ t+ = t+

∃r,Wr � ∃T≥0
(
(∀0≤t̃≤T (x + Ft̃ ≥ 0 ∧ t̃ ≤ ε))

∧(F = f + ∧ x+ = x + FT ∧ t+ = T)
)

〈′〉 � 〈 f := F; t := 0〉〈x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε〉Υ+
〈;〉,〈:=〉 � 〈 f := F〉〈t := 0; (x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε)〉Υ +

� 〈 f := F〉〈plant〉Υ +
∧r � 〈 f := F〉 − 1 ≤ f ≤ m−x

ε ∧ 〈plant〉Υ +
〈?〉 � 〈 f := F〉〈?− 1 ≤ f ≤ m−x

ε 〉〈plant〉Υ+
〈;〉 � 〈 f := F〉〈?− 1 ≤ f ≤ m−x

ε ; plant〉Υ +
∃r,Wr � ∃F〈 f := F〉〈?− 1 ≤ f ≤ m−x

ε ; plant〉Υ+
〈:= ∗〉 � 〈 f := ∗〉〈?− 1 ≤ f ≤ m−x

ε ; plant〉Υ +
〈;〉 � 〈 f := ∗; ?− 1 ≤ f ≤ m−x

ε ; plant〉Υ +

Proof 2: Analysis of the water tank monitor specification conjecture (plant is an abbreviation
for x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε).

Instantiating existential quantifiers ahead of time. The sequent-style synthesis must instanti-
ate existential quantifiers when they are met in the synthesis process, even though not all the

123

Form Methods Syst Des (2016) 49:33–74 71

information about the exact instance may be available at that time. Opt. 1 below introduces
a heuristic to avoid duplicate work when instantiating existential quantifiers.

By axiom ∃inst, an existentially quantified variable can be instantiated with an arbitrary
term θ , which is often a new logical variable that is implicitly existentially quantified [29].

Optimization 1 (Instantiation trigger) If the variable is not changed in the remaining α,
xi = x+i is inΥ + and x is not bound inΥ +, then instantiate the existential quantifier by axiom
∃inst with the corresponding x+i that is part of the specification conjecture (i. e., θ = x+i),
since subsequent proof steps are going to reveal θ = x+i anyway. This optimization is most
effective in the sequent-style synthesis technique, which spreads F over many branches.

Otherwise, we introduce a new logical variable, which may result in an existential quan-
tifier in the monitor specification if no further constraints can be found later in the proof.

Example 10 (Instantiating existential quantifiers) Continuing Example 6, we show the proof
without and with application of Opt. 1. The corresponding steps in the water tank proof use
∃inst to instantiate the resulting existential quantifier ∃ f (i) with a new logical variable F
(without Opt. 1), and (ii) with posterior variable f + (with Opt. 1). The hybrid program plant
is an abbreviation for x ′ = f, t ′ = 1 & x ≥ 0 ∧ t ≤ ε.

(∃inst) φ(θ) → ∃xφ(x)

1 ≤ F ≤ m−x
ε plant ϒ+

∃inst f −1 ≤ f ≤ m−x
ε plant ϒ+

1 ≤ f+ ≤ m−x
ε plant ϒ+

∃inst . . .

with Opt. 1 (anticipate f = f+ fromϒ+)

w/o Opt. 1

Re-introducing quantifiers In the sequent-style analysis, the fragments of themonitor are usu-
ally scattered over several branches, since many proof rules split into two or more branches,
as ∧r after 〈?〉 in Proof 2 above. At the same time, sequent-style reasoning has the main
goal to make proving properties easy (as opposed to synthesis) and thus only works on the
top-level operator of a formula, not inside as in the axiomatic-style synthesis. As a result, the
sequent-style prototype cannot postpone instantiating existential quantifiers until later, so it
either must use Opt. 1 or instantiate with a fresh variable (e. g., F in ∃r in Proof 2 above).
In the latter case, in the final step of sequent-style synthesis we can re-introduce existential
quantifiers and look for additional facts that let us instantiate the quantifier with a more useful
variable, see Example 11.

