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Abstract
In this paper, we use the analysis of relatively dense sets to point out some
deficiencies and inaccuracies in the definition of uniformly almost periodic functions
which has been proposed in recent works, and we correct it. Some new
generalizations of invariance under translation time scales and almost periodic
functions are established. Our study will ensure that now we can study almost
periodic problems precisely on time scales.

MSC: 26E70; 43A60

Keywords: time scales; relatively dense set; uniformly almost periodic functions

1 Problems and corrections
Nowadays, the study of dynamic equations on time scales is a leading topic of research in
different directions including directions for boundary value problems, periodic and almost
periodic problems (see [–]), etc. As one of the most important research directions, the
occurrence of almost periodic phenomenon is very common in nature. Thus the existence
of almost periodic solutions for a wide variety of dynamical systems has been studied ex-
tensively. In , the authors of [, ] extended this concept to uniformly almost periodic
functions on time scales. This concept has been extensively used to study almost periodic
solutions of functional dynamic equations, neural networks, biological dynamic models,
and so on. However, the basic concept of uniformly almost periodic functions on time
scales introduced in [, ] is not accurate. Unfortunately, in several recent works [–]
this false concept has been cited and applied.

The main purpose of this paper is to point out the deficiencies and inaccuracies in the
works of [, ], and then to give a correct definition of uniformly almost periodic functions.
We begin with the following basic definitions.

Definition . ([, ]) A time scale T is called invariant under a translation time scale if

� := {τ ∈ R : t ± τ ∈ T,∀t ∈ T} �= {}.

Definition . The set � in Definition . is called an invariant translation set for T.
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Remark . It follows from Definition . that � is also a closed subset of R, so � is a
time scale.

Definition . (Problem , Definition . in []) Let T be an invariant under a translation
time scale. A function f ∈ C(T × D,En) is called an almost periodic function in t ∈ T

uniformly for x ∈ D if the ε-translation set of f ,

E{ε, f , S} =
{
τ ∈ � :

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T× S

}

is a relatively dense set in T for all ε >  and for each compact subset S of D, that is, for any
given ε >  and each compact subset S of D, there exists a constant l(ε, S) >  such that
each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S} such that

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T× S.

Here, τ is called the ε-translation number of f and l(ε, S) is called the inclusion length of
E{ε, f , S}.

Note that the above definition requires E{ε, f , S} to be a relatively dense set in T, which
makes Definition . inaccurate and false. To justify our claim, we will give a detailed ex-
planation and provide a counter-example. For this, we recall the concept of a relatively
dense set.

Definition . (Fink () from []) Let A ⊂ B ⊂ R, we say that A is relatively dense
in B if there exists a positive number l such that for all a ∈ B we have [a, a + l]B ∩ A �= ∅,
where [a, a + l]B = [a, a + l] ∩ B, and l is called the inclusion length.

Let T = B in Definition ., then the concept of relative density in T from Definition .
can be stated as follows.

Definition . (Problem ) Let A ⊂ T, we say that A is relatively dense in T if there exists
a positive real number l such that for all a ∈ T we have [a, a + l]T ∩ A �= ∅, here l is called
the inclusion length.

Definition . is directly used to introduce Definition .. However, this definition is not
accurate. In fact, to some extent, false. To explain this, we claim that the closed interval
[a, b]T must have a, b ∈ T. Recall that the definition of a Cauchy integral on time scales
(see Definition . in []) is completely based on this fact.

Definition . (Bohner () from []) Let F be a pre-antiderivative of f . Then the
Cauchy integral on T is defined by

∫ b

a
f (t)�t = F(a) – F(b), for all a, b ∈ T.

Needless to say, this basic definition plays a very important role in the calculus on time
scales. If this definition is violated, then the whole theory on time scales will collapse.
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However, there exist many integrals in [] such as the following:

∫ t+l

t
f (s)�s, where l ∈R is an inclusion length,

but t ∈ T cannot guarantee that t + l ∈ T, where l ∈ R is an inclusion length in Defini-
tion ..

We also note that, in Definition ., it is required that E{ε, f , S} ⊂ � is relatively dense in
T, which means that the set A = E{ε, f , S} in Definition . is relatively dense. But then in
Definition ., we need [a, a + l]T ∩ E{ε, f , S} �= ∅, which implies that [a, a + l]T ∩� �= ∅, and
hence T∩ � �= ∅. However, this condition is too restrictive. In fact, the following counter-
example shows that T∩ � = ∅.

Example . Consider the following time scale where a, b > :

Pa,b =
∞⋃

k=–∞

[
(k + )(a + b), (k + )(a + b) + a

]
.

