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Abstract
We study the dynamics of a stochastic nonlinear Schrödinger equation with both a
quadratic potential and an additive noise. We show that in both cases of repulsive
potential and attractive one, any initial data with finite variance gives birth to a
solution that blows up in arbitrarily small time. This is in contrast to the deterministic
case when the potential is repulsive, where strong potentials could prevent the
solutions from blowing up. Our result hence indicates that the additive noise rather
than the potential dominates the dynamical behaviors of the solutions to the
stochastic nonlinear Schrödinger equations.
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1 Introduction
In this paper, we are interested in the blow-up problem for the following stochastic non-
linear Schrödinger equation with a quadratic potential

{
iut + �u + |u|σ u + θ |x|u – η̇ = , t ≥ , x ∈R

n,
u(, x) = u(x).

(.)

Here θ ∈ R, σ > , and η̇ is a complex-valued noise that is white in time and correlated in
space. When θ < , (.) describes the evolution of the wave function of a Bose-Einstein
condensation, where the potential |x| models a magnetic field to confine the particles
[]. The additive noise η̇ represents the fluctuation effect of physical process in random
media [].

When η = , (.) reduces to the deterministic nonlinear Schrödinger equation with a
quadratic potential

{
iut + �u + |u|σ u + θ |x|u = ,
u(, x) = u(x),

(.)

which has been extensively studied in the last decade. Employing a Mehler type formula
that is isometric in L, Carles [] found the deep relation of solutions between the critical
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nonlinear Schrödinger equation with an attractive potential (θ < ) and the one without
potential. He presented the similarities as well as differences of the blow-up dynamics of
the two equations. Through decomposing its energy into two suitable parts, Carles []
further studied the well-posedness and the blow-up problems for the supercritical equa-
tion with an attractive potential. Especially, he discovered that the singular solution of
the nonlinear Schrödinger equation with an attractive potential blows up earlier than the
one without potential. Subsequently, based on a new decomposition of energy, Carles []
showed that in contrast to the attractive case, the repulsive potential (θ > ) has a tendency
to delay or even prevent wave collapse. For more results on the nonlinear Schrödinger
equation with quadratic potentials, we refer the reader to [, ].

If θ = , (.) is the well-known stochastic nonlinear Schrödinger equation without
potential. In [] de Bouard and Debussche derived the global well-posedness of H so-
lution for a defocusing nonlinear Schrödinger equation. On the base of the local well-
posedness theory established in [], they subsequently investigated the effect of an ad-
ditive noise on the finite time blow-up behavior of the solutions for a focusing nonlinear
Schrödinger equation in []. It is usually an interesting question to study the effect of small
noise on a deterministic model. As the additive noise converges to zero, for the nonlinear
Schrödinger equation with a power-type nonlinearity, Gautier [] established a large de-
viations principle, which demonstrates the rate of convergence to zero of the probability
that paths are in sets which do not contain the deterministic solution. It is worth men-
tioning that if the noise acts as a potential, then a multiplicative noise arises, we refer the
interested reader to [–] in this direction.

In this paper, we are interested in the mixed effect of noise and potential on the blow-up
dynamics of the solution. As far as we know, the blow-up problem for the Schrödinger
equations with a potential and a noise was first studied in [], where Fang et al. showed
that for the initial data with sufficiently negative energy, which is similar to the require-
ment of deterministic equation, the corresponding solutions blow up in finite time with
positive probability. In the current paper, we continue to investigate the blow-up problem
for nonlinear Schrödinger equations under both effects of an additive noise and a poten-
tial. We show that, regardless of the direction of the potential, any initial data with finite
variance gives birth to a solution that blows up in arbitrarily small time, which improves
the blow-up result in []. Recall that for the deterministic (.) with a repulsive potential
(θ > ), Carles [] proved that the potential could prevent the blow-up of the solution.
Thus, our result implies that for the stochastic (.) the noise dominates the dynamics of
the solution.

The rest of this paper is organized as follows. In Section , we present some preliminary
lemmas and state our main results. Section  is devoted to the proof of the main results.

2 Preliminaries and main results
Before proceeding, let us briefly introduce some notation for convenience. (�,F ,P) de-
notes a probability space endowed with a filtration (Ft)t≥. Let (βl)l∈N be a sequence of
real-valued independent Brownian motions associated with this filtration. Lp(Rn) denotes
the classical Lebesgue space of complex-valued functions on R

n. As in the argument for
the deterministic (.), we also need the Hilbert space

� :=
{

f ∈ H(
R

n) : x �→ xf (x) ∈ L(
R

n)}
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equipped with the norm

‖f ‖
� := ‖f ‖

H + ‖xf ‖
L .

Let (el)l∈N be a Hilbertian basis of L(Rn) and φ denote a Hilbert-Schmidt operator from L

into �. L �
 stands for the space of Hilbert-Schmidt operators φ from L into � endowed

with the norm

‖φ‖L �


:= tr
(
φ∗φ

)
=

∑
l∈N

‖φel‖
� .

The noise we consider is η̇ = ∂W
∂t , where the process W is given by

W (t, x,ω) =
∞∑
l=

βl(t,ω)φel(x), t ≥ , x ∈R
n,ω ∈ �.

Then W is a complex-valued Wiener process on L(Rn) with covariance operator φφ∗.
Here φ∗ denotes the adjoint operator of φ.

The integral
∫
Rn f (x) dx will be abbreviated as

∫
f (x) for convenience if no confusion is

caused. If I is an interval of R, B is a Banach space,  ≤ q ≤ ∞, then Lq(I; B) is the space
of Lebesgue measurable function g from I into B such that the function t �→ ‖g(t)‖B is in
Lq(I). Lq((, T); Lr(Rn)) will be abbreviated by Lq

T Lr . C denotes a generic positive constant
which may change from one line to another.

c�
φ :=

∑
l∈N

∫
Rn

|x||φel|, c
φ :=

∑
l∈N

∫
Rn

|φel|,

c
φ :=

∑
l∈N

∫
Rn

|∇φel|, c
φ := Im

∑
l∈N

∫
Rn

φelx∇φel.

