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1 Introduction

The accurate results on the CMB power spectrum collected firstly by the WMAP mission

and more recently by the PLANCK satellite [1–3] have boosted a new wave of research

activities on the theoretical modelling of the inflationary paradigma and seem to favour the

scenario based on a single scalar field φ (the inflaton) with a suitable potential V (φ). In

the notations adopted in the present paper, the Friedman equations that govern the time

evolution of the scale factor a(t) and of the inflaton φ(t) are written as follows:

H2 =
1

3
φ̇2 +

2

3
V (φ) ; Ḣ = −φ̇2 ; φ̈+ 3H φ̇+ V ′ = 0 (1.1)

where H(t) ≡ ȧ(t)
a(t) is the Hubble function. Equations (2.1) and (2.2) of the recent review [4]

of inflationary models coincide with eq.s (1.1) if one chooses the convention 2M2
P l = 1. This
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observation, together with the statement that the kinetic term of the inflaton is canonical

in our lagrangian:

L = · · ·+
1

2
∂µφ∂

µφ+ . . . (1.2)

fixes completely all normalizations and allows the comparison of the results we shall present

here with any other result in the vast literature on inflation.

After the publication of PLANCK data, the issue whether one inflaton cosmological

models with realistic potentials could be embedded into N = 1 supergravity in a minimal

way was addressed and resolved in a series of recent papers [5–7]. Any inflation model

based on a positive definitive potential can be embedded into N = 1 supergravity, coupled

to a single Wess-Zumino multiplet and one massless vector multiplet, which may combine

together in a massive vector multiplet with lagrangian specified by a single real function

J(C) as shown in [8]. The vector multiplet is utilized to gauge an isometry of the one-

dimensional Hodge-Kähler manifold Σ associated with the WZ multiplet. The catch of the

method is the supergravity formulation of the Higgs mechanism. The gauging introduces

a D-term and the definite potential V is the square of the momentum-map of the Killing

vector kz that generates the gauged isometry of Σ. One of the two scalar fields of the

WZ multiplet, conventionally named B, is eaten up by the vector field Aµ which becomes

massive and the other one C, after a field transformation C → φ(C) that reduces it to have

the canonical form (1.2), becomes the inflaton. We name C(φ) the Van Proeyen coordinate

on the Kähler manifold ΣK since it corresponds to the scalar field in terms of which the

N = 1 supergravity lagrangian that turns out to be the minimal one for inflationary models

was firstly written by Van Proeyen in [8]. In the sequel we shall emphasize the intrinsic

geometrical meaning of the VP coordinate C. The minimal models for inflation of [5] were

suggested by the supergravity completion [9] of the R + R2 Starobinski model which, as

we will further discuss hereby, corresponds manifold Σ of constant curvature ν2 = 4
3 (see

eq. (4.21)) with gauged shift symmetry and and a non vanishing Fayet Iliopoulos term.1

In the same period, following work on the phenomenon of climbing scalars [10–12],

another series of papers [13, 14] addressed the issue of integrability of the two field2 dy-

namical system encoded in the Friedman equations (1.1) and provided a list of 28 integrable

potentials V (φ) in the sense that they provide integrabity of eq.s (1.1). The question if

any of these integrable V (φ) can be embedded into gauged extended supergravity was dis-

cussed in [14] and remains partially open, yet as a consequence of the results of [5], the

embedding of all positive definite ones among them into N = 1 minimal supergravity is

guaranteed and deserves careful considerations for the possibility that this discloses, within

a supergravity context of basing Mukhanov-Sasaki equations on exact analytic solutions of

the Klein Gordon Einstein system.

1The reader should notice that the field φ used in this paper differs from the field φ̃ used in many

other papers by a factor 1√
2
as it is evident from the normalization of Friedman equations in eq. (1.1).

Correspondingly the exponential exp
[
ν̃φ̃

]
in other paper normalizations is exp

[√
2ν̃φ

]
in our present nor-

malizations. In this way the Starobinsky potential corresponds to ν2 = 4/3 in our normalizations if it

corresponds to ν2 = 2/3 in other paper normalizations.
2The two fields are the scale factor a(t) and the inflaton φ(t).
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Independently from integrability, the geometrical basis of the construction of minimal

supergravity models of inflation introduced in [5] was analyzed in another pair of recent

papers [15, 16]. It was pointed out that the root from any given positive definite potential

V (φ) to the corresponding minimal supergravity model is a map, named by two of us the

D-map, in whose image there is a two-dimensional Kähler surface Σ admitting at least a

one-dimensional group of isometries G. Various aspects of this map were explored, but a

fundamental question remained so far unanswered about the global topology both of the

surface Σ and of its isometry group. This is by no means a marginal issue. Indeed, as we are

going to show here, the physical properties and the symmetries of the minimal supergravity

lagrangian are significantly different in the two cases of a compact isometry group G = U(1)

and of a non compact one G = SO(1, 1) or G = R. Furthermore the asymptotic behavior of

the real function J(C) that defines both the potential and the kinetic terms of the scalars,

is distinct in the case of compact and non compact symmetries and actually provides a

clue to identify the appropriate global topology. In this paper we exemplify these concepts

by classifying all minimal supergravity models and corresponding inflaton potentials that

are associated with a Kähler surface Σ of constant curvature RΣ. We obtain a total of five

models, each still depending on one or two parameters, that are associated with RΣ = 0

(flat models) and with RΣ = −4 ν2. In the latter case the corresponding manifold is always

Σ = SL(2,R)/O(2), but by gauging elliptic, hyperbolic or parabolic subgroups we obtain

different families of potentials. The Starobinsky type of potentials [17] are obtained from

the parabolic subgroups. Various discussions of Starobinsky potentials and other inflaton

potentials within supergravity have been advanced in other papers [18–27].

