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considering the endogenous metabolites as static variables 

but to include also drug dose and temporal changes in drug 

concentration in these studies. Although there are many 

endogenous metabolite biomarkers identified to predict PK 

and more often to predict PD, validation of these biomark-

ers in terms of specificity, sensitivity, reproducibility and 

clinical relevance is highly important. Furthermore, the 

application of these identified biomarkers in routine clinical 

practice deserves notable attention to truly personalize drug 

treatment in the near future.
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1 Introduction

One of the main challenges in modern drug therapy is 

that a single compound with one fixed dose does not opti-

mally treat all individuals in a population that suffer from 

a specific disease in a population. Knowledge about inter-

individual differences in drug pharmacology and descrip-

tors of these differences is essential to treat all individuals 

in a population effectively and safely. Individual variations 

in the response to drug treatment may result from genetic 

polymorphisms (Weinshilboum 2003) or other epigenetic 

factors, environmental factors including diet, life style, ear-

lier/current drug treatments, and microbiome (Li and Jia 

2013). Furthermore, demographic characteristics like age, 

sex, and bodyweight, or disease related factors like disease 

status and treatment-related factors (Alomar 2014) may 

cause variation. It is not known a priori which of these fac-

tors will best predict the clinical outcome of a treatment in 

an individual.

Abstract Personalized medicine, in modern drug ther-

apy, aims at a tailored drug treatment accounting for 

inter-individual variations in drug pharmacology to treat 

individuals effectively and safely. The inter-individual 

variability in drug response upon drug administration is 

caused by the interplay between drug pharmacology and 

the patients’ (patho)physiological status. Individual varia-

tions in (patho)physiological status may result from genetic 

polymorphisms, environmental factors (including current/

past treatments), demographic characteristics, and disease 

related factors. Identification and quantification of predic-

tors of inter-individual variability in drug pharmacology 

is necessary to achieve personalized medicine. Here, we 

highlight the potential of pharmacometabolomics in pro-

spectively informing on the inter-individual differences in 

drug pharmacology, including both pharmacokinetic (PK) 

and pharmacodynamic (PD) processes, and thereby guid-

ing drug selection and drug dosing. This review focusses 

on the pharmacometabolomics studies that have additional 

value on top of the conventional covariates in predicting 

drug PK. Additionally, employing pharmacometabolomics 

to predict drug PD is highlighted, and we suggest not only 
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Personalized medicine, also sometimes referred to as 

precision medicine, aims to offer a tailored drug treatment 

to achieve the most optimal therapeutic effects with the 

least amount of adverse effects for each individual (Schork 

2015). Information provided by predictors of expected indi-

vidual responses to a particular drug, can inform clinicians 

in the decision making process for drug selection and drug 

dosing regimen (Kitsios and Kent 2012). And we are con-

vinced that pharmacometabolomics will allow to find meta-

bolic predictors for drug selection and drug dosing as will 

be elaborated in this paper.

2  Interplay between drug pharmacology 

and patients’ (patho)physiology

For optimal pharmacotherapy, the interplay between drug 

pharmacology and patients’ (patho)physiology needs to 

be understood (van der Greef and McBurney 2005; Vicini 

and van der Graaf 2013). As illustrated in Fig.  1, impor-

tant aspects regarding drug pharmacology are target expo-

sure, target binding, and target activation, these processes 

are governed by drug-specific properties and patient char-

acteristics. Modulating (patho)physiological biochemis-

try networks on a cellular level and, more importantly, on 

a tissue or organ level, or systemic level, will eventually 

determine the treatment outcome for a patient. The target 

activation triggers modulation of the (patho)physiologi-

cal system including self-regulatory feedback mechanisms 

of the patient, also called downstream effects, and these 

modulations can vary between patients. When studying the 

effects of pharmacotherapy, none of the processes in the 

chain from drug administration to patient outcome (Fig. 1) 

should be studied in isolation. Rather, all aspects need to be 

considered in the context of their causal and temporal inter-

actions. Moreover, in order to achieve truly personalized 

medicine, inter-individual variability throughout these pro-

cesses need to be quantified and predictors for inter-indi-

vidual difference identified.

Biomarkers are important tools to study the complex 

interplay between drug pharmacology and the patients’ 

(patho)physiology, both on a population level and on an 

individual level. In this context, biomarkers are “a measure 

that characterizes, in a strictly quantitative manner, a pro-

cess, which is on the causal path between drug administra-

tion and effect” (Danhof et al. 2005). A variety of biomark-

ers currently exist and endogenous metabolites, or more 

probably metabolite fingerprints (Adourian et al. 2008; van 

der Greef and McBurney 2005), are promising for provid-

ing novel biomarkers for all processes on the causal chain 

between drug dose and patient outcome as outlined in 

Fig. 1.

If a drug does not reach its target, it cannot elicit its 

effect. Thus, drug concentration in blood is a biomarker 

for target exposure. Because drug concentrations at the tar-

get site may be difficult to measure, drug concentration in 

plasma is often used as a convenient surrogate measure for 

target exposure. However, in some cases where a compound 

has a peripheral target site (e.g. in brain), drug concentra-

tions in blood cannot fully predict the target exposure.

Pharmacokinetics (PK) is the study of drug absorp-

tion, distribution, metabolism and excretion. Pharmacoki-

netic profiles describe the time course of drug concentra-

tions in plasma or other tissues or biological matrices. 

Total drug exposure in a certain tissue is represented by 

the area under the concentration curve (AUC). The pro-

cesses underlying drug PK are quantified using primary 

parameters like clearance (CL) and distribution volume 

(V), or secondary parameters like absorption or distribu-

tion rate constants. Inter-individual variability in biologi-

cal processes results in variability in the drug PK profiles 

between individuals. The ability to predict individual 

Fig. 1  Potential of metabo-

lomics in the interplay between 

drug pharmacology and patients 

(patho)physiology

Drug

administration

Target

exposure

Target

binding

Target

activation

(Metabolomic)

biomarkers

Clinical

Outcome

Molecular/

Cellular 

modulation

Tissue/

organ 

modulation

Disease

modulation



Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards…

1 3

Page 3 of 11 9

variations in the PK of drugs prior to drug administration 

is of interest in order to avoid over-dosing (e.g. adverse 

effects) and under-dosing (e.g. therapeutic failure). Cur-

rently, demographic, disease-related or treatment-related 

factors including for instance age, bodyweight, disease 

state, drug formulation, and concomitant drug therapy, 

are used as predictors of quantitative inter-individual dif-

ferences in the PK of drugs. These predictive factors of 

variability are called covariates.