Throughout the paper, we assume that φ ∈ L �
 . Thus, the four constants given above are

finite and well defined.
We are now ready to state our main results.

Theorem . Assume that σ ≥ 
n if n = , , and that 

n ≤ σ < 
n– if n ≥ . Suppose that

φ ∈ L �
 satisfying kerφ∗ = {}. Then for any u ∈ � with u �=  and any t >  ( < t < π


√

–θ

if θ < ), we have

P
(
τ ∗(u) < t

)
> ,

where τ ∗(u) is the existence time of the solution of (.) with initial data u.

Remark . For the deterministic (.) with supercritical nonlinearities and repulsive po-
tentials (θ > ), Carles [] showed that for fixed initial data u ∈ �, there exists θ >  such
that for any θ > θ, the solution of (.) is global. Here we show that, in contrast to the
result available for deterministic equations, under the effect of an additive white noise,
any initial data develops a solution that blows up in arbitrarily small time. In this sense,
Theorem . says that, for the stochastic Schrödinger equation (.) the white noise rather
than the potential determines the dynamical behaviors of the solution.
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Before the proof of Theorem ., we need some preliminary lemmas. Set Uθ (t) :=
eit(�+θ |x|). (q, r) denotes the admissible pair satisfying 

q = n( 
 – 

r ) with  ≤ r < n
n–

( ≤ r < ∞ if n = ,  ≤ r ≤ ∞ if n = ). We recall the following Strichartz estimates for
Uθ ; see [, ] for details.

Lemma . (Strichartz estimates)
(i) If θ > , then for any admissible pair (q, r), (γ ,ρ) and any interval I ,

∥∥Uθ (t)ϕ
∥∥

Lq(I;Lr) ≤ C‖ϕ‖L

for every ϕ ∈ L(Rn), and
∥∥∥∥
∫

I∩{s≤t}
Uθ (t – s)F(s) ds

∥∥∥∥
Lq(I;Lr )

≤ C‖F‖Lγ ′ (I;Lρ′ )

for every F ∈ Lγ ′ (I; Lρ′ ), where C = C(q, r) and C = C(T , q, r,γ ,ρ) are positive
constants independent of I .

(ii) If θ < , then the both inequalities stated in (i) hold for any interval I ⊂ [, π


√

–θ
].

To demonstrate the effect of quadratic potentials, we adopt the decomposition intro-
duced by Carles [, ]. In the case of θ > , set μ =

√
θ and denote

J+(t) := μx sinh(μt) + i cosh(μt)∇x, K+(t) := x cosh(μt) +
i
μ

sinh(μt)∇x,

then

i∇x = cosh(μt)J+(t) – μ sinh(μt)K+(t),

x = cosh(μt)K+(t) –
sinh(μt)

μ
J+(t).

In the case of θ < , set ν =
√

–θ and denote

J–(t) := νx sin(νt) – i cos(νt)∇x, K–(t) := x cos(νt) +
i
ν

sin(νt)∇x,

then

i∇x = ν sin(νt)K–(t) – cos(νt)J–(t), x = cos(νt)K–(t) +
sin(νt)

ν
J–(t).

The operators J± and K± have the following properties; see [, ].

Lemma .

J±(t) = ±Uθ (t)i∇Uθ (–t), K±(t) = Uθ (t)xUθ (–t). (.)

If F ∈ C(C,C) is of the form F(z) = zG(|z|), then

J±(t)F(u) = ∂uF(u)J±(t)u – ∂ūF(u)J±(t)u, if θ < , t /∈ π

ν
Z,

K±(t)F(u) = ∂uF(u)K±(t)u – ∂ūF(u)K±(t)u, if θ < , t /∈ π

ν
+

π

ν
Z.

(.)
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On the base of Lemmas . and ., Fang et al. (see Theorem . in []) proved the
following local well-posedness result for (.).

Lemma . Assume that  ≤ σ < 
n– if n ≥  or σ ≥  if n = , , and that φ is a Hilbert-

Schmidt operator from L(Rn) into �. Then for any F measurable random variable u with
values in �, there exists a unique solution u(u, ·) to (.) with continuous � values paths.
The solution is defined on a random interval [, τ ∗(u,ω)). Here τ ∗(u,ω) is a stopping time
such that

τ ∗(u,ω) = +∞ or lim
t→τ∗(u,ω)

∥∥u(t,ω)
∥∥

�
= +∞.

As in the deterministic case, to study the blow-up problem, we need to characterize the
time evolution of the following three quantities: the energy

H(u) =



∫
Rn

|∇u| dx –
θ



∫
Rn

|x||u| dx

–


σ + 

∫
Rn

|u|σ+ dx for u ∈ �,

the momentum

G(u) = Im
∫
Rn

ux · ∇ū dx for u ∈ �,

and the variance

V (u) =
∫
Rn

|x||u| dx for u ∈ �.

By employing the Itô formula given in [] and a regularization argument, we can derive
the following identities; see [] for details.

Lemma . Under the assumptions of Theorem ., for any stopping time t such that t <
τ ∗(u) a.s., we have

H
(
u(t)

)
= H(u) – Im

∫ t



∫
Rn

(
�ū + θ |x|ū + |u|σ ū

)
dx dW

–



∑
l∈N

∫ t



∫
Rn

|u|σ
∣∣φel(x)

∣∣ dx dτ +
c
φ


t –

θc�
φ


t

– σ
∑
l∈N

∫ t



∫
Rn

|u|σ–(Re
(
ūφel(x)

)) dx dτ , (.)