2 Global structure of the inflaton Kähler surface

As we advocated in the introduction, in the minimal N = 1 supergravity realizations of

one-scalar cosmologies the central item of the construction is an axial(-shift) symmetric

Kähler surface whose metric can be written as follows:

ds2Σ = p(U) dU2 + q(U) dB2 (2.1)

p(U), q(U) being two positive definite functions of their argument. The manifold Σ is an

axial(-shift) symmetric surface, since the metric (2.1) admits the Killing vector ~k[B] = ∂B.

This isometry is fundamental since it is by means of its gauging that one produces a

D-type positive definite scalar potential that can encode the inflaton dynamics. At the

level of the supergravity model that is built by using the Kähler space Σ as the target

manifold where the two scalar fields of the inflatonic Wess Zumino multiplet take values,

a fundamental question is whether ~k[B] generates a compact rotation symmetry or a non

compact shift symmetry. Indeed the supergravity lagrangian in general and its fermionic

sector in particular, display quite different features in the two cases, leading to a different

pattern of physical charges and symmetries. Actually, as we are going to illustrate below,

when Σ = Σmax is a constant curvature surface namely the coset manifold SU(1,1)
U(1) ∼

SL(2,R)
O(2) , there is also a third possibility. In such a situation the killing vector ~k[B] can
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be the generator of a dilatation, namely it can correspond to a non-compact but semi-

simple element d =

(
1 0

0 −1

)
of the Lie algebra SL(2,R) rather then to a nilpotent one

t =

(
0 1

0 0

)
. In the ambient algebra g = SL(2,R) this distinction makes sense since by

means of internal transformations (conjugations d′ = exp[−u]d exp[u] with u ∈ g) we

cannot map d into t. The main question therefore concerns the global topology of such a

group. Is it compact G ∼ U(1) or is it non-compact G ∼ R? As already advocated, in the

two cases the structure of the N = 1 supergravity lagrangian is different and its local and

global symmetries are different.

As it was explained in [16], the standard presentation of the geometry of Σ in terms

of a complex coordinate and of a Kähler potential is obtained by means of a few standard

steps. First one singles out the unique complex structure with vanishing Nienhuis tensor

with respect to which the metric is hermitian:

Jβα J
γ
β = −δγα ; ∂[α J

γ
β] − Jµα J

ν
β ∂[µ J

γ
ν] = 0 ; gαβ = Jγα J

δ
β gγδ . (2.2)

In terms of the metric coefficients, such a complex structure is given by the following tensor

J and leads to the following closed Kähler 2-form K:

J =


 0

√
p(U)
q(U)

−
√

q(U)
p(U) 0


⇒ K = gαµ J

µ
β dx

α ∧ dxβ = −
√
p(U) q(U) dU ∧ dB . (2.3)

Next one aims at reproducing the Kählerian metric (2.1) in terms of a complex coordinate

z = z(U,B) and a Kähler potential K(z , z̄) = K⋆(z , z̄) such that:

K = ∂ ∂K = i∂z ∂z̄K dz ∧ dz̄ ; ds2Σ = ∂z ∂z̄K dz ⊗ dz̄ . (2.4)

As explained in [16] the complex coordinate z is necessarily a solution of the complex

structure equation:

Jβα ∂β z = i∂α z ⇒

√
p(U)

q(U)
∂B z(U,B) = i ∂U z(U,B) . (2.5)

The general solution of such an equation is easily found. Define the linear combination:3

w ≡ iC(U)−B ; C(U) =

∫ √
p(U)

q(U)
dU , (2.6)

and consider any holomorphic function f(w). As one can immediately verify, the position:

z(U,B) = f(w) (2.7)

3As it follows from the present discussion the Van Proeyen coordinate C(U) has an intrinsic geometric

characterization as that one which solves the differential equation of the complex structure.
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solves eq. (2.5). What is the appropriate choice of the holomorphic function f(w)? Locally

(in an open neighborhood) this is an empty question, since the holomorphic function f(t)

simply corresponds to a change of coordinates and gives rise to the same Kähler metric in

a different basis. Suppose we have selected a particular function f(w) and setting z = f(w)

we have found a Kähler function K(z, z̄) such that:

ds2 ≡ ∂z ∂z̄K dz dz̄ = p(U) dU2 + q(U) dB2 (2.8)

then, by performing the holomorphic transformation ẑ = g(z) = g (f(w)) = f̂(w) we obtain

a locally equivalent presentation of the same metric. Writing K̂(ẑ, ˆ̄z) = K
(
g−1(ẑ), ḡ−1(ˆ̄z)

)

we obviously get:

ds2 ≡ ∂ẑ ∂ˆ̄z K̂ dẑ dˆ̄z = p(U) dU2 + q(U) dB2 . (2.9)

Globally, however, there are significant restrictions that concern the range of the variables B

and C(U), namely the global topology of the manifold Σ. By definition B is the coordinate

that, within Σ, parameterizes points along the G-orbits. If G is compact, then B is a

coordinate on the circle and it must be defined up to identifications B ≃ B + 2nπ, where

n is an integer. On the other hand if B is non compact its range extends on the full real

line R. Furthermore, in order to obtain a presentation of the Kähler geometry of Σ that

allows to single out a canonical inflaton field φ with a potential V (φ) we aim at a Kähler

potential K(z, z̄) that in terms of the variables C(U) and B should actually depend only

on C being constant on the G-orbits. Starting from the metric (2.1) we can always choose

a canonical variable φ defined by the position:

φ = φ(U) =

∫
2
√
p(U) dU ;

1

2
dφ =

√
p(U) dU (2.10)

and assuming that φ(U) can be inverted U = U(φ) we can rewrite (2.1) in the following

canonical form:

ds2can =
1

4

[
dφ2 +

(
P ′(φ)

)2
dB2

]
; P ′(φ) = 2

√
q (U(φ)) ;

√
p(U(φ))

dU

dφ
=

1

2︸ ︷︷ ︸
by construction

. (2.11)

The reason to call the square root of q (U(φ)) with the name P ′(φ) is the interpretation of

such a function as the derivative with respect to the canonical variable φ of the momentum

map of the Killing vector ~k[B]. As it was pointed out in [16] such interpretation is crucial for

the construction of the corresponding supergravity model but it is intrinsic to the geometry

of the surface Σ.

According to an analysis first introduced in section 4 of [5], by using the canonical

variable φ, the VP coordinate C defined in equation (2.6) becomes:

C(φ) = C (U(φ)) =

∫
dφ

P ′(φ)
(2.12)

and the metric ds2Σ = ds2can of the Kähler surface Σ can be rewritten as:

ds2Σ =
1

4

d2J

dC2

(
dC2 + dB2

)
(2.13)
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where the function J(C) is defined as follows:4

J (φ) ≡

∫
P(φ)

P ′(φ)
dφ ; J(C) ≡ J (φ(C)) . (2.14)

It appears from the above formula that the crucial step in working out the analytic form

of the function J(C) is the ability of inverting the relation between the VP coordinate

C, defined by the integral (2.12), and the canonical one φ, a task which, in the general

case, is quite hard in both directions. The indefinite integral (2.12) can be expressed in

terms of special functions only in certain cases and even less frequently one has at his own

disposal inverse functions. Yet this is only a technical difficulty. Conceptually, eq.s (2.14)

and (2.12) define the function J(C) up to an additive integration constant. The fundamen-

tal unanswered question is how to reinterpret eq. (2.13) in terms of a complex coordinate

z and of a Kähler potential K(z, z̄). Having already established in eq. (2.6) the general

solution of the complex structure equations there are three possibilities that correspond,

in the case of constant curvature manifolds Σmax to the three conjugacy classes of SL(2,R)

elements (elliptic, hyperbolic and parabolic). In the three cases J(C) is identified with the

Kähler potential K(z, z̄), but it remains to be decided whether the VP coordinate C is to be

identified with the imaginary part of the complex coordinate C = Im z, with the logarithm

of its modulus C = 1
2 log |z|2, or with a third combination of z and z̄, namely whether we

choose the first the second or the third of the options listed below:

z =





ζ ≡ exp [−iw] = exp [C(φ)]︸ ︷︷ ︸
ρ(φ)

exp [iB]

t ≡ w = iC(φ)−B

ζ̂ ≡ i tanh
(
−1

2 w
)
= i tanh

(
− 1

2 (iC(φ)−B)
)

∣∣∣∣∣∣∣∣∣
C(φ) ≡

∫
1

P ′(φ)
dφ . (2.15)

If we choose the first solution z = ζ, that in [16] was named of Disk-type, we obtain that

the basic isometry generated by the Killing vector ~k[B] is a compact rotation symmetry

and this implies a series of consequences on the supergravity lagrangian and its symmetries

that we discuss below. Choosing the second solution z = t, that was named of Plane-type

in [16], is appropriate instead to the case of a non compact shift symmetry and leads to

different symmetries of the supergravity lagrangian. The third possibility mentioned above

which occurs in the case of constant curvature surfaces Σmax and leads to the interpretation

of the B-shift as an SO(1, 1)-hyperbolic transformation.

In the three cases the analytic form of the holomorphic Killing vector ~k[B] is quite

different:

~k[B]=





iζ ∂ζ ≡ kz∂z ⇒ kz = i z ; Disk-type, compact rotation

∂t ≡ kz∂z ⇒ kz = 1 ; Plane-type, non-compact shift

i
(
1 + ζ̂2

)
∂ζ̂ ≡ kz∂z ⇒ kz = i

(
1+z2

)
; Disk-type, non-compact dilatation.

(2.16)

This has important consequences on the structure of the momentum map leading to the

D-type scalar potential and on the transformation properties of the fermions.

4See [16] for more details.

– 6 –



J
H
E
P
0
4
(
2
0
1
4
)
0
9
5

Before proceeding further let us stress once again that the choice of one or the other

solution of the complex structure equation, that give to the foliations of Σ into G-orbits

a different topology, depends on the global structure of the manifold Σ, whose metric we

wrote in eq. (2.1). If we know a priori such a structure from an intrinsic definition of Σ

which arizes from other informations, than we know which complex structure is appropriate.

Otherwise, choosing the complex structure amounts to the same as introducing one half of

the missing information on the global structure of Σ, namely the range of the coordinate

B. The other half is the range of the coordinate U . Actually as we shall emphasize by

means of the constant curvature examples that we are going to consider a criterion able to

discriminate the relevant topologies is encoded in the asymptotic behavior of the function

∂2CJ(C) for large and small values of its argument, namely in the center of the bulk and

on the boundary.