Current methodologies using conventional covariates 

alone can often explain a large part of the inter-individual 

variability in the PK of a drug (Joerger 2012). However, 

this may not be sufficient for drugs with a narrow therapeu-

tic window and relatively high unexplained inter-individual 

variability. In these cases, therapeutic drug monitoring 

(TDM) provides a viable option to improve an individu-

als’ pharmacotherapy. With TDM, dose adjustments are 

made based on additional information on the individual PK 

parameter values, derived from relevant exposure measures 

after one or multiple drug doses have been administered.

There are, however, situations where the use of conven-

tional covariates, even in combination with TDM, is not 

sufficient to guide drug dosing for target exposure attain-

ment. In critically-ill patients, patients with organ failure, or 

in the end-of-life stages of terminal patients, many (patho)

physiological changes and drug–drug interactions occur in 

quick succession, and all or a number of these factors may 

influence the PK of administered drugs. In these vulnerable 

patients, the exact clinical status is difficult to assess using 

conventional measures, but this information may be essen-

tial to predict the individual PK parameter values needed to 

provide personalized drug dosing.

To elicit an effect, a drug should not just reach a tar-

get, it should also bind to the target and activate the target 

to initiate the desired biosignal that will for instance lead 

to changes in enzyme activity or changes a (patho)physi-

ological pathway. Factors that influence these interactions 

include both the physicochemical properties of the drug 

and the phenotype of the patient. Inter-individual differ-

ences in the target phenotype may influence target binding 

and activation and thereby the eventual treatment outcome 

in individual patients.

The biosignal initiated by target activation is subse-

quently potentiated into the (patho)physiological system 

of the patient. Potentiation of this signal may involve rela-

tively simple molecular pathways, but often involves com-

plex interacting networks related both to healthy physiol-

ogy and disease-related pathophysiology, that will yield 

modulations on cellular, tissue and organ levels, and on the 

disease state level. A wide range of these factors related 

to (epi)genetic factors and patient phenotype may result 

in inter-individual variability in signal potentiation and 

thereby patient outcome.

Drug pharmacodynamics (PD) is related to the effect of 

drugs and in PK-PD analysis the relationship between drug 

concentration, usually in blood, and treatment outcome is 

defined. Usually, inter-individual variability in PD pro-

cesses exceeds the inter-individual variability in PK. Fail-

ure to properly account for the variability in the PD of a 

drug may cause therapy failure or toxicity for individual 

patients (Levy 1998).

As indicated in Fig.  1, drug effects, either desired or 

unwanted side-effects, can be described on different levels 

(from target exposure, to target binding and target activa-

tion, to ultimately disease modulation leading to clinical 

outcome) and the relationships between drug concentra-

tion and effect will become less direct and potentially more 

complex when moving downstream in signal potentiation, 

and ultimately to clinical outcome. Especially in complex 

diseases of which the mechanism is not yet fully under-

stood, for instance psychological and neurological diseases, 

there is a strong need for validated biomarkers to assess 

disease progression. In addition, such a biomarker can be 

informative about the impact of pharmacotherapy on vari-

ous levels of the (patho)physiological system.

Similar to PK, conventional covariates can be used as 

predictors for inter-individual variability in drug effects, 

but, similar to TDM, in PD they may not always be suf-

ficient. Moreover, also similar to TDM, dose adjustments 

and even drug selection should be guided based on predic-

tion of individual patient outcome, particularly for drugs in 

which the drug effects are difficult to quantify or delayed 

(e.g. psychoactive drugs, cytostatics, antidepressants, etc.). 

Another example where we need proper PD prediction is 

the use of drugs in vulnerable or critical patients. In these 

cases, validated biomarkers that can predict long-term out-

come based on short-term changes are needed to facilitate 

individual optimization of pharmacotherapy.

As outlined above, optimal pharmacotherapy requires 

information on the current (patho)physiological status of 

an individual patient. Conventional covariates may be use-

ful in this respect and may even be sufficient in predicting 

individual deviations from population responses, but when 

these don’t suffice, other methods for the establishment of 

phenotypic profiles may be required. Such methods are 

preferably prospective and minimally invasive.

One way of PK phenotyping involves the administra-

tion of a probe drug or drug cocktail to assess the pheno-

type of several drug-metabolizing enzymes (Sharma et al. 

2004). However, this is not always feasible, especially in 

vulnerable populations, and this involves prolonged clinical 

visits and increases time and cost of treatment. An alter-

native phenotyping approach would be using endogenous 

biomarkers that could predict enzyme activity without risk, 

time, and cost of exogenous drug administration. Another 

advantage of endogenous biomarkers is that retrospective 
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analysis of banked samples can be conducted. Identified 

predictive endogenous biomarkers can be used as covariates 

to guide clinicians in decision making regarding treatment 

options by using minimal amounts of biological fluids. In 

this regard, the application of metabolomics can serve as an 

alternative or additional method to the current clinical prac-

tices to achieve personalized treatment (Bernini et al. 2009; 

Fernie et  al. 2004; Guo et  al. 2015; Schnackenberg 2007; 

Suhre et al. 2011; van der Greef et al. 2006).

Metabolomics or endogenous metabolite profiling may 

be used as a phenotypic tool to provide accurate informa-

tion on the current (patho)physiological status of patients 

to prospectively inform on individual differences in both 

PK and PD processes and thereby guide drug selection and 

drug dosing. Furthermore, in cases where the exact mecha-

nism of a disease or drug effect is unknown, endogenous 

metabolites and their change after administration of a drug 

can provide mechanistic insight in disease status and drug 

response of an individual (Kaddurah-Daouk et al. 2008).

3  Metabolomics and pharmacometabolomics

Pharmacogenomics (PG), which uses genetic polymor-

phisms to predict individual variations in responses to 

drugs, for instance to classify patients as poor or rapid drug 

metabolizers, or drug responders or non-responders (Evans 

and McLeod 2003; Evans and Relling 2004; Pirmohamed 

2014) has been increasingly used to inform personalized 

medicine. However, studying a patient’s genotype does not 

always allow for a clear definition of a phenotype, nor does 

it give information about the current (patho)physiologi-

cal state of an individual (Carr et  al. 2014), as the geno-

type does not capture time-varying processes influenced by 

environmental factors and/or disease-related factors.