G
(
u(t)

)
= G(u) – 

∫ t


H

(
u(τ )

)
dτ – θ

∫ t



∫
Rn

|x||u| dx dτ

–
 – nσ

σ + 

∫ t



∫
Rn

|u|σ+ dx dτ

+ Re
∑
l∈N

∫ t



∫
Rn

(ūx · ∇φel + nūφel) dx dβl – tc
φ (.)
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and

V
(
u(t)

)
= V (u) – 

∫ t


G

(
u(τ )

)
dτ +  Im

∫ t



∫
Rn

|x|ū dx dW + tc�
φ . (.)

3 Proof of Theorem 2.1
In this section we will show Theorem ., by exploring the compatibility of the quadratic
potentials with the space � and by combining the energy decomposition technique [, ]
with the framework of showing blow-up [, ]. To achieve this, we first revisit the blow-up
result derived by Fang et al. ([], Theorem .) and present a stronger conclusion.

Lemma . (Blow-up for special initial data) Assume that u, σ , and φ satisfy the assump-
tions of Theorem ..

(i) In the case θ < , suppose that for some T > ,

V (u) – G(u)T + H(u)T + c�
φ T + c

φT +


(
c
φ – θc�

φ

)
T < , (.)

then P(τ ∗(u) ≤ T) > .
(ii) In the case θ > , suppose that for some T > ,

V (u) +
[


μ

(
c�
φ – G(u)

)
+


μ

(
c
φ – θc�

φ

)]
tanh(μT)

+


μ

[
c
φ + H(u)

]
tanh(μT) < , (.)

then P(τ ∗(u) ≤ T) > .

Proof The proof is similar to that of Theorem . in []. For the convenience of the reader,
we present the sketch of the proof here. We first consider the case of θ < . Assume that
the conclusion of Lemma . does not hold. That is, τ ∗(u) > T almost surely. Define the
stopping time

τk := inf
{

s ∈ [, T] :
∥∥u(s)

∥∥
�

≥ k
}

for k ∈ N.

Taking t = τk in Lemma ., and substituting (.) and (.) into (.), by Fubini theorem,
we obtain the following stochastic version of the variance identity:

V
(
u(τk)

)
= V (u) – G(u)τk + H(u)τ 

k + c�
φ τk + c

φτ 
k +



(
c
φ – θc�

φ

)
τ 

k

+ θ

∫ τk


(τk – s)V

(
u(s)

)
ds +

( – nσ )
σ + 

∫ τk


(τk – s)

∥∥u(s)
∥∥σ+

Lσ+ ds

– σ
∑

l

∫ τk


(τk – s)

∫
Rn

|u|σ–(Re(ūφel)
) dx ds

– 
∑

l

∫ τk


(τk – s)

∫
Rn

|u|σ |φel| dx ds +  Im
∫ τk



∫
Rn

|x|ū dx dW
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–  Im
∫ τk



∫
Rn

(τk – s)(�ū + θ |x|ū + |u|σ ū
)

dx dW

–  Re
∑
l∈N

∫ τk


(τk – s)

∫
Rn

(ūx · ∇φel + nūφel) dx dβl. (.)

Noting that σ ≥ /n and θ < , the seventh term to the tenth one in (.) are all nonpositive,
we get, for any k ∈N,

V
(
u(τk)

) ≤ V (u) – G(u)τk + H(u)τ 
k + c�

φ τk + c
φτ 

k +


(
c
φ – θc�

φ

)
τ 

k

+
∫ τk


g(τk , s) dW (s) +

∑
l∈N

∫ τk


h(τk , s) dβl(s), (.)

where

g(τk , s) = Im
∫
Rn

[
|x|ū – (τk – s)(�ū + θ |x|ū + |u|σ ū

)]
dx,

h(τk , s) = –(τk – s) Re
∫
Rn

(ūx · ∇φel + nūφel) dx.

Because τk → T a.s. as k → ∞, and V (u(τk)) ≥ , it follows from the assumption (.),
that there exist constants δ >  and k̂ >  such that for any k > k̂,

∫ τk


g(τk , s) dW (s) +

∑
l∈N

∫ τk


h(τk , s) dβl(s) > δ >  a.s. (.)

On the other hand, we will show that these two stochastic integrals are square integrable
and thus their expectations are zero. By the Hölder inequality, we have

E

(∑
l

∫ τk



∣∣∣∣
∫
Rn

|x|ūφel(x) dx
∣∣∣∣


ds
)

≤ E

(∑
l

∫ τk



∫
Rn

|x||u| dx
∫
Rn

|x|∣∣φel(x)
∣∣ dx ds

)

= c�
φ E

(∫ τk



∥∥xu(s)
∥∥

L ds
)

≤ c�
φ T sup

s∈[,T]
E

(∥∥xu(s)
∥∥

L
) ≤ kTc�

φ .

By the Cauchy-Schwarz inequality and the Sobolev embedding theorem,

E

(∑
l

∫ τk


(τk – s)

∣∣∣∣
∫
Rn

(
�ū + θ |x|ū + |u|σ ū

)
φel dx

∣∣∣∣


ds
)

≤ E

(∑
l

∫ τk


(τk – s)

(∫
Rn

|∇u|
∫
Rn

∣∣∇(φel)
∣∣ + |θ |

∫
Rn

|x||u|
∫
Rn

|x||φel|

+
(∫

Rn
|u|σ+

) σ+
σ+

(∫
Rn

|φel|σ+
) 

σ+
)

ds
)

≤ T


(
c
φk + |θ |c�

φ k + c
φkσ+ + c

φkσ+).
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Similarly,

E

(∑
l

∫ τk


(τk – s)

∣∣∣∣
∫
Rn

[
ūx · ∇(φel) + nūφel

]
dx

∣∣∣∣


ds
)

≤ E

(∑
l

∫ τk


(τk – s)

(
n

∫
Rn

|u|
∫
Rn

|φel| + 
∫
Rn

|x||u|
∫
Rn

∣∣∇(φel)
∣∣

)
ds

)

≤ E

(∫ τk


(τk – s)(n‖u‖

L c
φ + ‖xu‖

L c
φ

)
ds

)

≤ T


nkc

φ +
T


kc

φ .