2.1 The Hodge bundle and Fayet-Iliopoulos term

Let us recall that relevant to supergravity is not only the Kähler structure of the surface Σ

rather the full-fledged geometry of the Hodge bundle constructed over it. Our surface Σ is

supposed to be Hodge-Kähler and this implies that there exists a line bundle L → Σ whose

Chern class coincides with the Kähler class, namely with the cohomology class of the Kähler

two-form K = i gz̄z dz∧ dz̄. Explicitly we must have c1(L) = [K], where the bracket denotes

the cohomology class of the closed p-form embraced by it. The holomorphic sections of this

line bundle are the possible superpotentials that encode the self interactions of the Wess-

Zumino multiplet and its coupling to supergravity. The exponential of the Kähler potential

is a fiber metric on the Hodge bundle: for any holomorphic section W (z) of such a bundle

we define an invariant norm by means of the following position ||W | |2 = exp[K]W (z)W (z̄).

A fundamental object entering the construction of matter coupled supergravity is the loga-

rithm of the superpotential norm G(z, z̄) = log ||W ||2 = K+log W +logW . In the present

paper, however, we do not consider this type of self-interactions and we put the superpoten-

tial to zero W (z) = 0 so that we will just work with the Kähler potential K(z, z̄). Another

fundamental ingredient in the matter coupling construction and in its gauging is provided

by the prepotentials of the holomorphic Killing vectors. Following the discussion and the

conventions of [35], if kz(z), together with its complex conjugate kz̄(z̄), is a holomorphic

Killing vector, in the sense that the transformation:

z → z + ǫ kz(z) (2.17)

is an infinitesimal isometry of the Kähler metric for all choices of the small parameters ǫ,

then the prepotential of this Killing vector, which realizes the corresponding isometry as a

Lie-Poisson flux on the Kähler manifold, is the real function P(z, z̄) = P(z, z̄)⋆ defined by

the following relations:

kz(z) = i gz̄z ∂z̄ P ; kz̄(z̄) = −i gz̄z ∂z P . (2.18)

In terms of the Kähler potential K function, supposedly invariant under the considered

isometries, the Killing vector prepotential, satisfying the defining condition (2.18), is con-

– 7 –
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structed through the following formula:

P = P0 = i
1

2

(
kz ∂zK − kz̄ ∂z̄K

)
. (2.19)

It should be noted that the solution (2.19) of eq. (2.18) is defined up to an integration

constant. Indeed setting:

P = P0 +
qf
g

(2.20)

where qf is an arbitrary constant and g is the gauge coupling constant equations (2.18) are

still satisfied. It was first noted in [28] that the above ambiguity is the mechanism behind

the introduction of Fayet Iliopoulos terms into supersymmetric lagrangians [29, 30]. The

interpretation of Fayet Iliopoulos terms as constant shifts of the momentum maps was later

extended to tri-holomorphic momentum maps and to the N = 2 theories in [32]. It should

also be noted that the constant term qf
g in the momentum can always be reabsorbed into

P0, defined by eq. (2.19), introducing a new Kähler potential which differs from the first

by a holomorphic Kähler transformation uneffective on the metric:

K̃ (z, z̄) = K (z, z̄) + f(z) + f̄(z̄)

i kz ∂z f(z) =
qf
g
. (2.21)

Indeed note the second line of eq. (2.21) is a first order holomorphic differential equation

that is always immediately solved by quadratures. Hence the appropriate function f(z)

which produces the Fayet Iliopoulos term depends on the chosen Killing vector but the

result on the momentum map is always the same: a constant shift.

Upon gauging the isometry B → B+c, the supergravity Lagrangian acquires a D-type

potential proportional to the square of the momentum map P(z, z̄):

VYM ∝ g2 (P(z, z̄))2 . (2.22)

We shall come back to the discussion of such potentials. Before doing that we desire to

illustrate some general features of the symmetries of the gauged supergravity lagrangian

(particularly the fermionic sector) that heavily depend on the nature of the fundamental

B-isometry.

2.2 Sections of the Hodge bundle and the fermions

The basic geometric mechanism that allows to gauge the global symmetries of N = 1

supergravity coupled to Wess Zumino multiplets is the so named gauging of the composite

connections. Let us recall such a notion. The isometries of the Kähler metric that take

the infinitesimal form (2.17) extend to global symmetries of the full theory, including also

the fermions, since all the items appearing in the lagrangian transform covariantly. From

the geometrical point of view all fields are sections of the tangent bundle to the Kähler

manifold and at the same time they are also sections of appropriate powers of the Hodge

bundle. The subtle point is that under a holomorphic isometry: z → ẑ = f(z) the Kähler

potential does not necessarily remain invariant rather it transform as follows:

K
(
ẑ, ˆ̄z
)
= K (z, z̄) + F (z) + F̄ (z̄) (2.23)
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where F (z) is some holomorphic function associated with the considered transformation.

By definition a section Sp(z) of weight p of the Hodge-bundle transforms as follows

Sp(ẑ) = Sp(z) exp[−pF (z)] . (2.24)

The fermion fields, namely the gravitino ψ, the chiralinos χz, χz̄ and the gauginos λΛ

transform as sections of the Hodge bundle, with half integer weights that we presently

spell off.