Metabolomics offers an advantage over PG in explaining 

the inter-individual variability in drug PK or PD, as it pro-

vides a direct readout of the current metabolic state of an 

individual. The endogenous metabolite profile is a snapshot 

of the phenotypic status of an individual resulting from, for 

instance, demographic factors, environmental interactions, 

microbiota, or disease status. Pharmacometabolomics is 

emerging as a discipline of metabolomics that studies the 

interplay between drug pharmacology and the patients’ 

(patho)physiology, by measuring endogenous metabolites 

that inform on variability in the drug PK or PD phenotype 

(Clayton et al. 2006; Kaddurah-Daouk and Weinshilboum 

2015; Lindon et al. 2006; Nicholson et al. 2011). This con-

cept has first been illustrated in rats, in a study that showed 

that metabolomic information in pre-dose urine samples is 

predictive of both drug metabolism (PK) and toxicity (PD) 

of paracetamol (Clayton et al. 2006).

So far, pharmacometabolomic research addresses:

1. The identification of endogenous metabolites for pre-

dicting individual drug PK characteristics (Huang et al. 

2015; Kienana et  al. 2016; Phapale et  al. 2010; Rah-

mioglu et  al. 2011; Shin et  al. 2013; Tay-Sontheimer 

et al. 2014).

2. The identification of endogenous metabolites and their 

metabolic pathways for predicting individual drug PD 

characteristics (Condray et al. 2011; Kaddurah-Daouk 

et  al. 2010, 2011a, b; Kaddurah-Daouk and Wein-

shilboum 2014; Keun et  al. 2009; Krauss et  al. 2013; 

Trupp et al. 2012; Yerges-Armstrong et al. 2013; Zhu 

et al. 2013).

3. The identification of endogenous metabolite biomark-

ers for monitoring disease progression and pharmaco-

therapy in individual patients (Backshall et  al. 2011; 

Kinross et al. 2011; Nicholson et al. 2012).

The analytical methods applied to discover metabolic 

biomarkers use advanced and sensitive analytical instru-

ments such as NMR, LC-MS and GC-MS (Chen et  al. 

2007; Dona et al. 2014; Emwas et al. 2013; Garcia and Bar-

bas 2011). Metabolomics research can be conducted either 

in a targeted or un-targeted fashion. In targeted approaches, 

pre-selected endogenous metabolites, which belong either 

to defined chemical classes or to particular metabolic path-

ways, are quantified. In an untargeted approach or a global 

profiling approach, endogenous metabolites are quanti-

fied in an unbiased fashion without any pre-selection of 

metabolites. This mode is advantageous in exploratory 

studies, which can generate hypotheses as well as gener-

ate data for biomarker discovery. However, in an untargeted 

metabolomic analysis, the physicochemical properties of 

the metabolites determine whether they can be in princi-

ple extracted and detected, and quantitative information on 

endogenous metabolite concentration is often less precise 

than in targeted analysis, and comparability between stud-

ies and labs is less straightforward than in targeted analy-

sis, where absolute concentrations are reported for targeted 

metabolites for which a calibration model is available.

For the discovery of metabolite biomarkers to identify 

predictors of PK and/or PD variability or for monitoring 

the disease progression and the modulation of the disease 

progression by pharmacotherapy, disease metabolic pheno-

types or pre- and post-dose metabolic phenotypes are often 

established. These metabolic phenotypes offer unique read-

outs that contain information about the (patho)physiologi-

cal state of an individual at particular time points. The opti-

mal design of the metabolomic biomarker discovery study, 

will depend on the intended use of the biomarker, which 

could include for instance identification of responders and 

non-responders to drug treatment, predict individual PK 

variability or assess drug–drug interactions. The statistical 

models of the metabolomics data will then integrate both 
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causal and temporal information. Ultimately, the metabolite 

biomarkers may be used in routine clinical practice, either 

prospectively to guide drug selection and drug dose selec-

tion based on pre-dose metabolite biomarker profiles, or 

retrospectively to monitor the effects of pharmacotherapy.

Figure 2 illustrates the use of pharmacometabolomics 

in both research (route A) and clinical practice (route 

B). Route A illustrates how pharmacometabolomics can 

be coupled to the clinical outcome variables of phar-

macotherapy to investigate and identify metabolomic 

biomarkers for drug pharmacology and the interac-

tion with patients’ (patho)physiology. In this route, pre-

dose and post-dose endogenous metabolite profiles are 

obtained together with individual PK and PD variables. 

Using a range of multivariate statistical methods such as 

for instance principal component analysis (PCA), par-

tial least squares discriminant analysis (PLS-DA) and 

orthogonal partial least squares discriminant analysis 

(O-PLS-DA), correlations between endogenous metabo-

lites and pharmacological characteristics can be inves-

tigated (Bartel et  al. 2013). Further research is then 

focused on identifying the role of the biomarker in the 

causal chain between drug administration and patient out-

come, for instance using network analysis (Kotze et  al. 

2013) and/or population models that quantify the time 

course of drug concentration and drug effect (Gabriels-

son et  al. 2011; Wright et  al. 2011). Route B illustrates 

how the pharmacometabolomic information obtained in 

route A is prospectively applied in clinical practice to 

personalize drug treatment. Using pre-dose samples and 

the quantitative knowledge on the relationships between 

endogenous metabolites and pharmacological outcome, 

pharmacotherapy, in terms of drug selection and dose 

selection, can be tailored to an individual.
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Fig. 2  Pharmacometabolomics in research (route A) and clinical 

practice (route B). Route A (red) discovery of metabolite biomarkers 

to predict pharmacological treatment outcome using statistical meth-

ods that couple data from metabolomics profiling to PK and / or PD 

variables of an individual. Route B (blue) prospective application of 

metabolite biomarkers in routine clinical practice, using information 

from route A for personalized treatment
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4  Pharmacometabolomics informs 

pharmacokinetics

Target exposure is one of the first steps on the causal chain 

linking drug dosing to patient outcome. Knowledge on the 

sources and extent of inter-individual variability and the 

availability of descriptors for variability, will allow cli-

nicians to prospectively adjust drug doses for individual 

patients.

The main aim of pharmacometabolomic studies related 

to drug PK is to identify endogenous metabolite markers 

that allow for the stratification of patients into exposure 

groups, which is needed to individualize drug dosing regi-

mens. Factors that are known to have marked impact on the 

PK of drugs include, for instance, expression and activity 

of drug metabolizing enzymes, tissue composition includ-

ing the expression of drug binding plasma proteins and tis-

sue proteins, drug transporters, and gut microbiome.