Therefore,

E

(∫ τk


g(τk , s) dW (s)

)
+ E

(∑
l∈N

∫ τk


h(τk , s) dβl(s)

)
= , (.)

which is in contradiction with (.).
We proceed to consider the case of θ > . As in (.), we have

V
(
u(τk)

) ≤ V (u) – G(u)τk + H(u)τ 
k + c�

φ τk + c
φτ 

k +


(
c
φ – θc�

φ

)
τ 

k

+ θ

∫ τk


(τk – s)V

(
u(s)

)
ds +

∫ τk


g(τk , s) dW (s)

+
∑
l∈N

∫ τk


h(τk , s) dβl(s).

In view of (.) and noting τk → T a.s. as k → ∞, we have

E
(
V

(
u(T)

)) ≤ E
(
V (u)

)
– E

(
G(u)

)
T + E

(
H(u)

)
T + c�

φ T + c
φT

+


(
c
φ – θc�

φ

)
T + θ

∫ T


(T – s)E

(
V

(
u(s)

))
ds.

For convenience, set A := c�
φ – E(G(u)), B := c

φ + E(H(u)), and C := c
φ –θc�

φ . Applying
the theory of ordinary differential equations, we get

E
(
V

(
u(T)

))
≤ cosh(μT)

[
E

(
V (u)

)
+

(
A

μ
+

C

μ

)
tanh(μT) +

B

μ tanh(μT)
]

.

Thus if (.) holds, we then have E(V (u(T))) < , which is a contradiction. �

We next show that blow-up occurs in arbitrarily small time for any initial data with finite
variance. According to the framework established by [, ], there are three key ingredi-
ents to show blow-up: the controllability of the Schrödinger dynamics, the well-posedness
of the perturbation equation and the continuous dependence of the solution on both the
perturbation and the initial data. In this paper, we utilize the compatibility of the potential
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with the natural working space � to get the controllability of the Schrödinger equation
in �; and then employ the energy decomposition technique together with the continuity
argument to derive the well-posedness of the perturbation equation and the continuous
dependence of the solution on the initial data in the natural space �. In particular, owing
to the structure of the quadratic potential, we only need the assumption of finite vari-
ance regardless of higher order moments on the initial data which are required in [, ].
Analogous to the deterministic equation [], we define for an admissible pair (q, r),

Yr(, T) :=
{

f ∈ C
(
[, T];�

)
: A(t)f ∈ C

(
[, T]; L) ∩ Lq((, T); Lr)

for any A(t) ∈ {
J(t), K(t), Id

}}
.

Lemma . (Controllability) For any u ∈ �, u ∈ �, T >  ( π


√

–θ
> T >  if θ < ), there

exists a function z ∈ Yσ+(, T) such that z() =  and the solution of
{

ivt + �v + θ |x|v + |v + z|σ (v + z) = , t ≥ , x ∈ R
n,

v(, x) = u(x),
(.)

exists in Yσ+(, T) and z(T) + v(z, u, T) = u.

Proof We only consider the case of n ≥  since the case of n ≤  is similar and easier.
Consider a linear parabolic equation

{
wt + (–�)kw + |x|kw = , t ≥ , x ∈R

n,
w(, x) = u(x),

(.)

where k > [ n
 ] +  is a positive integer. Denote by S(t) the semigroup on � associated to

(.). Define

u(t) :=
T – t

T
S(t)u +

t
T

S(T – t)u.

Obviously, u() = u and u(T) = u. We shall investigate the regularity of u. First it is easy
to see that u ∈ C([, T];�). Multiplying (.) by w̄, integrating the resultant equation over
[, T] ×R

n gives

|x|ku ∈ L((, T); L) and u ∈ L((, T); Hk). (.)

Because k > [ n
 ] +  ≥ , it follows from the Sobolev embedding theorem that

u ∈ L((, T); W , n
n–

)
.

We take η satisfying


σ + 

=
(n – )η

n
+

 – η


,


q

=
η


+

 – η

∞ .

Clearly η = nσ
(σ+) <  since σ < 

n– . Noting that u ∈ L∞((, T); H) ∩ L((, T); W , n
n– ),

applying Hölder’s inequality in space and then in time, we have

u ∈ Lq((, T); W ,σ+) with q =
(σ + )

σn
. (.)
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We next estimate xu. When k > [ n
 ] + , since Hk ↪→ L∞ and H ↪→ L

n
n– , by Hölder’s

inequality, we obtain

‖xu‖
L

n
n–

≤
(∫

|x|≤
|xu| n

n– dx +
∫

|x|≥
|xu| n

n– dx
) n–

n

≤
(∫

Rn
|u| n

n– dx +
∫
Rn

|x|k|u||u| 
n– dx

) n–
n

≤ C‖u‖H + C‖u‖ 
n
Hk

∥∥|x|ku
∥∥ n–

n
L .

Thus,

‖xu‖
L((,T);L

n
n– )

≤ C‖u‖L((,T);H) + C
(∫ T



∥∥u(t)
∥∥ 

n
Hk

∥∥|x|ku(t)
∥∥ (n–)

n
L dt

)/

≤ C‖u‖L((,T);H) + C‖u‖ 
n
L((,T);Hk )

∥∥|x|ku
∥∥– 

n
L((,T);L),

which in combination with (.) yields

xu ∈ L((, T); L
n

n–
)
. (.)

Noting that xu ∈ C([, T]; L), as in (.), we get xu ∈ Lq((, T); Lσ+). Thus

A(·)u ∈ C
(
[, T]; L) ∩ Lq((, T); Lσ+). (.)