According to [34], we introduce the following notation for the chiral projections of the

gravitino one-form ψ and of the gaugino 0-forms λΛ that are Majorana:

ψ = ψ• + ψ• ;

{
γ5 ψ• = ψ•
γ5 ψ

• = −ψ•

λ = λ• + λ• ;

{
γ5 λ• = λ•
γ5 λ

• = −λ•
(2.25)

while for the complex chiralino we simply have:

γ5 χ
z = χz ; γ5 χ

z̄ = −χz̄ . (2.26)

In what follows we just summarize and specialize to the minimal case of supergravity cou-

pled to one vector multiplet
(
1, 12
)
and one WZ-multiplet

(
1
2 , 0

+, 0−
)
what was described

for the general case in [15]. Having clarified the notation, the appropriate Hodge transfor-

mations for the fermions are:

ψ• → exp

[
i
1

2
F (z)

]
ψ• ; ψ• → exp

[
− i

1

2
F (z)

]
ψ•

λ• → exp

[
i
1

2
F (z)

]
λ• ; λ• → exp

[
− i

1

2
F (z)

]
λ•

χz → exp

[
−i

1

2
F (z)

]
χz ; χz̄ → exp

[
i
1

2
F (z)

]
χz̄ .

(2.27)

These transformations are compensated by the transformation of the Hodge bundle con-

nection which is the following composite one-form:

Q ≡ i
1

2
(∂zK dz− ∂z̄K dz̄) (2.28)

and enters the covariant derivatives of the fermions. For instance the gravitino and gaugino

covariant derivatives are defined as follows:

∇ψ• = Dψ• + i
1

2
Q ∧ ψ• ; Dψ• = dψ• −

1

4
ωab ∧ γab ψ•

∇λ• = Dλ• + i
1

2
Qλ• ; Dλ• = dλ• −

1

4
ωab γab λ• . (2.29)

The gravitino one-form and the gaugino zero-forms have no indices along the tangent bundle

of the Kähler manifold and therefore do not transform in the canonical bundle. On the

other hand the chiralino carries a tangent space index and with respect to the canonical
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bundle it transforms as a holomorphic vector. Correspondingly it enters the lagrangian

covered by a covariant derivative of the form:

∇χz ≡ Dχz + Γz
zχ

z − i
1

2
Qχz . (2.30)

In this way the isometries of the Kähler manifold are promoted to global symmetry of

supergravity coupled, in the case under present consideration to just one vector multiplet.

2.3 Gauging of the composite connections

The basic geometric mechanism that allows to gauge the above described global symmetries

is the so named gauging of the composite connections. Let us recall such a notion, according

to the discussion of [35] and [15]. In [35] the construction was applied toN = 2 supergravity

so that the composite connections to be gauged were those emerging in Special Kähler

Geometry. Here we focus on N = 1 supergravity and we just have Hodge-Kähler manifolds,

yet the procedure is completely identical and it was already introduced in [34], but only for

symmetries that are linearly realized on the scalars. In [15] it was smoothly generalized to

any type of holomorphic isometry, by means of the prepotential of the Killing vectors. In

what follows we specialize the formulae of [15] to the minimal case here under discussion,

where there is only one Wess-Zumino multiplet and only one isometry is gauged. The

connections to be gauged are two: the Hodge-Kähler connection (2.28) and the Levi-Civita

connection:

Γz
z =

{
z

z z

}
dz = gz̄z ∂z gz̄z dz ; Γz̄

z̄ = Complex Conjugate of Γz
z . (2.31)

We set:

Q→ Q̂ ≡ i
1

2
(∂zK∇z− ∂z̄K∇z̄) ; Γz

z → Γ̂z
z =

{
z

z z

}
∇z (2.32)

where

∇z = dz+ gA kz(z) (2.33)

is the covariant derivative of the complex scalar field, g being the gauge coupling constant,

A = Aµ dx
µ the gauge field one-form and kz(z) the Killing vector. It follows from the

various identities presented above that:

Q̂ = Q+ gAP ; Γ̂z
z = Γz

z + gA ∂z k
z(z) . (2.34)

3 General features and symmetries of the minimal supergravity

inflationary model

Without entering into the details of any specific model there is a number of features that

immediately follow from the formulae presented above, which can be discussed in general

terms and significantly distinguish the two cases of gauging either a rotation or a shift

symmetry as basic mechanism for the generation of an inflaton potential. These general

properties are in our opinion more important and fundamental than the specific form of

the inflaton potential obtained from the gauging.
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3.1 Compact U(1) case

If the fundamental isometry of Σ is a compact U(1), the Killing vector is given by the first

line of eq. (2.16) and we have:

∂z k
z = i (3.1)

so that from equation (2.34) we obtain:

Γ̂z
z = Γz

z + i gA . (3.2)

Furthermore, given a U(1)-invariant Kähler potential K̃(z, z), namely such that:

(z ∂z − z̄ ∂z̄) K̃(z, z) = 0 (3.3)

and the form of the Killing vector mentioned in the first line of eq. (2.16), the solution of

eq. (2.21) is the following one:

f(z) = log zqf/g (3.4)

where qf/g corresponds to the Fayet Iliopoulus charge introduced in eq. (2.20). Setting

K = K̃ + f(z) + f̄(z̄) we obtain

P̂(z, z) = P̃(z, z) +
qf
g
. (3.5)

Note that if K̃ is U(1) invariant the same is true of K. As already stressed the constant

shift qf/g of the momentum map has no effect on the Kähler metric and, consequently, on

the kinetic terms of the scalar fields. Actually it survives at vanishing scalar fields and it

exists even if we completely suppress the Wess-Zumino multiplet.