One of the first reported human studies linking pre-dose 

metabolomics information in urine to drug exposure meas-

ures was performed in healthy volunteers taking tacrolimus 

(Phapale et  al. 2010). Tacrolimus is an immunosuppres-

sant used during organ transplantation and has a narrow 

therapeutic index with a high degree of inter-individual 

variability in its PK. As dose adjustments of this drug are 

futile by the time over-dosing (e.g. organ toxicity) or under-

dosing (e.g. organ rejection) become apparent, accurate 

exposure monitoring or prediction is important. In the 

study, the authors used first untargeted metabolomic pro-

filing and multivariate statistics to correlate endogenous 

urine metabolites to the AUC of tacrolimus. Then a hypo-

thetical molecular network was developed that included 

the obtained metabolic biomarkers, and findings on impor-

tant modules in this network were linked to mechanistic 

knowledge of the underlying PK processes for tacrolimus 

to select possibly causal biomarkers. From this, a metabo-

lomic phenotype based on pre-dose urine concentrations of 

four endogenous metabolites was derived that can predict 

a patients’ exposure to tacrolimus, thereby allowing a pro-

spective individual dose selection.

Another report linked pre-dose plasma metabolomic 

profiles to exposure measures of atorvastatin in healthy vol-

unteers (Huang et al. 2015). Atorvastatin is an HMG-CoA 

reductase inhibitor for which considerable inter-individual 

variability in drug metabolism leads to up to 45-fold differ-

ences in plasma concentrations leading to therapy failure in 

some and adverse effects in others. In this study, the authors 

first applied untargeted profiling of metabolites with 

GC-MS and PLS analysis to establish a model that predicts 

endogenous metabolites and pharmacokinetic parameters 

(Cmax and AUC). Using selected metabolites, hypothetical 

metabolic networks were constructed to visualize the role 

of metabolite pathways explaining the variability. Later, 

an O-PLS model was used to stratify the individuals into 

subgroups based on the pre-dose metabolite behavior. For 

atorvastatin conventional covariates have proven to be sub-

optimal in predicting individual exposure measures and this 

study showed a combination of endogenous metabolite bio-

markers to have increased predictive value for this drug.

As drug metabolizing enzyme activity is an impor-

tant contributor to drug clearance, and as drug clearance 

is a major determinant for exposure, some (pharmaco)

metabolomic studies investigate endogenous metabolomic 

predictors for drug metabolizing enzyme activity in gen-

eral. It is, however, important to note that other factors, 

including hepatic blood flow, plasma protein binding, and 

hepatic transporters, also influence drug metabolic clear-

ance. These factors may limit the direct translation of find-

ings regarding drug metabolism of one probe compound to 

other compounds that are substrates for the same enzymes.

When focusing on the metabolism, CYP3A enzymes 

are responsible for the metabolism of the majority of pre-

scribed drugs. These enzymes have multiple functional 

alleles and they are subject to induction and inhibition by 

various exogenous compounds. The interaction processes 

are highly variable between individuals and become espe-

cially relevant in patients taking multiple drugs. To inves-

tigate the applicability of pharmacometabolomics in pro-

spectively informing on induction of CYP3A4 metabolism, 

Rahmioglu et  al. performed a study correlating pre-dose 

metabolomic urine measures to quinidine metabolite ratios 

after CYP3A4 induction with Hypericum perforatum, 

known as St. John’s Wort (Rahmioglu et al. 2011). Endoge-

nous urinary metabolite measures were identified that were 

predictive of the quinidine metabolite ratio [3-hydroxyqui-

nine to quinine (3OH-Q:Q)], but they all remained empiri-

cal predictors as none of these could be mechanistically 

linked to CYP3A4 activity. A potential explanation for this 

is that ratios in drug metabolite concentrations are depend-

ent on both formation and elimination rates of metabolites, 

making this measure not very specific for enzyme activity 

alone.

A more recent study in healthy male volunteers used 

a more direct measure for CYP3A activity by investigat-

ing the clearance of midazolam, a drug that is known 

to be predominantly cleared through CYP3A-mediated 

metabolism. Moreover, this study not only investigated 

scenarios after CYP3A induction using ketoconazole, 

but also included situations without drug interactions 

or with inhibition using rifampicin (Shin et  al. 2013). 

The authors were able to identify an endogenous ster-

oid metabolomic profile in urine which could accurately 

predict midazolam clearance under all investigated con-

ditions. A link between steroid metabolism and CYP3A 

activity had already been established, but this study 

defined a more predictive biomarker profile. Moreover, 
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the authors showed that timing of urine collection in each 

treatment phase did not influence the predictive value of 

the biomarker, suggesting that it can be reliably used to 

establish current midazolam clearance in patients that are 

already receiving drug therapy.

In the paediatric population, on top of genetic, envi-

ronmental and disease-related factors that are also present 

in adults, growth and development results in continuous 

changes in physiological processes underlying drug PK 

and PD. Much research efforts have focused on quantifying 

the influence of these changes on the PK, and to a lesser 

extent PD, of drugs in children. A recent study by Tay-

Sontheimer et al. (Tay-Sontheimer et al. 2014), illustrated 

a first attempt to use pharmacometabolomic approaches to 

prospectively and non-invasively predict drug clearance of 

a CYP2D6 substrate in this population as well. Strong con-

clusions cannot yet be made based on this study, since par-

ent and drug metabolite ratios were used to define enzyme 

activity. Other limitation in this study were encountered 

as the identified endogenous metabolite biomarker Ml, 

could not be structurally identified based on its fragmenta-

tion spectra, and most importantly the concentration of the 

endogenous metabolite biomarker was below the detection 

limits in samples of poor metabolizers. However, the idea 

of using pre-dose pharmacometabolomic measures to pro-

spectively determine drug doses in the pediatric population 

is appealing.

As most drug metabolism occurs in the hepatocytes of 

the liver, influx and efflux transporters in these cells may 

influence the metabolic clearance of their substrates. More-

over, efflux transporters in hepatocytes may offer an alter-

native clearance route by transporting drugs directly into 

the bile. Also within nephrons of the kidneys, active trans-

porters may facilitate drug excretion or reuptake. Finally, 

intestinal drug uptake and tissue distribution of drugs may 

be influenced by transporters. As with enzymes, genetic 

polymorphisms in drug transporters may influence their 

activity (Kerb 2006) and interactions with endogenous or 

exogenous compounds may induce or inhibit the transport-

ers in a time-dependent manner (Konig et al. 2013).