We use the invertible quantifier rule i∃ to re-introduce existential quantifiers for the new
logical variables (universal quantifiers for function symbols, see [29] for calculus details).
Often, the now quantified logical variables are discovered to be equal to one of the post-state
variables later in the proof, because those variables did not change in the model after the
assignment. If this is the case, we can use proof rule ∃σ to further simplify the monitor
specification by substituting the corresponding logical variable x with its equal term θ .

Example 11 (Reintroducing existential quantifiers over multiple branches) Proof 2 uses a
new logical variable F for the nondeterministic flow assignment f := ∗. After further steps
in the proof, the assumptions reveal additional information F = f +. Thus, we re-introduce
the existential quantifier over all the open branches (i∃) and substitute f + for F (∃σ). The
sole open sequent of this proof attempt is the monitor specification F(x, x+) of the water
tank model.

123

72 Form Methods Syst Des (2016) 49:33–74

(i∃) Γ � ∃X (∧
i (Φi � Ψi)

)
, Δ

Γ,Φ1 � Ψ1, Δ · · · Γ,Φn � Ψn , Δ
1

1 Among all open branches, free logical variable X only occurs in Φi , Ψi in the branches Γ,Φi � Ψi ,Δ

� −1 ≤ f + ≤ m−x
ε ∧ x+ = x + f +t+ ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ f +t+ + x ≥ 0

∃σ � ∃F = f +
(−1 ≤ F ≤ m−x

ε ∧ x+ = x + Ft+ ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0
)

i∃ � −1 ≤ F ≤ m−x
ε ∧ F = f + ∧ x+ = x + Ft+ ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0

Appendix 4: Reasoning in KeYmaera X

In order to illustrate the underlying principle of the synthesize tactic, let us first consider a
tactic 〈:=〉 for nondeterministic assignment. The tactic rewrites a formula of the form 〈x :=
∗〉φ(x) into ∃x φ(x), and proves the correctness of this rewriting from the corresponding
axiom 〈x := ∗〉φ(x) ↔ ∃x φ(x). Proof 3 illustrates this principle in more detail. First, the
desired outcome is cut in as an equivalence to the current formula. This equivalence can be
shown from the axioms, cf. right-most branch. Once proven correct, propositional tactics
close one direction of the equivalence (left-most branch) and transform the equivalence into
the desired outcome, cf. middle branch.

(∧l) Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
(↔l)

Γ, φ ∧ ψ � Δ Γ,¬φ ∧ ¬ψ � Δ

Γ, φ ↔ ψ � Δ
(¬l) Γ � φ, Δ

Γ,¬φ � Δ

(Wl)
Γ � Δ

Γ, φ � Δ
(Wr)

Γ � Δ

Γ � φ, Δ
(ax)

Γ, φ � φ, Δ
(cut)

Γ, φ � Δ Γ � φ, Δ

Γ � Δ

∗
ax 〈x := ∗〉φ, ∃x φ � 〈x := ∗〉φ
∧l〈x := ∗〉φ ∧ ∃x φ � 〈x := ∗〉φ

� ∃x φ
Wl,Wr ¬〈x := ∗〉φ � 〈x := ∗〉φ,

∃x φ
¬l ¬〈x := ∗〉φ,¬∃x φ � 〈x := ∗〉φ
∧l ¬〈x := ∗〉φ ∧ ¬∃x φ � 〈x := ∗〉φ

↔l 〈x := ∗〉φ ↔ ∃x φ � 〈x := ∗〉φ

∗
ax � 〈x := ∗〉φ ↔ ∃x φ
Wr � 〈x := ∗〉φ,

〈x := ∗〉φ ↔ ∃x φ
cut � 〈x := ∗〉φ

Proof 3: The steps taken by the tactic procedure of a tactic 〈:= ∗〉 for handling non-
deterministic assignment based on an axiom 〈x := ∗〉φ ↔ ∃x φ