As a consequence of the above formulae the covariant derivatives of the fermions en-

tering the minimal supergravity lagrangian are the following ones:

∇ψ• = ∇̃ψ• − i
1

2
qf A ∧ ψ• ; ∇̃ψ• = Dψ• + i

1

2
Q ∧ ψ• + i

1

2
g P̃ A ∧ ψ•

∇λ• = ∇̃λ• − i
1

2
qf Aλ• ; ∇̃λ• = Dλ• + i

1

2
Qλ• + i

1

2
gAP̃ λ•

∇χz = ∇̃χz + i
1

2
(qf + 2 g) Aχz ; ∇̃χz = Dχz + Γz

zχ
z − i

1

2
Qχz − i

1

2
gP̃ Aχz . (3.6)

At the same time the covariant derivative of the complex scalar field is:

∇z = dz+ i gA z . (3.7)

Equations (3.6) and (3.7) are sufficient to draw the main conclusions concerning the sym-

metries of the supergravity lagrangian.

a) There is one chiral global UR(1) symmetry (the R-symmetry) with respect to which

the gravitino and the gaugino have charge5 qR(ψ) = qR(λ) = 1
2 , the chiralino has

charge qR(χ) = −1
2 and the scalar has charge qR(z) = 0. Note the R-symmetry

charges are the same as the Kähler weights of the corresponding fields under change

of trivializations in the Hodge bundle.

5The spelled out charges are those of the holomorphic-chiral fields (left-handed the fermions, holomorphic

the scalar). The charges of the antiholomorphic-antichiral fields (right-handed the fermions, antiholomor-

phic the scalar) are just the opposite ones.
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b) There is another chiral global UB(1) symmetry with respect to which the gravitino

and the gaugino have charge qB(ψ) = qB(λ) = 0, the chiralino has charge qB(χ) = 1

and the scalar has charge qB(z) = 1.

c) When we gauge the model in the absence of a Fayet Iliopoulos term the actual gauge

algebra is just:

ggauge = g uB(1) . (3.8)

d) When we gauge the model in the presence of a Fayet Iliopoulos term the actual gauge

group is just:

ggauge = −qf uR(1) ⊕ g uB(1) . (3.9)

e) If we put g = 0 and we just remove the Wess-Zumino multiplet by setting z =

χz = 0 we can nonetheless preserve a non vanishing Fayet Iliopoulos charge qf 6=

0. This means that the gauge field A is utilized to gauge R-symmetry and this

produces a positive cosmological constant Λ = q2f which yields a de-Sitter vacuum

where supersymmetry is broken. This is the model constructed by Freedman in [31].

3.2 Non compact shift-symmetry

If the fundamental isometry of Σ is a non-compact translation symmetry R, the Killing

vector is given by the second line of eq. (2.16) and we have:

∂z k
z = 0 (3.10)

so that from equation (2.34) we obtain:

Γ̂z
z = Γz

z . (3.11)

Furthermore, given a shift-invariant Kähler potential K̃(z, z), namely such that:

(∂z + ∂z̄) K̃(z, z) = 0 (3.12)

the solution of eq. (2.21) for the Kähler gauge transformation producing a Fayet Iliopoulos

charge is the following one:

f(z) = i
qf
g
z (3.13)

leading to

K(z, z) = K̃(z, z)− 2
qf
g
Im z (3.14)

and to a momentum map with the same structure as in eq. (3.5). As a consequence of the

such formulae, the covariant derivatives of the fermions entering the minimal supergravity

lagrangian are now the following ones to be compared with eq.s (3.6):

∇ψ• = ∇̃ψ• − i
1

2
qf A ∧ ψ• ; ∇̃ψ• = Dψ• + i

1

2
Q ∧ ψ• + i

1

2
g P̃ A ∧ ψ•

∇λ• = ∇̃λ• − i
1

2
qf Aλ• ; ∇̃λ• = Dλ• + i

1

2
Qλ• + i

1

2
gAP̃ λ•

∇χz = ∇̃χz + i
1

2
qf Aχz ; ∇̃χz = Dχz + Γz

zχ
z − i

1

2
Qχz − i

1

2
gP̃ Aχz (3.15)
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and the covariant derivative of the complex scalar field is:

∇z = dz+ gA →

{
∇C = dC

∇B = dB + gA .
(3.16)

It follows that:

a) Just as before there is one chiral global UR(1) symmetry (the R-symmetry) with

respect to which the gravitino and the gaugino have charge qR(ψ) = qR(λ) =
1
2 , the

chiralino has charge qR(χ) = −1
2 and the scalar has charge qR(z) = 0. Note the

R-symmetry charges are the same as the Kähler weights of the corresponding fields

under change of trivializations in the Hodge bundle.

b) The second chiral global symmetry UB(1) which is present in the compact case, here

is absent.

d) In the whole lagrangian the B-field appears only under derivatives.

c) When we gauge the model in the absence of a Fayet Iliopoulos term the actual gauge

algebra is just:

ggauge = gR (3.17)

all the fermions are neutral under such an algebra and the gauge field A appears

only in the combination A + 1
gdB that can be renamed Â and describes a massive

vector field. The massive vector field Â, the inflaton scalar C and the two fermions

λ, χ make up the field content of a massive vector multiplet with 4-bosonic degrees

of freedom ⊕ 4-fermionic degrees of freedom.

d) When we gauge the model in the presence of a Fayet Iliopoulos term the actual gauge

group is just:

ggauge = −qf uR(1) ⊕ gR . (3.18)

d) As in the previous compact case, if we put g = 0 and we just remove the Wess-

Zumino multiplet by setting z = χz = 0 we can nonetheless preserve a non vanishing

Fayet Iliopoulos charge qf 6= 0. Also in this case the gauge field A is utilized to

gauge R-symmetry and this produces a positive cosmological constant Λ = q2f which

yields a de-Sitter vacuum where supersymmetry is broken. Actually, once the WZ-

multiplet is removed, the distinction between the compact and the shift-symmetry

case is removed and we just have the already mentioned gauging of R-symmetry.