In a recent study using an untargeted metabolomics 

approach, a pre-dose urinary metabolomic profile based on 

28 endogenous metabolites was identified that was predic-

tive of the clearance of high-dose methotrexate in patients 

with lymphoid malignancies (Kienana et  al. 2016). Inter-

individual and inter-occasion variability in the clearance of 

methotrexate is large, leading to regular toxicity events in 

patients. Many of the 28 identified endogenous metabolites 

are substrates for organic anion transporters in the kidney, 

transporters that are also known to play a major role in the 

elimination of methotrexate, suggesting that metabolomic 

profiles may also provide information on the function of 

transporters at a given time-point.

Recently it has been recognized that the human gut 

microbiome may contribute to variations in the response 

to drug treatment, for instance by the bacterial synthesis 

of unique metabolites from administered drugs or their 

metabolites. In a study of paracetamol, Clayton et al., dem-

onstrated that formation of p-cresol by the gut microbiome 

results in a competitive interaction for the systemic sulpha-

tion of paracetamol, causing a decreased relative sulphation 

of the drug (Clayton et al. 2009). Given that the therapeu-

tic window of paracetamol is wide, this finding may not 

be of big relevance for this specific drug, but it may have 

important implications for other drugs that have a narrow 

therapeutic window and large inter-individual differences 

in drug metabolism. Also for simvastatin, a relationship 

between pre-dose levels of secondary bile acids produced 

in the gut and drug effect has been identified (Kaddurah-

Daouk et  al. 2011a, b), although the exact mechanism 

underlying this finding is not yet known. The identified sec-

ondary bile acids correlated with the concentration of sim-

vastatin, and interactions of these bile acids with (patho)

physiological mechanisms are also proposed to influence 

patients’ responses to simvastatin treatment. As the micro-

biome of individuals may vary over time, the results of 

these studies suggest that pharmacometabolomics may pro-

vide relevant information on the status of the microbiome 

of a patient at a given time and the expected effect this has 

on pharmacotherapy.

5  Pharmacometabolomics informs 

pharmacodynamics

The majority of pharmacometabolomic studies are focused 

on drug PD and changes in (patho)physiology upon drug 

exposure. The potential of this type of pharmacometabo-

lomic research has been highlighted for instance in neu-

ropsychiatric diseases (Kaddurah-Daouk et al. 2007, 2011a, 

b, 2013; Quinones and Kaddurah-Daouk 2009; Yao et  al. 

2010; Zhu et al. 2013), neurodegenerative disorders (Kad-

durah-Daouk et al. 2013), cardiovascular diseases (Kaddu-

rah-Daouk et al. 2010, 2011a, b; Krauss et al. 2013; Trupp 

et  al. 2012), cancer (Backshall et  al. 2011; Dang et  al. 

2009; Keun et al. 2009), chronic kidney disease (Zhao et al. 

2014) and hematology (Ellero-Simatos et al. 2014; Yerges-

Armstrong et al. 2013).

Most pharmacometabolomic studies in PD set out to 

investigate the effects of pharmacotherapy by investigating 

differences in pre and post-dose endogenous metabolomic 

profiles and identifying patterns that can explain inter-

individual differences in treatment outcome. However, as is 

illustrated in Fig. 1, changes in various levels of the (patho)

physiological system induced by pharmacotherapy should 

not be regarded as static or be studied in isolation, as they 
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only form one link in the context of their causal and tempo-

ral interaction in all the processes between drug adminis-

tration and patient outcome. The studies establishing a link 

between a specific endogenous metabolite or metabolite 

profile and treatment outcome of pharmacotherapy should 

therefore be followed up by extensive studies into the 

behavior of the new metabolite biomarker under various 

pharmacological interventions of the (patho)physiological 

system to validate the specificity, sensitivity, reproducibil-

ity, and clinical relevance of the new metabolite biomarker. 

These validation studies should focus on the influence of 

different drug doses or drug concentrations on the newly 

identified metabolite biomarker to establish a concentra-

tion-effect relationship, on understanding the causal and 

temporal relationships of changes in the new metabolite 

biomarker and other biomarkers or measurements of treat-

ment outcome, and on the response of the new metabo-

lite biomarker to pharmacotherapy with both agonist and 

antagonist agents. Population modeling approaches can 

provide a useful tool in quantitatively integrating all the 

information obtained in the various investigations.

6  Pharmacometabolomics informs the clinician

Although metabolomics studies have identified a number of 

metabolite biomarkers that can describe and predict inter-

individual variability in the PK or PD of drugs, the applica-

tion of the obtained knowledge in clinical practice remain 

relatively limited. Validation of promising metabolite bio-

markers is therefore urgently required to prove their speci-

ficity, sensitivity, reproducibility and clinical relevance. 

Once the understanding of causal and temporal relation-

ships and inter-individual variability is there, the obtained 

knowledge needs to be taken to the clinic to optimize drug 

therapy.

It is worth to mention that pharmacogenomics studies 

have played an important role in predicting drug PK in the 

last decade, but pharmacogenomics does not provide infor-

mation about the current (patho)physiological state of an 

individual, and take environmental factors into account. As 

one’s individual genome will be soon available for many 

persons, pharmacogenomics is very attractive for PK pre-

diction. However, there are many cases where pharmacog-

enomics was not able to predict PK, and where pharmaco-

metabolomics is an attractive alternative. The reason is that 

pharmacometabolomics provides a snapshot of the pheno-

typic status of an individual resulting from, for instance, 

demographic factors, environmental interactions, micro-

biota, or disease(s) status. We anticipate that pharmacome-

tabolomics and pharmacogenomics are very complemen-

tary techniques, which we expect will be often combined 

ultimately in clinical decision support for PK (and PD) 

prediction.

For the implementation of metabolic biomarkers in the 

clinical lab there are different requirements: (1) metabo-

lites should be reported as absolute concentrations, (2) the 

analysis should be cost-effective and (3) results should be 

available to the clinicians in a timely manner. Implementa-

tion can occur in two different ways, via targeted analysis, 

specific cost-efficient assays covering only a limited num-

ber of required metabolites, or a broader panel allowing for 

a general metabolomics assay covering hundred or more 

(identified) metabolites that inform about the general health 

state including the prediction of treatment outcome. For the 

targeted assay, we can expect that small analyzers will be 

developed. This might be based on aptamers, miniaturized 

NMR or mass spectrometers, and might be even handheld. 

For the broader clinical metabolic profile most probably a 

lab-based metabolite analyzer using a cost-efficient mass 

spectrometer will be used. The more metabolite biomark-

ers will become validated, the more attractive it will be 

to implement metabolite profiling in the clinical lab for 

clinical decision support, and we are convinced that with 

the significant increase of metabolomics studies reporting 

metabolic biomarkers for PK/PD this will become routine 

over some years.