References

1. Aiello AM, Berryman JF, Grohs JR, Schierman JD (2010) Run-time assurance for advanced flight-critical
control systems. In: AIAAguidance, navigation and control conference, AIAA, doi:10.2514/6.2010-8041

2. Alur R, Bodík R, Juniwal G, Martin MMK, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A,
Torlak E, Udupa A (2013) Syntax-guided synthesis. In: FMCAD, IEEE, pp 1–17

3. Bak S, Greer A, Mitra S (2010) Hybrid cyberphysical system verification with Simplex using discrete
abstractions. In: CaccamoM (ed) IEEEReal-time and embedded technology and applications symposium,
IEEE Computer Society, pp 143–152

4. Bartocci E, Grosu R, Karmarkar A, Smolka SA, Stoller SD, Zadok E, Seyster J (2012) Adaptive runtime
verification. In: Qadeer S, Tasiran S (eds) Runtime verification. LNCS, vol 7687. Springer, Berlin, pp
168–182

123

http://dx.doi.org/10.2514/6.2010-8041

Form Methods Syst Des (2016) 49:33–74 73

5. Blech JO, Falcone Y, Becker K (2012) Towards certified runtime verification. In: Aoki T, Taguchi K (eds)
International conference on formal engineering methods. LNCS, vol 7635. Springer, Berlin, pp 494–509

6. Cimatti A,Mover S, Tonetta S (2013) SMT-based scenario verification for hybrid systems. FormMethods
Syst Des 42(1):46–66

7. Collins GE, Hong H (1991) Partial cylindrical algebraic decomposition for quantifier elimination. J Symb
Comput 12(3):299–328

8. DaigleMJ,Roychoudhury I,BiswasG,KoutsoukosXD,Patterson-HineA,Poll S (2010)Acomprehensive
diagnosismethodology for complex hybrid systems: a case study on spacecraft power distribution systems.
IEEE Trans Syst Man Cybern Part A 40(5):917–931

9. D’Angelo B, Sankaranarayanan S, Sánchez C, RobinsonW, Finkbeiner B, SipmaHB,Mehrotra S,Manna
Z (2005) LOLA: Runtime monitoring of synchronous systems. In: TIME, IEEE Computer Society, pp
166–174

10. Davenport JH, Heintz J (1988) Real quantifier elimination is doubly exponential. J Symb Comput 5(1–
2):29–35. doi:10.1016/S0747-7171(88)80004-X

11. Donzé A, Ferrère T, Maler O (2013) Efficient robust monitoring for STL. In: Sharygina N, Veith H (eds)
Computer aided verification. LNCS, vol 8044. Springer, Berlin, pp 264–279

12. Ehlers R, Finkbeiner B (2011) Monitoring realizability. In: Khurshid S, Sen K (eds) Runtime verification.
LNCS, vol 7186. Springer, Berlin, pp 427–441

13. Frehse G, Guernic CL, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang T, Maler O
(2011) SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan G, Qadeer S (eds) Computer
aided verification. LNCS, vol 6806. Springer, Berlin, pp 379–395

14. Fulton N, Mitsch S, Quesel J, Völp M, Platzer A (2015) Keymaera X: an axiomatic tactical theorem
prover for hybrid systems. In: Felty AP, Middeldorp A (eds) Automated deduction - CADE-25 - 25th
international conference on automated deduction, Berlin, 1–7 Aug 2015, Proceedings, Springer, Lecture
Notes in Computer Science, vol 9195, pp 527–538, doi:10.1007/978-3-319-21401-6_36

15. Gao S, Kong S, Clarke EM (2013) dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina
MP (ed) International conference on automated deduction. LNCS, vol 7898. Springer, Berlin, pp 208–214

16. Havelund K, Rosu G (2004) Efficient monitoring of safety properties. STTT 6(2):158–173
17. Kalajdzic K, Bartocci E, Smolka SA, Stoller SD, Grosu R (2013) Runtime verification with particle

filtering. In: Legay A, Bensalem S (eds) Runtime verification. LNCS, vol 8174. Springer, Berlin
18. LeuckerM, Schallhart C (2009) A brief account of runtime verification. J LogAlgebr Program 78(5):293–