We proceed to estimate |u|σ u. If  < σ ≤ , by Hölder’s inequality,

‖u‖Lσ+ ≤ ‖u‖–λ
L∞ ‖u‖λ

L with


σ + 
=

λ


+

 – λ

∞ ,

from which it follows that

∥∥|u|σ u
∥∥

L((,T);L) ≤ C‖u‖λ(σ+)
C([,T];L)

∫ T



∥∥u(t, ·)∥∥(–λ)(σ+)
Hk dt

≤ CTβ
 ‖u‖λ(σ+)

C([,T];L)‖u‖–β

L((,T);Hk )

for some  ≤ β < , where we have used the embedding Hk ↪→ L∞ and the fact that  <
( – λ)(σ + ) ≤ . If  < σ < 

n– , using the inequality

‖u‖Lσ+ ≤ ‖u‖–λ̂
L∞ ‖u‖λ̂

L
n

n–
with


σ + 

=
(n – )λ̂

n
+

 – λ̂

∞ ,

and the Sobolev embedding H ↪→ L n
n– , we similarly have

∥∥|u|σ u
∥∥

L((,T);L) ≤ C‖u‖λ̂(σ+)
C([,T];H)‖u‖–β̂

L((,T);Hk ).
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Thus, using (.), we derive

|u|σ u ∈ L((, T); L).

By Hölder’s inequality,

∥∥|u|σ ∇u
∥∥

L((,T);L) ≤ C
∫ T



∥∥u(t, ·)∥∥σ

L∞
∥∥∇u(t, ·)∥∥L dt

≤ C‖u‖C([,T];H)

∫ T



∥∥u(t, ·)∥∥σ

Hk dt.

If  < σ ≤  (noting that when n ≥ , σ < 
n– ≤ ), by Hölder’s inequality in time, we get

∥∥|u|σ ∇u
∥∥

L((,T);L) ≤ CT –σ‖u‖C([,T];H)‖u‖σ

L((,T);Hk ). (.)

If n =  and  < σ < 
n– = , it follows from Gagliardo-Nirenberg’s inequality that

‖u‖Lσ ≤ C‖u‖ 
 – 

σ

H ‖u‖ 
 + 

σ

L . (.)

Thus observing that H ↪→ W , when n = , it holds that

∥∥|u|σ ∇u
∥∥

L ≤ C‖∇u‖L‖u‖σ

Lσ ≤ C‖u‖σ
H‖u‖σ+

H .

Since σ < , u ∈ C([, T]; H), and |∇(|u|σ u)| ≤ C|u|σ |∇u|, we obtain

∇(|u|σ u
) ∈ L((, T); L).

We next show that x|u|σ u ∈ L((, T); L). As in (.), if  < σ ≤ , we have

∥∥x|u|σ u
∥∥

L((,T);L) ≤ C
∫ T



∥∥u(t, ·)∥∥σ

L∞
∥∥xu(t, ·)∥∥L dt

≤ C‖u‖C([,T];�)

∫ T



∥∥u(t, ·)∥∥σ

Hk dt

≤ C‖u‖C([,T];�)‖u‖σ

L((,T);Hk ).

If n =  and  < σ < , by (.),

∥∥x|u|σ u
∥∥

L((,T);L) ≤ C
∫ T



∥∥xu(t, ·)∥∥L

∥∥u(t, ·)∥∥σ

Lσ dt

≤ C‖xu‖L((,T);L)‖u‖σ+
C([,T];H)‖u‖σ–

L((,T);H).

This inequality together with (.) implies x|u|σ u ∈ L((, T); L). Therefore, we obtain

|u|σ u ∈ L((, T);�
)
. (.)

Now we define

v(t) := Uθ (t)u + i
∫ t


Uθ (t – s)|u|σ u(s) ds,
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and z(t) := u(t) – v(t). Clearly, v(z, u, t) := v(t) is the solution of (.). By (.),

J(t)v(t) = Uθ (t)i∇u + i
∫ t


Uθ (t – s)J(s)|u|σ u(s) ds,

K(t)v(t) = Uθ (t)xu + i
∫ t


Uθ (t – s)K(s)|u|σ u(s) ds.

It thus follows from (.), Strichartz estimates and (.) that v ∈ C([, T];�) and that

∥∥A(·)v∥∥Lq((,T);Lσ+) ≤ C‖u‖� + C
∥∥|u|σ u

∥∥
L((,T);�),

which implies A(·)v ∈ Lq((, T); Lσ+). Finally, by (.), z = (u – v) satisfies A(·)z ∈
C([, T]; L) ∩ Lq((, T); Lσ+). �

Lemma . (Local well-posedness of (.)) Assume that u ∈ �. Then for any z satisfying
z ∈ Yσ+(, T∗), there exist T >  with  < T ≤ T∗ and a unique solution v(z, u, ·) of (.)
satisfying v(z, u, ·) ∈ Yσ+(, T).

Proof Step . Existence. Define the set

XT ,M :=
{

f ∈ Yσ+(, T) :
∥∥A(·)f ∥∥L∞((,T);L) +

∥∥A(·)f ∥∥Lq((,T);Lσ+) ≤ M

for any A(t) ∈ {
J(t), K(t), Id

}}
equipped with the distance

d(f , g) := ‖f – g‖L∞((,T);L) + ‖f – g‖Lq((,T);Lσ+).

It is easy to see that (XT ,M, d) is a complete metric space. Consider the mapping H defined
by

Hv(t) := Uθ (t)u + i
∫ t


Uθ (t – s)|v + z|σ (v + z)(s) ds.

We shall show that there exist T and M satisfying (i) H maps (XT ,M, d) into itself; (ii) H is
a contraction in (XT ,M, d). By (.),

J(t)Hv(t) = Uθ (t)i∇u + i
∫ t


Uθ (t – s)J(s)|v + z|σ (v + z)(s) ds. (.)