Clearly,

σ (t) =

⎧
⎨

⎩
t, if t ∈ ⋃∞

k=–∞[(k + )(a + b), (k + )(a + b) + a),

t + a + b, if t ∈ ⋃∞
k=–∞{(k + )(a + b) + a}

and

μ(t) =

⎧
⎨

⎩
, if t ∈ ⋃∞

k=–∞[(k + )(a + b), (k + )(a + b) + a),

a + b, if t ∈ ⋃∞
k=–∞{(k + )(a + b) + a}.

Note that here we can consider � = {n(a + b), n ∈ Z}. But then

na + (n – )b < n(a + b) < (n + )(a + b), where a, b > , n ∈ Z,

which implies that n(a + b) /∈ T for all n ∈ Z, that is, T∩ � = ∅.

Remark . In Example ., let a = b = , to obtain the time scale

P, =
∞⋃

k=–∞
[k + , k + ].

Clearly n /∈ P, for n ∈ Z. Since � = {n, n ∈ Z}, we have T∩ � = ∅.

Remark . From Example . and Remark ., it follows that the invariant translation
set � for T may be separated from T, i.e., T∩ � = ∅. Furthermore, the time scale T from
Example . is periodic, which means that Definition . does not include the situation for
periodic time scales like Example .. Hence, to some extent, Definition . is false.

From Example . and Remark ., it is clear that it is too particular if we require that
E{ε, f , S} is relatively dense inT in Definition . because it implies thatT∩� �= ∅. Through



Wang and Agarwal Advances in Difference Equations  (2015) 2015:312 Page 4 of 9

our investigations, we find that the relatively dense set should not be for T rather it should
be for the set � defined in Definition ..

Definition . (Correction of Definition .) Let � be as in Definition . for an invariant
under a translation time scale. Let A ⊂ �, we say that A is relatively dense in � if there
exists a positive number l ∈ � such that for all a ∈ � we have [a, a + l]� ∩ A �= ∅, here l is
called the inclusion length.

Remark . It is clear that if τ, τ ∈ �, then τ ± τ ∈ �. From this, we find that a + l ∈ �

for any a, l ∈ �. With this change all the deficiencies in the literature can be corrected (it
suffices to note that for any t ∈ T, l ∈ �, we have t + l ∈ T). Thus the integral

∫ t+l

t
f (s)�s, where t ∈ T, l ∈ �

is now well defined for all t ∈ T. This means that the inclusion length l should be taken
from the set �.

Using Definition . and Remark ., we can introduce a precise definition of uniformly
almost periodic functions on time scales as follows.

Definition . (Correction of Definition .) Let T be an invariant under a translation
time scale. A function f ∈ C(T × D,En) is called an almost periodic function in t ∈ T

uniformly for x ∈ D if the ε-translation set of f ,

E{ε, f , S} =
{
τ ∈ � :

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T× S

}

is a relatively dense set in � for all ε >  and for each compact subset S of D, that is, for
any given ε >  and each compact subset S of D, there exists a constant l(ε, S) >  such that
each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S} such that

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T× S.

Here, τ is called the ε-translation number of f and l(ε, S) is called the inclusion length of
E{ε, f , S}.

2 Local-uniformly almost periodic functions
In what follows we shall introduce a generalized concept of uniformly almost periodic
functions on time scales, and we present some interesting results.

For convenience, we denote T
τ = {t + τ : t ∈ T}. If we choose a nonzero real number

τ ∈ �, then it follows that T = T
τ if and only if T is invariant under translations, i.e., T

coincides exactly with T
τ if T is invariant under translations. Thus, Definition . has the

following equivalent form.

Definition . A time scale T is called invariant under a translation time scale if

� :=
{
τ ∈R : T∩T

±τ = T
} �= {}.
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The following result guarantees that for any arbitrary time scale T, there exists at least
one invariant under a translation time scale T∗ ⊂ T.

Theorem . Let �̃ := {τ ∈ R : T∩T
τ �= ∅} �= {} and T∩T

τ := T
τ
, if T∗ :=

⋂
τ∈�̃ T

τ
 �= ∅,

then T∗ is an invariant under a translation time scale.

Proof We construct the following family of sets:

C =
{⋂

τ∈A

T
τ
 : A ⊂ �̃

}
.