303
19. LiuX,WangQ,Gopalakrishnan S,HeW, ShaL,DingH, LeeK (2008)ORTEGA:An efficient and flexible

online fault tolerance architecture for real-time control systems. IEEE Trans Ind Inform 4(4):213–224
20. Loos SM, Platzer A, Nistor L (2011) Adaptive cruise control: Hybrid, distributed, and now formally

verified. In: Butler M, Schulte W (eds) Formal methods, Springer, LNCS, vol 6664, doi:10.1007/978-3-
642-21437-0_6

21. McIlraith SA, Biswas G, Clancy D, Gupta V (2000) Hybrid systems diagnosis. In: Lynch NA, Krogh BH
(eds) Hybrid systems: computation and cpmtrol. LNCS, vol 1790. Springer, Berlin, pp 282–295

22. Meredith PO, Rosu G (2010) Runtime verification with the RV system. In: Barringer H, Falcone Y,
Finkbeiner B, Havelund K, Lee I, Pace GJ, Rosu G, Sokolsky O, Tillmann N (eds) Runtime verification.
LNCS, vol 6418. Springer, Berlin, pp 136–152

23. Meredith PO, Jin D, Griffith D, Chen F, Rosu G (2012) An overview of the MOP runtime verification
framework. STTT 14(3):249–289

24. Mitsch S, Platzer A (2014) ModelPlex: Verified runtime validation of verified cyber-physical system
models. In: Bonakdarpour B, Smolka SA (eds) Runtime Verification - 5th International Conference, RV
2014, Toronto, ON, Canada, September 22–25, 2014. Proceedings, Springer, Lecture Notes in Computer
Science, vol 8734, pp 199–214, doi:10.1007/978-3-319-11164-3_17

25. Mitsch S, Loos SM, Platzer A (2012) Towards formal verification of freeway traffic control. In: Lu C (ed)
ICCPS, IEEE, pp 171–180, doi:10.1109/ICCPS.2012.25

26. Mitsch S, Ghorbal K, Platzer A (2013) On provably safe obstacle avoidance for autonomous robotic
ground vehicles. In: Fox D, Hsu D (eds) Newman P. Robotics, Science and Systems. Technische Univ.,
Berlin

27. Mitsch S, Quesel JD, Platzer A (2014) Refactoring, refinement, and reasoning: A logical characterization
for hybrid systems. In: Jones CB, Pihlajasaari P, Sun J (eds) Formal methods, vol 8442, Springer, pp
481–496, doi:10.1007/978-3-319-06410-9_33

28. Nickovic D, Maler O (2007) AMT: A property-based monitoring tool for analog systems. In: Raskin JF,
Thiagarajan PS (eds) FORMATS. LNCSSpringer, Berlin, pp 304–319

29. Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reason 41(2):143–189. doi:10.
1007/s10817-008-9103-8

123

http://dx.doi.org/10.1016/S0747-7171(88)80004-X
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1109/ICCPS.2012.25
http://dx.doi.org/10.1007/978-3-319-06410-9_33
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8

74 Form Methods Syst Des (2016) 49:33–74

30. Platzer A (2010a) Differential-algebraic dynamic logic for differential-algebraic programs. J Log Comput
20(1):309–352, 2008, doi:10.1093/logcom/exn070, advance access published on 18 Nov

31. Platzer A (2010b) Logical analysis of hybrid systems. Springer, New York. doi:10.1007/978-3-642-
14509-4

32. Platzer A (2011) The structure of differential invariants and differential cut elimination. Log Methods
Comput Sci 8(4):1

33. Platzer A (2012a) The complete proof theory of hybrid systems. In: LICS, IEEE, doi:10.1109/LICS.2012.
64

34. Platzer A (2012b) Logics of dynamical systems. In: LICS, IEEE, pp 13–24, doi:10.1109/LICS.2012.13
35. Platzer A (2015) A uniform substitution calculus for differential dynamic logic. In: Felty AP, Middeldorp