Once again this is the model constructed by Freedman in [31].

4 Constant curvature models

Having established the above general facts, in the present section we consider explicit

examples classified according to the curvature of the Kähler surface Σ.

First we consider flat models where, written, in a standard complex coordinate z,

the Kähler metric is ds2 ∝ dz̄ dz. Next we consider constant (negative) curvature mod-

els, where, written in a disk-type complex coordinate z = ζ, the Kähler metric is ds2 ∝
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(
1− |ζ|2

)−2
dζ̄ dζ. We show that the a priori knowledge of the form of the metric in a

standard complex coordinate is precisely what allows to determine the appropriate solution

of the complex structure equations and, as a by product, to determine the global structure

of the isometry group generated by the Killling vector ~kB. In want of this knowledge one

has to resort to the criterion of the asymptotic behavior of the function ∂2C J(C) in order

to discriminate between the possible topologies. We analyze from this point of view the

constant curvature models in order to verify the established criteria.

4.1 The curvature and the Kähler potential

The curvature of an axial (shift) symmetric Kähler manifold can be written in two different

ways in terms of the canonical coordinate φ or the VP coordinate C. In terms of the VP

coordinate C we have the following formula:

R = R(C) =
J

′′′
(C)2 − J ′′(C)J

′′′′
(C)

2 J ′′(C)3
= −

1

2
∂2C log

[
∂2CJ(C)

] 1

∂2CJ(C)
(4.1)

which can be derived from the standard structural equations of the manifold:

0 = dE1 + ω ∧ E2

0 = dE2 − ω ∧ E1

R ≡ dω ≡ RE1 ∧ E2 (4.2)

by inserting into them the appropriate form of the zweibein:

E1 =
1

2

√
J ′′(C) dC ; E2 =

1

2

√
J ′′(C) dB ⇒ ds2 =

1

4
J ′′(C)

(
dC2 + dB2

)
. (4.3)

Alternatively we can write the curvature in terms of the momentum map P(φ) or of the

D-type potential V (φ) ∝ P2(φ) if we use the canonical coordinate φ and the corresponding

appropriate zweibein:

E1 =
1

2
dφ ; E2 =

1

2
P ′(φ) dB ⇒ ds2 =

1

4

(
dφ2 +

(
P ′(φ)

)2
dB2

)
. (4.4)

Upon insertion of eq.s (4.4) into (4.2) we get:

R(φ) = −4
P ′′′(φ)

P ′(φ)
= − 4

(
V ′′′

V ′ −
3

2

V ′′

V
−

3

4

(
V ′

V

)2
)
. (4.5)

Finally let us compare the above definition (4.1) of the curvature with that utilized in

curved index formalism. For instance, if we consider the Disk-type complex structure and

we set

R = −
1

2
gtt̄ ∂t ∂t̄ log gtt̄ (4.6)

we just reproduce the result (4.1), since gtt̄ =
1
4 J

′′(C) and ∂t ∂t̄ ≃ 1
4 ∂

2
C . Eq. (4.5) was

first derived in [15].6

6The curvature R defined as the component of dω in the basis E1 ∧E2 differs by a factor 1

2
with respect

to the curvature defined in standard curved index tensor calculus. This difference sums up in explicit

calculations with the difference in normalization of the scalar field φ (see Friedman equations (1.1)).
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4.2 Flat models

The above formulae for the curvature easily allow an analysis of the simplest possible

supergravity models, namely those based on a flat Kähler manifold where R = 0. It is

quite instructive to implement the vanishing curvature condition in both formulations (4.1)

and (4.5).

4.2.1 Canonical coordinate representation

If we start from eq. (4.5), we see that the most general solution of the vanishing curvature

condition is:

P(φ) = a0 + a1 φ+
1

2
a2 φ

2 (4.7)

where a0,1,2 are real constants. By means of the shift φ → φ − a1
a2
, which does not alter

the canonical kinetic term of φ, we can always suppress the linear term a1 = 0 and we are

left with:

P(φ) =

(
a0 +

1

2
a2 φ

2

)
⇒ V (φ) ∝

(
a0 +

1

2
a2 φ

2

)2

= M4

[(
φ

φ0

)2

± 1

]

︸ ︷︷ ︸
M4 = a20 ; φ20 =

∣∣∣2 a0
a2

∣∣∣

(4.8)

where the choice of the sign ± depends on whether a0
a2

> 0 or a0
a2

< 0. In the second

case the obtained potential is the Higgs type of quartic potential that in the classification

of inflationary potentials presented in [4] has the name DWI (see table 1 of the quoted

reference).

The general case a2 6= 0. Eq. (4.8) shows that when both a2 does not vanish the

Higgs type of quartic potential can be incorporated into supergravity based on a flat Kähler

manifold. Applying eq. (2.12) to the present case we obtain the following relation between

the VP coordinate and the canonical coordinate

C(φ) ≡

∫
dφ

P ′(φ)
=

log(φ)

a2
⇒ φ = eCa2 (4.9)

while the Kähler potential is given by:

J(φ) =

∫
P(φ)

P ′(φ)
=
φ2

4
+

log(φ)a0
a2

+ const

⇓

J(C) = Ca0 +
1

4
e2Ca2 + const. (4.10)

Correspondingly the metric takes the following form:

ds2 =
a22
4

(
dB2 + dC2

)
e2 a2 C (4.11)

and it is turned into the standard form of the flat Kähler metric:

ds2flat ≡
1

4
dz dz̄ ⇔ K (z, z̄) =

1

4

(
z z̄−

2 a0
a2

log [z z̄]