It is worth mentioning that pharmacometabolomics can 

also inform the drug researcher on variation of PK or PD 

in early clinical studies, especially whether (1) a drug is 

exposed to the target, (2) whether the drug engages with 

the target and (3) whether the drug modulates the target in 

the desired manner. However, this aspects were not the sub-

ject of this review.

7  Conclusion and future recommendations

An interplay between many factors related both to 

drug pharmacology and a patients’ (patho)physiol-

ogy is responsible for the drug treatment outcome for 

the patient. Variability in all these processes can yield 

variability in treatment outcome. While conventional 

covariates are often sufficient in prospectively inform-

ing treating physicians on the PK of individuals, phar-

macometabolomics has proven to have additional value 

in prospectively informing PK and aiding in prospective 

drug dose individualization when conventional covariates 

cannot explain inter-individual variability sufficiently. 

Compared to pharmacogenomics, pharmacometabo-

lomics takes the actual health state into account. This is 

especially important in critically-ill patients, the elderly 

or terminal patients where many drug–drug interaction 

occurs, and also for drugs with a narrow therapeutic 

window and relatively high unexplained inter-individual 
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variability, and where you want to predict outcome before 

starting any treatment rather than using therapeutic drug 

monitoring to modify the treatment regime. This may be 

particularly relevant in patient populations taking multi-

ple drugs or which rapidly change their health state, such 

as patients with organ failure or organ transplants, but 

also in pediatric or elderly patients or pregnant women.

Pharmacometabolomics can aid in predicting pharma-

codynamics and ultimately clinical treatment outcome. 

As (patho)physiology changes during disease and phar-

macotherapy, it is important to not consider the endog-

enous metabolites as static variables in isolation. The 

influence of drug dose and temporal changes in drug con-

centrations and metabolite network interactions should be 

part of these investigations as well, before endogenous 

metabolite markers can be considered for informing drug 

selection or drug dose selection in patients. Therefore, 

both PK and PD, should be included in pharmacometabo-

lomics studies, where currently often PK is not consid-

ered in many PD pharmacometabolomis studies.

In conclusion, pharmacometabolomics is very prom-

ising for predicting pharmacokinetics and pharmacody-

namics, and if we can manage to incorporate findings in 

this field in clinical practice, we are able to realize per-

sonalized medici.

Acknowledgements This project received support from the Fac-

ulty of Science (“Profiling programme: Endocannabinoids”), Leiden 

University (VK, TH). This project has been supported by SysMedPD 

(http://www.sysmedpd.eu) within the European Union’s Horizon 

2020 research and innovation programme under Grant Agreement No 

668738.

Compliance with ethical standards 

Conflict of interest The authors declare they have no conflicts of 

interest.

Research involving human participants and/or animals All the 

patients included in the studies described in this review were reported 

to have provided ethical approval in their original research in accord-

ance with their ethical standards of the institutions.

Informed consent All the patients included in the studies described 

in this review were reported to have provided informed consent for 

their participation in the original research.

Open Access This article is distributed under the terms of the 

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted 

use, distribution, and reproduction in any medium, provided you give 

appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license, and indicate if changes were 

made.

References

Adourian, A., Jennings, E., Balasubramanian, R., Hines, W. M., 

Damian, D., Plasterer, T. N., et al. (2008). Correlation network 

analysis for data integration and biomarker selection. Molecu-

lar Biosystems, 4, 249–259.

Alomar, M. J. (2014). Factors affecting the development of adverse 

drug reactions (Review article). Saudi Pharmaceutical Jour-

nal, 22(2), 83–94.

Backshall, A., Sharma, R., Clarke, S. J., & Keun, H. C. (2011). 

Pharmacometabonomic profiling as a predictor of toxicity in 

patients with inoperable colorectal cancer treated with capecit-

abine. Clinical Cancer Research, 17(9), 3019–3028.

Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical meth-

ods for the analysis of high-throughput metabolomics data. 

Computational and Structural Biotechnology Journal, 4, 

e201301009.

Bernini, P., Bertini, I., Luchinat, C., Nepi, S., Saccenti, E., Schäfer, 

H., et  al. (2009). Individual human phenotypes in metabolic 

space and time. Journal of Proteome Research, 8(9), 4264–4271.

Carr, D. F., Alfirevic, A., & Pirmohamed, M. (2014). Pharmacog-

enomics: Current state-of-the-art. Genes, 5(2), 430–443.

Chen, C., Gonzalez, F. J., & Idle, J. R. (2007). LC-MS-based 

metabolomics in drug metabolism. Drug Metabolism Reviews, 

39(2–3), 581–597.

Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R., & Nicholson, 

J. K. (2009). Pharmacometabonomic identification of a signifi-

cant host-microbiome metabolic interaction affecting human 

drug metabolism. Proceedings of the National Academy of Sci-

ences of the United States of America, 106(34), 14728–14733.

Clayton, T. A., Lindon, J. C., Cloarec, O., Antti, H., Charuel, C., Han-

ton, G., et al. (2006). Pharmaco-metabonomic phenotyping and 

personalized drug treatment. Nature, 440(7087), 1073–1077.

Condray, R., Dougherty, G. G., Keshavan, M. S., Reddy, R. D., 

Haas, G. L., Montrose, D. M., et al. (2011). 3-Hydroxykynure-

nine and clinical symptoms in first-episode neuroleptic-naive 

patients with schizophrenia. The International Journal of Neu-

ropsychopharmacology, 14(6), 756–767.

Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., 

Driggers, E. M., et al. (2009). Cancer-associated IDH1 mutations 

produce 2-hydroxyglutarate. Nature, 462(7274), 739–744.

Danhof, M., Alvan, G., Dahl, S. G., Kuhlmann, J., & Paintaud, G. 

(2005). Mechanism-based pharmacokinetic-pharmacodynamic 

modeling-a new classification of biomarkers. Pharmaceutical 

Research, 22(9), 1432–1437.

Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., 

Lewis, M. R., et  al. (2014). Precision high-throughput pro-

ton NMR spectroscopy of human urine, serum, and plasma 

for large-scale metabolic phenotyping. Analytical Chemistry, 

86(19), 9887–9894.

Ellero-Simatos, S., Lewis, J. P., Georgiades, A., Yerges-Armstrong, 

L. M., Beitelshees, A. L., Horenstein, R. B., et  al. (2014). 

Pharmacometabolomics reveals that serotonin is implicated in 

aspirin response variability. CPT: Pharmacometrics & Systems 

Pharmacology, 3, e125.