Obviously, T∗ �= ∅ implies that T∗ is the minimal element in the family of sets C . For
contradiction, assume that there exists a τ ∈ � such that T∗ ∩ T

τ
∗ ∈ C . We will have

a contradiction if T∗ ∩ T
τ
∗ ⊂ T∗, because T∗ is the minimal element in C . But then

T∗ ∩T
τ
∗ �= ∅ implies that T∗ ∩T

τ
∗ = T∗. Hence, T∗ is an invariant under a translation

time scale. This completes the proof. �

Remark . According to Theorem ., we know that T∗ is a periodic time scale, i.e.,
there exists τ̂ �= , τ̂ ∈ �̃ such that t + τ̂ ∈ T∗ ⊂ T. We denote �̂ = {nτ̂ : n ∈ Z} ⊂ �̃ the
invariant translation set for T∗.

Now we state Zorn’s lemma which will be needed to prove an interesting theorem.

Lemma . ([], Zorn’s Lemma) Suppose (P,
) is a partially ordered set. A subset T is
totally ordered if for any s, t in T we have s 
 t or t 
 s. Such a set T has an upper bound
u in P if t 
 u for all t in T . Suppose a non-empty partially ordered set P has the property
that every non-empty chain has an upper bound in P. Then the set P contains at least one
maximal element.

Theorem . Let T be an arbitrary time scale with supT = +∞, infT = –∞. If μ : T→R
+

is bounded, then T contains at least one invariant under the translation unit.

Proof We denote the set

I =
{
T∩Tτ : τ ∈ [–μ̄, μ̄]\{}},

where A denotes the closure of the set A and μ̄ = supt∈T μ(t). Clearly, I forms a semi-
ordered set with respect to the inclusion relation, and I is closed. Denote I∗ the any subset
of I and is totally ordered. Hence, we can obtain two cases.

Case ():

I
∗ =

{(
T∩T

τn
) ∈ I : Tτn ⊃ Tτn+ , n ∈N

}
,

then Tτ ∈ I
∗ ⊂ I and Tτ is an upper bound of I∗ in I.

Case ():

I
∗ =

{(
T∩T

τn
) ∈ I : Tτn ⊂ Tτn+ , n ∈N

}
,
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then limn→∞(T ∩ T
τn ) =

⋃∞
n=(T ∩ T

τn ) = T ∩ T
τ∞ ⊂ T is an upper bound of I∗. Because

I is closed, then T ∩ T
τ∞ ∈ I. According to Zorn’s lemma (i.e., Lemma .), there exists

some τ ∈ [–μ̄, μ̄]\{} such that T ∩ T
τ is the maximum element in I. Note that since μ

is bounded, T∩T
τ �= ∅, and sup(T∩T

τ ) = +∞, inf(T∩T
τ ) = –∞.

We can find a time scale T

 such that T

 ⊂ T is the largest periodic sub-time scale in T.
For this, we make a continuous translation of T to find a number τ such that T∩T

τ := T

is the maximum. Next, consider a translation of T again to find a number τ such that
T ∩ T

τ
 := T is the maximum. Continue this process n times to find a number τn such

that Tn– ∩T
τn
n– := Tn is the maximum. This process leads to a decreasing sequence of time

scale sets:

T ⊃ T ⊃ T ⊃ · · · ⊃ Tn ⊃ · · · .

Hence, it follows that limn→∞ Tn = T

. This shows that there exists some τ 

 such that T


coincides with itself through the translation of this number, obviously, this also implies
that T

 is not a finite union of the closed intervals.
Now we claim that T

 �= ∅. In fact, if T
 = ∅, then there exists some sufficiently large n

such that Tn = ∅, i.e., there exists some sub-timescale Tn– ⊂ T such that Tn– has no
intersection with itself through the translation of the number τn and Tn– ∩T

τn
n– is the

maximum element in

In =
{
Tn– ∩T

τ
n– : τ �= 

}
= ∅,

which means that Tn– is a single point set, but this is a contradiction since supTn– =
+∞, infTn– = –∞. Therefore,T

 is a τ 
-periodic sub-timescale, that is,T

 is an invariant
under a translation unit in T. This completes the proof. �

Example . Let a > , and consider the following time scale:

Pa,| sin t+sin
√

t| =
∞⋃

m=

[pm, a + pm],

where

pm = (m – )a +
m–∑

k=

∣∣sin
(
ka + | sin a + sin

√
a|

+
∣∣sin

(
a + | sin a + sin

√
a|)

+ sin
√


(
a + | sin a + sin

√
a|)∣∣

+ · · · +
∣∣sin

(
(k – )a + | sin a + sin

√
a|)

+ sin
√


(
(k – )a + | sin a + sin

√
a|)∣∣

︸ ︷︷ ︸
k terms

)

+ sin
√


(
ka + | sin a + sin

√
a|

+
∣∣sin

(
a + | sin a + sin

√
a|)

+ sin
√


(
a + | sin a + sin

√
a|)∣∣
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+ · · · +
∣∣sin

(
(k – )a + | sin a + sin

√
a|)

+ sin
√


(
(k – )a + | sin a + sin

√
a|)∣∣

︸ ︷︷ ︸
k terms

)∣∣.