A (eds) Conference on automated deduction. LNCS, vol 9195. Springer, pp 467–481, doi:10.1007/978-
3-319-21401-6_32, 1503.01981

36. Platzer A, Clarke EM (2007) The image computation problem in hybrid systems model checking. In:
Bemporad A, Bicchi A, Buttazzo G (eds) Hybrid systems: computation control. LNCS, Springer. doi:10.
1007/978-3-540-71493-4_37

37. Platzer A, Quesel JD (2008) KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando A,
Baumgartner P, Dowek G (eds) International joint conference on automated reasoning. LNCS, vol 5195.
Springer, Berlin. doi:10.1007/978-3-540-71070-7_15

38. Platzer A, Quesel JD (2009) European Train Control System: A case study in formal verification. In:
Breitman K, Cavalcanti A (eds) International conference on formal engineering methods. LNCS, vol
5885. Springer, Berlin. doi:10.1007/978-3-642-10373-5_13

39. Seto D, Krogh B, Sha L, Chutinan A (1998) The Simplex architecture for safe online control system
upgrades. In: American control conference, pp 3504–3508, doi:10.1109/ACC.1998.703255

40. ShannonC (1949)Communication in the presence of noise. Proc IRE37(1):10–21. doi:10.1109/JRPROC.
1949.232969

41. Sogokon A, Jackson PB (2015) Direct formal verification of liveness properties in continuous and hybrid
dynamical systems. In: Bjørner N, de Boer FD (eds) FM 2015: formal methods– 20th international
symposium, Oslo. 24–26 June 2015. Proceedings, Springer, Lecture Notes in Computer Science, vol
9109, pp 514–531, doi:10.1007/978-3-319-19249-9_32

42. Srivastava AN, Schumann J (2013) Software health management: a necessity for safety critical systems.
ISSE 9(4):219–233

43. Wang D, Yu M, Low CB, Arogeti S (2013) Model-based health monitoring of hybrid systems. Springer,
New York. doi:10.1007/978-1-4614-7369-5

44. Wang S, Ayoub A, Sokolsky O, Lee I (2011) Runtime verification of traces under recording uncertainty.
In: Sen K, Khurshid S (eds) Runtime verification. LNCS, Springer, Berlin, pp 442–456

45. Zhao F, Koutsoukos XD, Haussecker HW, Reich J, Cheung P (2005) Monitoring and fault diagnosis of
hybrid systems. IEEE Trans Syst Man Cybern Part B 35(6):1225–1240

123

http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.64
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/978-3-540-71493-4_37
http://dx.doi.org/10.1007/978-3-540-71493-4_37
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1109/ACC.1998.703255
http://dx.doi.org/10.1109/JRPROC.1949.232969
http://dx.doi.org/10.1109/JRPROC.1949.232969
http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-1-4614-7369-5

	ModelPlex: verified runtime validation of verified cyber-physical system models
	Abstract
	1 Introduction
	2 Differential dynamic logic by example
	2.1 Syntax and informal semantics
	2.2 Formal semantics of d mathcalL
	2.3 Notation and supporting lemmas

	3 ModelPlex approach for verified runtime validation
	3.1 Characterizing semantic relations between states in logic
	3.2 Model monitor synthesis
	3.3 Monitor synthesis algorithm
	3.4 Controller monitor synthesis
	3.5 Monitoring in the presence of expected uncertainty and disturbance
	3.6 Monitoring compliance guarantees for unobservable intermediate states
	3.7 Decidability and computability
	3.8 A proof tactic for automatic monitor synthesis

	4 Evaluation
	4.1 Monitor synthesis
	4.2 Model simulation with monitoring

	5 Related work
	6 Conclusion
	Acknowledgments
	Appendix 1: Running example: water tank
	Appendix 2: Water tank monitor specification conjecture analysis
	Appendix 3: Sequent-style monitor synthesis
	Appendix 4: Reasoning in KeYmaera X
	References