Thus, by the Strichartz estimates, (.), and Hölder’s inequality, we have

∥∥J(·)Hv
∥∥

L∞
T L +

∥∥J(·)Hv
∥∥

Lq
T Lσ+

≤ C‖∇u‖L + C
∥∥|v + z|σ J(·)(v + z)

∥∥
Lq′

T L(σ+)′

≤ C‖∇u‖L + CT –δ(σ )‖v + z‖σ
L∞

T Lσ+

∥∥J(·)(v + z)
∥∥

Lq
T Lσ+

≤ C‖∇u‖L + CT –δ(σ )(Mσ + ‖z‖σ
L∞

T H
)(

M +
∥∥J(·)z∥∥Lq

T Lσ+
)
,
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where δ(σ ) = nσ
(σ+) <  since σ < 

n– , and we have used the Sobolev embedding H ↪→
Lσ+. Applying similar arguments to operators K(t) and Id, we get

∥∥A(·)Hv
∥∥

L∞
T L +

∥∥A(·)Hv
∥∥

Lq
T Lσ+

≤ C‖u‖� + CT –δ(σ )(Mσ + ‖z‖σ
L∞

T H
)(

M +
∥∥A(·)z∥∥Lq

T Lσ+
)
. (.)

On the other hand, for any w, v ∈ XT ,M , we have

Hw(t) – Hv(t) = i
∫ t


Uθ (t – s)

(|w + z|σ (w + z) – |v + z|σ (v + z)
)

ds.

A simple calculation yields

∣∣|w + z|σ (w + z) – |v + z|σ (v + z)
∣∣ ≤ C

(|w + z|σ + |v + z|σ
)|w – v|

for some constant C > . This inequality, in combination with the Strichartz estimates and
Hölder’s inequality, leads to

‖Hw – Hv‖L∞
T L + ‖Hw – Hv‖Lq

T Lσ+

≤ CT –δ(σ )(‖w + z‖σ
L∞

T Lσ+ + ‖v + z‖σ
L∞

T Lσ+
)‖w – v‖Lq

T Lσ+

≤ CT –δ(σ )(Mσ + ‖z‖σ
L∞

T H
)
d(w, v). (.)

Now choosing

M := max
{∥∥J(·)z∥∥Lq

T Lσ+ ,
∥∥K(·)z∥∥Lq

T Lσ+ ,‖z‖Lq
T Lσ+

}
+ C‖u‖�

and T small enough such that CT –δ(σ )(Mσ + ‖z‖σ
L∞

T H ) ≤ 
 , we get from (.) and

(.) that ‖A(·)Hv‖L∞
T L + ‖A(·)Hv‖Lq

T Lσ+ ≤ M and d(Hw,Hv) ≤ 
 d(w, v) which verify

(i) and (ii). Applying the contraction mapping principle, we see that there exists a solution
v(z, u, ·) to (.) and A(·)v(z, u, ·) ∈ C([, T]; L)∩Lq((, T); Lσ+). Moreover, we have the
estimate

∥∥A(·)v∥∥L∞
T L +

∥∥A(·)v∥∥Lq
T Lσ+ ≤ C

(‖u‖� + ‖z‖Lq
T W ,σ+ + ‖xz‖Lq

T Lσ+
)
. (.)

Step . Uniqueness. Suppose that there are two mild solutions w and v satisfying w, v ∈
C([, T];�) ∩ Lq((, T); Lσ+). Applying the Strichartz estimates and Hölder’s inequality,
as in (.), we get for any t ∈ [, T],

‖w – v‖Lq((,t);Lσ+)

≤ Ct–δ(σ )(‖w‖σ
L∞

T H + ‖v‖σ
L∞

T H + ‖z‖σ
L∞

T H
)‖w – v‖Lq((,t);Lσ+).

Thus if τ ∈ [, T] is small enough such that

Cτ –δ(σ )(‖w‖σ
L∞

T H + ‖v‖σ
L∞

T H + ‖z‖σ
L∞

T H
)

< ,
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we then have ‖w – v‖Lq((,τ );Lσ+) = , which gives w = v on [, τ ]. Set

τ̂ := sup
{
τ ∈ [, T];‖w – v‖Lq((,τ );Lσ+) = 

}
.

Clearly, τ̂ > . Suppose τ̂ < T , then we can take τ̂ as the initial time and deduce ‖w –
v‖Lq((,τ̂+ε);Lσ+) =  for some ε > , which contradicts the definition of τ̂ . Therefore, τ̂ = T ,
and we complete the proof of the uniqueness part. �

Lemma . (Continuous dependence) Let û ∈ �, T > . Assume that ẑ ∈ Yσ+(, T) and
that the solution v(ẑ, û, ·) of (.) exists on [, T]. Then there exist neighborhoods V of ẑ
in Yσ+(, T) and W of û in �, such that for any (z, u) ∈ V × W , the solution v(z, u, ·)
of (.) exists and is unique in C([, T];�). Moreover, the mapping (z, u) �→ v(z, u, ·) is
continuous from V ×W into C([, T];�).

Proof Step . Let r, R >  and take u, z satisfying

‖u‖� ≤ r, ‖z‖C([,T];H) ≤ R and
∥∥A(·)z∥∥Lq((,T);Lσ+) ≤ R

for any A(t) ∈ {J(t), K(t), Id}. Owing to Lemma ., there exist T = T(r, R) and a unique
solution v(z, u, ·) of (.) on [, T] such that v(z, u, ·) ∈ Yσ+(, T).

We next show that the solution map (z, u) �→ v(z, u, ·) is continuous on [, τ ] for some
 < τ ≤ T. To do this, we take {un

}n≥ ⊂ � and {zn}n≥ ⊂ Yσ+(, T) satisfying un
 → u

in � and A(·)zn → A(·)z in C([, T]; L) ∩ Lq((, T); Lσ+) for any A(t) ∈ {J(t), K(t), Id}.
Noting that

∥∥un

∥∥

�
≤ ‖u‖� , ‖zn‖L∞

T H ≤ ‖z‖L∞
T H ,∥∥A(·)zn

∥∥
Lq((,T);Lσ+) ≤ 

∥∥A(·)z∥∥Lq((,T);Lσ+)

for n sufficiently large, according to Lemma ., (.) has a unique solution vn correspond-
ing to (zn, un

), and there exists τ = τ (r, R) such that vn and v exist on [, τ ] ⊂ [, T]. More-
over, owing to (.), vn satisfies

∥∥A(·)vn
∥∥

C([,τ ];L) +
∥∥A(·)vn

∥∥
Lq((,τ );Lσ+)

≤ C
(‖u‖� + ‖z‖Lq((,T);W ,σ+) + ‖xz‖Lq((,T);Lσ+)

)
. (.)