It follows that

σ (t) =

⎧
⎨

⎩
t, if t ∈ ⋃∞

m=[pm, a + pm),

t + | sin t + sin
√

t|, if t ∈ ⋃∞
m={a + pm}

and

μ(t) =

⎧
⎨

⎩
, if t ∈ ⋃∞

m=[pm, a + pm),

| sin t + sin
√

t|, if t ∈ ⋃∞
m={a + pm}.

For this time scale, since μ(t) ≤ , it follows from Theorem . that T contains at least one
invariant under a translation unit.

In view of Theorem ., we can introduce the following concept.

Definition . Let T be an arbitrary time scale. If all conditions of Theorem . are satis-
fied, then we say the invariant under a translation time scale T∗ is a sub-invariant under
the translation unit in T.

Remark . It follows from Theorem . that if we define functions on T∗, then it will
lead to the concept of functions invariant under translation time scales. Since T∗ is a
subset of T (in other words, T∗ is a local part of T), it opens up a new avenue to investigate
the local properties of functions on an arbitrary time scale. Further, we can introduce
the concept of local-almost periodic functions on time scales, then local-almost periodic
solutions of dynamic equations on time scales can be studied exactly as in []. In fact, all the
results established in [] can also be obtained for T∗ by simply replacing invariant under
translation time scales T in [] by T∗ (since T∗ is a sub-invariant under the translation
unit).

Using Remark ., we can give a generalization of Definition . so called local-uniformly
almost periodic functions on time scales.

Definition . Let T be an arbitrary time scale. T∗ is an sub-invariant under the trans-
lation unit in T and �̂ the invariant translation set for T∗. A function f ∈ C(T × D,En)
is called a local-uniformly almost periodic function in t ∈ T uniformly for x ∈ D if the
ε-translation set of f ,

E{ε, f , S} =
{
τ ∈ �̂ ⊂ �̃ :

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T∗ × S

}

is a relatively dense set in �̂ for all ε >  and for each compact subset S of D, that is, for
any given ε >  and each compact subset S of D, there exists a constant l(ε, S) >  such that
each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S} such that

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T∗ × S.
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Here, τ is called the ε-local translation number of f and l(ε, S) is called the local inclusion
length of E{ε, f , S}.

Remark . From Definition ., we know that if f (t) is a local-uniformly almost periodic
functions on T, then f (t) is uniformly almost periodic on T∗.

Following [, ], we can also give a generalization of Definition ., namely, we can in-
troduce the concept of invariance under translation time scales with respect to a family of
sets.

Definition . Let C be a collection of sets which is constructed by subsets of R. A time
scale T is called an invariant under a translation time scale with respect to C if

C
∗ =

{
τ ∈

⋂

c∈C
c : t ± τ ∈ T,∀t ∈ T

}
/∈ {{},∅}

,

and C∗ is called the smallest invariant translation set of T with respect to C.

Finally, we note that the assumption C∗ = {} makes all results obtained in [] false. In
fact, the following revision is needed.

Definition . (Correction and generalization of Definition . in []) Let T be an invari-
ant under a translation time scale with respect to C. A function f ∈ C(T× D,En) is called
an almost periodic function in t ∈ T uniformly for x ∈ D if the ε-translation set of f ,

E{ε, f , S} =
{
τ ∈ C

∗ :
∣∣f (t + τ , x) – f (t, x)

∣∣ < ε, for all (t, x) ∈ T× S
}

is a relatively dense set in C∗ for all ε >  and for each compact subset S of D, that is, for
any given ε >  and each compact subset S of D, there exists a constant l(ε, S) >  such that
each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S} such that

∣∣f (t + τ , x) – f (t, x)
∣∣ < ε, for all (t, x) ∈ T× S.

Here, τ is called the ε-translation number of f and l(ε, S) is called the inclusion length of
E{ε, f , S}.

To conclude we emphasize that the precise definition of almost (or local-almost) peri-
odic functions on time scales occupies a fundamental position in establishing some key
results for dynamical systems on time scales. Thus, the above corrections not only fill the
gaps in the existing literature, but they will also help to pursue further research in the right
direction.
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