Emwas, A.-H. M., Salek, R. M., Griffin, J. L., & Merzaban, J. 

(2013). NMR-based metabolomics in human disease diagno-

sis: applications, limitations, and recommendations. Metabo-

lomics, 9(5), 1048–1072.

Evans, W. E., & McLeod, H. L. (2003). Pharmacogenomics–drug 

disposition, drug targets, and side effects. The New England 

Journal of Medicine, 348(6), 538–549.

Evans, W. E., & Relling, M. V. (2004). Moving towards individu-

alized medicine with pharmacogenomics. Nature, 429(6990), 

464–468.

http://www.sysmedpd.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 V. Kantae et al.

1 3

9 Page 10 of 11

Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. 

(2004). Metabolite profiling: From diagnostics to systems biol-

ogy. Nature Reviews Molecular Cell Biology, 5(9), 763–769.

Gabrielsson, J., Fjellström, O., Ulander, J., Rowley, M., & Van Der 

Graaf, P. H. (2011). Pharmacodynamic-pharmacokinetic integra-

tion as a guide to medicinal chemistry. Current Topics in Medici-

nal Chemistry, 11(4), 404–418.

Garcia, A., & Barbas, C. (2011). Gas chromatography–mass spec-

trometry (GC–MS)-based metabolomics. Methods in Molecular 

Biology, 708, 191–204.

Guo, L., Milburn, M. V., Ryals, J. A., Lonergan, S. C., Mitchell, 

M. W., Wulff, J. E., et al. (2015). Plasma metabolomic profiles 

enhance precision medicine for volunteers of normal health. 

Proceedings of the National Academy of Sciences of the United 

States of America, 112(35), E4901–E4910.

Huang, Q., Aa, J., Jia, H., Xin, X., Tao, C., Liu, L., et al. (2015). A 

Pharmacometabonomic approach to predicting metabolic pheno-

types and pharmacokinetic parameters of atorvastatin in healthy 

volunteers. Journal of Proteome Research, 4(9), 3970–3981.

Joerger, M. (2012). Covariate pharmacokinetic model building in 

oncology and its potential clinical relevance. The AAPS journal, 

14(1), 119–132.

Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z.-B., Wiest, M. 

M., Nguyen, U. T., et al. (2010). Lipidomic analysis of variation 

in response to simvastatin in the cholesterol and pharmacogenet-

ics study. Metabolomics, 6(2), 191–201.

Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z.-B., Wiest, M. 

M., Nguyen, U. T., et  al. (2011). Enteric microbiome metabo-

lites correlate with response to simvastatin treatment. PloS One, 

6(10), e25482.

Kaddurah-Daouk, R., Bogdanov, M. B., Wikoff, W. R., Zhu, H., 

Boyle, S. H., Churchill, E., et al. (2013). Pharmacometabolomic 

mapping of early biochemical changes induced by sertraline and 

placebo. Translational Psychiatry, 3, e223.

Kaddurah-Daouk, R., Boyle, S. H., Matson, W., Sharma, S., Matson, 

S., Zhu, H., et al. (2011). Pretreatment metabotype as a predictor 

of response to sertraline or placebo in depressed outpatients: A 

proof of concept. Translational Psychiatry, 1, e26.

Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). 

Metabolomics: A global biochemical approach to drug response 

and disease. Annual Review of Pharmacology and Toxicology, 

48, 653–683.

Kaddurah-Daouk, R., McEvoy, J., Baillie, R. A., Lee, D., Yao, J. 

K., Doraiswamy, P. M., & Krishnan, K. R. R. (2007). Metabo-

lomic mapping of atypical antipsychotic effects in schizophrenia. 

Molecular Psychiatry, 12(10), 934–945.

Kaddurah-Daouk, R., & Weinshilboum, R. (2015). Metabolomic sig-

natures for drug response phenotypes: Pharmacometabolomics 

enables precision medicine. Clinical Pharmacology and Thera-

peutics, 98(1), 71–75.

Kaddurah-Daouk, R., & Weinshilboum, R. M. (2014). Pharmacome-

tabolomics: Implications for clinical pharmacology and systems 

pharmacology. Clinical Pharmacology and Therapeutics, 95(2), 

154–167.

Kaddurah-Daouk, R., Zhu, H., Sharma, S., Bogdanov, M., Rozen, S. 

G., Matson, W., et al. (2013). Alterations in metabolic pathways 

and networks in Alzheimer’s disease. Translational Psychiatry, 

3, e244.

Kerb, R. (2006). Implications of genetic polymorphisms in drug 

transporters for pharmacotherapy. Cancer Letters, 234(1), 4–33.

Keun, H. C., Sidhu, J., Pchejetski, D., Lewis, J. S., Marconell, H., Pat-

terson, M., et al. (2009). Serum molecular signatures of weight 

change during early breast cancer chemotherapy. Clinical Can-

cer Research, 15(21), 6716–6723.

Kienana, M., Benz-de Bretagne, I., Nadal-Desbarats, L., Blasco, H., 

Gyan, E., Choquet, S., et  al. (2016). Endogenous metabolites 

that are substrates of organic anion transporter’s (OATs) pre-

dict methotrexate clearance. Pharmacological Research, 

6618(16), 30469–30468.

Kinross, J. M., Holmes, E., Darzi, A. W., & Nicholson, J. K. (2011). 

Metabolic phenotyping for monitoring surgical patients. Lan-

cet (London, England), 377(9780), 1817–1819.

Kitsios, G. D., & Kent, D. M. (2012). Personalised medicine: Not 

just in our genes. BMJ (Clinical Research Ed.), 344, e2161.

Konig, J., Muller, F., & Fromm, M. F. (2013). Transporters and 

drug-drug interactions: Important determinants of drug dispo-

sition and effects. Pharmacological Reviews, 65(3), 944–966.

Kotze, H. L., Armitage, E. G., Sharkey, K. J., Allwood, J. W., 

Dunn, W. B., Williams, K. J., & Goodacre, R. (2013). A novel 

untargeted metabolomics correlation-based network analysis 

incorporating human metabolic reconstructions. BMC Systems 

Biology, 7(1), 107.

Krauss, R. M., Zhu, H., & Kaddurah-Daouk, R. (2013). Pharmaco-

metabolomics of statin response. Clinical Pharmacology and 

Therapeutics, 94(5), 562–565.

Levy, G. (1998). Predicting effective drug concentrations for indi-

vidual patients. Determinants of pharmacodynamic variability. 

Clinical Pharmacokinetics, 34(4), 323–333.