We shall show that vn → v in C([, τ ];�) as n → ∞. Since

vn – v = i
∫ t


Uθ (t – s)

(|vn + zn|σ (vn + zn) – |v + z|σ (v + z)
)

ds

+ Uθ (t)
(
un

 – u
)

(.)

as in (.), we have

‖vn – v‖L∞
τ L + ‖vn – v‖Lq

τ Lσ+

≤ Cτ –δ(σ )(‖vn + zn‖σ
L∞
τ H + ‖v + z‖σ

L∞
τ H

)‖vn – v + zn – z‖Lq
τ Lσ+

+ C
∥∥un

 – u
∥∥

L . (.)
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Using (.) and choosing τ = τ (r, R) small enough, it follows that

‖vn – v‖L∞
τ L + ‖vn – v‖Lq

τ Lσ+ ≤ C
∥∥un

 – u
∥∥

L + C‖zn – z‖Lq
τ Lσ+ . (.)

Analogous to (.), applying J(t) and K(t) to (.) and setting F(u) := |u|σ u, we get

∥∥A(·)(vn – v)
∥∥

L∞
τ L +

∥∥A(·)(vn – v)
∥∥

Lq
τ Lσ+

≤ C
∥∥A(·)(|vn + zn|σ (vn + zn) – |v + z|σ (v + z)

)∥∥
Lq′
τ L(σ+)′ + C

∥∥un
 – u

∥∥
�

≤ C
∥∥∂uF(vn + zn)A(·)(vn + zn) – ∂uF(v + z)A(·)(v + z)

∥∥
Lq′
τ L(σ+)′

+ C
∥∥∂ūF(vn + zn)A(·)(vn + zn) – ∂ūF(v + z)A(·)(v + z)

∥∥
Lq′
τ L(σ+)′

+ C
∥∥un

 – u
∥∥

�

:= I + I + C
∥∥un

 – u
∥∥

�
. (.)

I can be estimated as follows. By Hölder’s inequality,

I ≤ C
∥∥∂uF(vn + zn)A(·)(vn – v + zn – z)

∥∥
Lq′
τ L(σ+)′

+ C
∥∥[

∂uF(vn + zn) – ∂uF(v + z)
]
A(·)(v + z)

∥∥
Lq′
τ L(σ+)′

≤ Cτ –δ(σ )‖vn + zn‖σ
L∞
τ H

(∥∥A(·)(vn – v)
∥∥

Lq
τ Lσ+ +

∥∥A(·)(zn – z)
∥∥

Lq
τ Lσ+

)
+ C

∥∥[
∂uF(vn + zn) – ∂uF(v + z)

]
A(·)(v + z)

∥∥
Lq′
τ L(σ+)′ .

Similarly,

I ≤ Cτ –δ(σ )‖vn + zn‖σ
L∞
τ H

(∥∥A(·)(vn – v)
∥∥

Lq
τ Lσ+ +

∥∥A(·)(zn – z)
∥∥

Lq
τ Lσ+

)
+ C

∥∥[
∂ūF(vn + zn) – ∂ūF(v + z)

]
A(·)(v + z)

∥∥
Lq′
τ L(σ+)′ .

Substituting these two inequalities into (.), using (.) and choosing τ = τ (r, R) small
enough, we have

∥∥A(·)(vn – v)
∥∥

L∞
τ L +

∥∥A(·)(vn – v)
∥∥

Lq
τ Lσ+

≤ C
∥∥un

 – u
∥∥

�
+ C

∥∥A(·)(zn – z)
∥∥

Lq
τ Lσ+

+ C
∥∥[

∂uF(vn + zn) – ∂uF(v + z)
]
A(·)(v + z)

∥∥
Lq′
τ L(σ+)′

+ C
∥∥[

∂ūF(vn + zn) – ∂ūF(v + z)
]
A(·)(v + z)

∥∥
Lq′
τ L(σ+)′

:= C
∥∥un

 – u
∥∥

�
+ C

∥∥A(·)(zn – z)
∥∥

Lq
τ Lσ+ + In

 + In
 . (.)

To show that vn → v in C([, τ ];�) as n → ∞, we only need to verify that In
 + In

 → .
Otherwise, without loss of generality, there exists � >  and, up to a subsequence, In

 ≥ �.
It then follows from (.) that there exists a subsequence, still denoted by {vn}n≥, such
that vn → v a.e. in [, τ ] ×R

n. Moreover, there exist w,� ∈ Lq
τ Lσ+ such that vn ≤ w and

zn ≤ � a.e. Noting that |[∂uF(vn + zn) – ∂uF(v + z)]A(·)(v + z)| ≤ C(|w|σ + |� |σ )|A(·)(v +
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z)| ∈ Lq′
τ L(σ+)′ , by the dominated convergence theorem, we see that In

 → , which is a
contradiction.

Step . Now we obtain the solution of (.) denoted by v(z, u, ·) on [, τ ] with τ = τ (r, R).
Set

r =  +
∥∥v(ẑ, û, ·)∥∥C([,T];�),

R =  + ‖ẑ‖C([,T];H) + max
{∥∥A(·)ẑ∥∥Lq((,T);Lσ+), A(t) ∈ {

J(t), K(t), Id
}}

.

By the continuity of v(z, u, ·) with respect to (z, u) on [, τ ], we see that, for  < ε � ,
there exists  < δ �  such that

if ‖u – û‖� + ‖z – ẑ‖C([,τ ];H) + ‖z – ẑ‖Lq((,τ );W ,σ+)

+
∥∥x(z – ẑ)

∥∥
Lq((,τ );Lσ+) ≤ δ,

then
∥∥v(z, u, ·) – v(ẑ, û, ·)∥∥C([,τ ];�) ≤ ε.

Set u = v(z, u, τ ), then

‖u‖� ≤ ∥∥v(ẑ, û, τ )
∥∥

�
+ ε < r.

As in the argument of Step , the solution of (.) denoted by v(z, u, ·) exists and is unique
on [τ , τ ], and v(z, u, ·) is continuous with respect to (z, u) on [τ , τ ].

By iteration, for every  ≤ j ≤ [ T
τ

] and  < εj � , there exists  < δj �  such that

if ‖uj– – û‖� + ‖z – ẑ‖C([(j–)τ ,jτ ];H) + ‖z – ẑ‖Lq(((j–)τ ,jτ );W ,σ+)

+
∥∥x(z – ẑ)

∥∥
Lr (((j–)τ ,jτ );Lσ+) ≤ δj,

then
∥∥vj(z, uj–, ·) – v(ẑ, û, ·)∥∥C([(j–)τ ,jτ ];�) ≤ εj.

Set uj = vj(z, uj–, jτ ), then ‖uj‖� ≤ ‖v(ẑ, û, jτ )‖� +εj < r. By Step , the solution of (.) de-
noted by vj+(z, uj, ·) exists and is unique on [jτ , (j + )τ ]. Moreover, every vj+ is continuous
with respect to (z, uj) on [jτ , (j + )τ ].

Step . Without loss of generality, we can take εj ≤ εj+ �  and δj ≤ δj+ �  in Step .
Now we take V and W to be the balls in Yσ+(, T) and � centered at ẑ and û with radius
ε and δ. We define the solution of (.) on [, T] by

v(z, u, t) = vj+
(
z, v(z, u, jτ ), t

)
on

[
jτ , (j + )τ

]
.

Then v(z, u, ·) is the solution of (.) on [, T] and is continuous with respect to (z, u).
Since (z, u) is arbitrary, we obtain the desired result. �

Proof of Theorem . Let u ∈ �, and T >  and M̄ >  be two constants. We choose a
function U ∈ � satisfying

 < G(U) <
M̄


and



∫
Rn

|∇U| dx <


σ + 

∫
Rn

|U|σ+ dx. (.)
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Taking Uαβ(x) = αU(βx), with α and β being positive constants to be determined later, we
get

V (Uαβ ) = αβ––nV (U),

G(Uαβ ) = αβ–nG(U),

H(Uαβ ) = αβ–n
[




∫
Rn

|∇U| dx –
θβ–



∫
Rn

|x||U| dx

–
ασ β–

σ + 

∫
Rn

|U|σ+ dx
]

.

If we take α and β satisfying αβ–n = M̄
G(U) and let β large enough, we then have

G(Uαβ ) =
M̄


and V (Uαβ ) =
β–M̄V (U)

G(U)
→  as β → ∞. (.)

For H(Uαβ ), since σ ≥ 
n , by (.), we see that

H(Uαβ ) =
βM̄

G(U)

[



∫
Rn

|∇U| dx –
θβ–



∫
Rn

|x||U| dx

–
βnσ–M̄σ

[G(U)]σ (σ + )

∫
Rn

|U|σ+ dx
]

≤ βM̄
G(U)

[



∫
Rn

|∇U| –
θβ–



∫
Rn

|x||U| –
βnσ–

σ + 

∫
Rn

|U|σ+
]

→ –∞ as β → ∞.

Thus, for any constant H̄ > , when β is large, setting u = Uαβ , by (.) we obtain

V (u) ≤ M̄


, G(u) =
M̄


and H(u) ≤ –H̄. (.)

By Lemma ., there exists ẑ satisfying A(·)ẑ ∈ C([, T]; L) ∩ Lq((, T); Lσ+), z() = 
and ẑ(T) + v(ẑ, u, T) = u. By Lemma ., there exists a ball B centered at ẑ in Yσ+(, T)
such that for any z ∈ B, the solution v(z, u, ·) of (.) exists and is continuous with respect
to (z, u). Set u = z + v(z, u, ·), then by (.),

V
(
u(T)

)
< M̄,

∣∣G(
u(T)

)∣∣ < M̄, H
(
u(T)

)
< –H̄ . (.)

Noting that the solution of (.) is given by u = z(t) + v(z, u, ·), where z(t) =
∫ t

 Uθ (t –
s) dW (s). By Lemma . in [], z satisfies A(·)z ∈ C([, T]; L) ∩ Lq((, T); Lσ+) almost
surely. Because kerφ∗ = {}, we see that z is non-degenerate and P(z ∈ B) > . Now we set

� =
{
ω ∈ � : τ ∗(u) ≥ T and u(T) satisfies (.)

}
,

then P(�) > . We choose H̄ large enough such that

M̄ + M̄T – H̄T
 + c�

φ T + c
φT

 +


(
c
φ – θc�

φ

)
T

 <  if θ < 
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and

M̄ +
( c�

φ + M̄
μ

+
c
φ – θc�

φ

μ

)
tanh(μT) +

c
φ – H̄
μ tanh(μT) <  if θ > .

By Lemma . with u replaced by u(T)|� , we have P(τ ∗(u) ≤ T) > . This completes
the proof of Theorem .. �

4 Conclusions
In this article, we study the mixed effect of additive noise and potential on the blow-up dy-
namics of solutions to a stochastic nonlinear Schrödinger equation, which could describe
the evolution of the wave function of a Bose-Einstein condensation in random media. Our
findings show that, regardless of the direction of the potential, any initial data with finite
variance gives birth to a solution that blows up in arbitrarily small time with positive prob-
ability, which improves the result of [].

Furthermore, our results show that, under the effect of an additive white noise, any initial
data develops a solution that blows up in arbitrarily small time. This indicates that, for the
stochastic Schrödinger equation, the white noise rather than the potential determines the
dynamical behaviors of the solution.
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