Li, H., & Jia, W. (2013). Cometabolism of microbes and host: 

implications for drug metabolism and drug-induced toxicity. 

Clinical Pharmacology and Therapeutics, 94(5), 574–581.

Lindon, J. C., Holmes, E., & Nicholson, J. K. (2006). Metabonom-

ics techniques and applications to pharmaceutical research & 

development. Pharmaceutical Research, 23(6), 1075–1088.

Nicholson, J. K., Everett, J. R., & Lindon, J. C. (2012). Longitudi-

nal pharmacometabonomics for predicting patient responses to 

therapy: Drug metabolism, toxicity and efficacy. Expert Opin-

ion on Drug Metabolism & Toxicology, 8(2), 135–139.

Nicholson, J. K., Wilson, I. D., & Lindon, J. C. (2011). Pharmaco-

metabonomics as an effector for personalized medicine. Phar-

macogenomics, 12(1), 103–111.

Phapale, P. B., Kim, S.-D., Lee, H. W., Lim, M., Kale, D. D., Kim, 

Y.-L., et  al. (2010). An integrative approach for identifying a 

metabolic phenotype predictive of individualized pharmacoki-

netics of tacrolimus. Clinical Pharmacology and Therapeutics, 

87(4), 426–436.

Pirmohamed, M. (2014). Personalized pharmacogenomics: Pre-

dicting efficacy and adverse drug reactions. Annual Review of 

Genomics and Human Genetics, 15, 349–370.

Quinones, M. P., & Kaddurah-Daouk, R. (2009). Metabolomics 

tools for identifying biomarkers for neuropsychiatric diseases. 

Neurobiology of Disease, 35(2), 165–176.

Rahmioglu, N., Le Gall, G., Heaton, J., Kay, K. L., Smith, N. W., 

Colquhoun, I. J., et  al. (2011). Prediction of variability in 

CYP3A4 induction using a combined 1 H NMR metabonom-

ics and targeted UPLC-MS approach. Journal of Proteome 

Research, 10(6), 2807–2816.

Schnackenberg, L. K. (2007). Global metabolic profiling and its 

role in systems biology to advance personalized medicine in 

the 21st century. Expert Review of Molecular Diagnostics, 

7(3), 247–259.

Schork, N. J. (2015). Personalized medicine: Time for one-person tri-

als. Nature, 520(7549), 609–611.

Sharma, A., Pilote, S., Bélanger, P. M., Arsenault, M., & Hamelin, B. 

A. (2004). A convenient five-drug cocktail for the assessment of 

major drug metabolizing enzymes: A pilot study. British Journal 

of Clinical Pharmacology, 58(3), 288–297.

Shin, K.-H., Choi, M. H., Lim, K. S., Yu, K.-S., Jang, I.-J., & Cho, 

J.-Y. (2013). Evaluation of endogenous metabolic markers of 

hepatic CYP3A activity using metabolic profiling and mida-

zolam clearance. Clinical Pharmacology and Therapeutics, 

94(5), 601–609.



Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards…

1 3

Page 11 of 11 9

Suhre, K., Shin, S.-Y., Petersen, A.-K., Mohney, R. P., Meredith, D., 

Wägele, B., et al. (2011). Human metabolic individuality in bio-

medical and pharmaceutical research. Nature, 477, 54–60.

Tay-Sontheimer, J., Shireman, L. M., Beyer, R. P., Senn, T., Witten, 

D., Pearce, R. E., et al. (2014). Detection of an endogenous uri-

nary biomarker associated with CYP2D6 activity using global 

metabolomics. Pharmacogenomics, 15(16), 1947–1962.

Trupp, M., Zhu, H., Wikoff, W. R., Baillie, R. A., Zeng, Z.-B., Karp, 

P. D., et al. (2012). Metabolomics reveals amino acids contribute 

to variation in response to simvastatin treatment. PloS One, 7(7), 

e38386.

van der Greef, J., Hankemeier, T., & McBurney, R. N. (2006). Metab-

olomics-based systems biology and personalized medicine: 

moving towards n = 1 clinical trials? Pharmacogenomics, 7(7), 

1087–1094.

van der Greef, J., & McBurney, R. N. (2005). Rescuing drug dis-

covery: In  vivo systems pathology and systems pharmacology. 

Nature Reviews Drug Discovery, 4(12), 961–967.

Vicini, P., & van der Graaf, P. H. (2013). Systems pharmacology for 

drug discovery and development: paradigm shift or flash in the 

pan? Clinical Pharmacology and Therapeutics, 93(5), 379–381.

Weinshilboum, R. (2003). Inheritance and drug response. The New 

England Journal of Medicine, 348(6), 529–537.

Wright, D. F. B., Winter, H. R., & Duffull, S. B. (2011). Understand-

ing the time course of pharmacological effect: a PKPD approach. 

British Journal of Clinical Pharmacology, 71(6), 815–823.

Yao, J. K., Dougherty, G. G., Reddy, R. D., Keshavan, M. S., Mon-

trose, D. M., Matson, W. R., et al. (2010). Altered interactions of 

tryptophan metabolites in first-episode neuroleptic-naive patients 

with schizophrenia. Molecular Psychiatry, 15(9), 938–953.

Yerges-Armstrong, L. M., Ellero-Simatos, S., Georgiades, A., Zhu, 

H., Lewis, J. P., Horenstein, R. B., et  al. (2013). Purine path-

way implicated in mechanism of resistance to aspirin therapy: 

pharmacometabolomics-informed pharmacogenomics. Clinical 

Pharmacology and Therapeutics, 94(4), 525–532.

Zhao, Y.-Y., Chen, H., Tian, T., Chen, D.-Q., Bai, X., & Wei, F. 

(2014). A pharmaco-metabonomic study on chronic kidney dis-

ease and therapeutic effect of ergone by UPLC-QTOF/HDMS. 

PloS One, 9(12), e115467.

Zhu, H., Bogdanov, M. B., Boyle, S. H., Matson, W., Sharma, S., 

Matson, S., et al. (2013). Pharmacometabolomics of response to 

sertraline and to placebo in major depressive disorder-possible 

role for methoxyindole pathway. PloS One, 8(7), e68283.


	Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards personalized drug therapy
	Abstract 
	1 Introduction
	2 Interplay between drug pharmacology and patients’ (patho)physiology
	3 Metabolomics and pharmacometabolomics
	4 Pharmacometabolomics informs pharmacokinetics
	5 Pharmacometabolomics informs pharmacodynamics
	6 Pharmacometabolomics informs the clinician
	7 Conclusion and future recommendations
	Acknowledgements 
	References