)
(4.12)
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Figure 1. In this figure we show the plots of the inflaton potential obtained from minimal super-

gravity with a flat Kähler metric in the case of the gauging of a U(1) symmetry. The plots are

presented in terms of the canonical variable φ (picture on the left) and in terms of the VP coordi-

nate C (picture on the right). The various curves correspond to different values of the parameter

φ0 =

√
2
∣∣∣a0

a2

∣∣∣. The solid curves correspond to the cases where a0

a2

< 0, while the dashed curves

correspond to the cases a0

a2

> 0. In the first case the plots in terms of φ are one half of the familiar

mexican hat shaped Higgs potentials. The restriction φ ≥ 0 are due to the relation φ ∝ exp[C].

by the identification:

z = exp [a2 (C + iB)] . (4.13)

It follows that when a2 6= 0, the proper interpretation of the symmetry B → B+ c, which

is gauged in order to produce the potential, is that of a compact rotation. Furthermore

the parameter a0
2 a2

plays the role of a Fayet-Iliopoulos charge according to the discussion

of section 3. The plots of these type of potentials are displayed in figure 1.

The case a2 = 0, a1 6= 0. As it is evident from the above formulae the limit a2 → 0 is

singular and the case a2 = 0 has to be treated separately. In the case that the momentum

map is linear in the canonical coordinate, eqs. (4.9) and (4.10) are replaced by:

C(φ) ≡

∫
dφ

P ′(φ)
=

φ

a1
−
β

a21
⇒ φ =

C a21 + β

a1
(4.14)

and:

J(φ) =

∫
P(φ)

P ′(φ)
=

1

2
φ2 + const

⇓

J(C) =
1

2
a21C

2 + β C + const′ (4.15)
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Figure 2. In this figure we show the plots of the inflaton potential obtained from minimal super-

gravity with a flat Kähler metric in the case of the gauging of a shift symmetry. In this case the

canonical variable φ and the VP coordinate C coincide. The various curves correspond to different

values of the coefficient a1. The coefficient a0 can always be set to zero by means of a constant shift

of φ which does not alter the metric. In all cases the potentials are quadratic and in the language

of inflationary models correspond to chaotic inflation.

where − β
a2
1

is an arbitrary integration constant. In this case the metric is:

ds2 = a21
(
dB2 + dC2

)
(4.16)

which is turned into the standard form of the flat metric:

ds2flat ≡ a21 dz dz̄ ⇔ K (z, z̄) = −
1

8
a21 (z− z̄)2 − i

1

2
β (z− z̄) (4.17)

by the identification:

z = iC +B . (4.18)

It follows that when a2 = 0, the proper interpretation of the symmetry B → B+ c which is

gauged in order to produce the potential is that of a non compact translation, namely of a

shift symmetry. The integration constant β plays now the role of Fayet Iliopoulos gauging

constant. From the point of view of the scalar potential this case corresponds to a pure

mass term:

P(φ) = a0 + a1 φ⇒ V (φ) = (a0 + a1 φ)
2 . (4.19)

The plot of these type of potentials are displayed in figure 2.

4.2.2 Retrieving the same result in the VP coordinate representation

If we start from equation (4.1), by imposing the zero curvature condition we obtain that

log
(
∂2CJ

)
should be linear in C, namely

log
(
∂2CJ

)
= 2 a2C + log

(
a22
)
⇒ ∂2CJ = a22 exp [2 a2C] ⇒ J=

1

4
exp [2 a2C] + a0C + const

(4.20)
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where a0 is the name given to the integration constant in the second order differential

equation displayed above. This makes immediate contact with the result obtained from the

momentum map approach. Note that the constant term in the solution of the differential

equation for log
(
∂2CJ

)
simply amounts to the rescaling of the Kähler potential and, hence,

of the Kähler metric by an overall constant. The choice of that constant equal to log
(
a22
)

simply fixes the standard normalization of the scalar field kinetic term.

4.2.3 Asymptotic expansions of the function ∂2

C
J(C)

Let us now discuss the behavior of the function ∂2CJ(C) which determines the Kähler metric

in real variables in the two instances of flat models discussed above.

The flat U(1) model. For C → 0 the metric coefficient ∂2CJ(C) = a22 exp [2 a2C] goes

to a constant, while for a2C → −∞, which we identify with the origin of the field manifold

(z → 0), the metric coefficient goes ∂2CJ(C) to zero as |z|2 = exp [2 a2C]. This asymptotic

behavior is essential for the interpretation of the shift B → B + c as a compact rotation,

as we pointed out before.

The flat R model. In this case the metric coefficient ∂2CJ(C) = a21 is constant everywhere

and for C → −∞ it does not go to zero. Such behavior selects the interpretation of the

shift B → B + c as a non-compact translation symmetry.

4.3 Constant negative curvature models

In eq. (3.16) of [16] the general solution of the constant curvature equation:

R(φ) = −4 ν2 (4.21)

was presented in terms of the momentum map P(φ) and of the canonical variable φ. We

have:7

P(φ) = a exp(ν φ) + b exp(− ν φ) + c ; a, b, c ∈ R . (4.22)

In order to convert this solution in terms of the Jordan function J(C) of the VP coordinate

C, it is convenient to remark that, up to constant shift redefinitions and sign flips of the

canonical variable φ→ ±φ+ κ, which leave its kinetic term invariant, there are only three

relevant cases:

A) a 6= 0, b 6= 0 and a/b > 0. In this case, up to an overall constant, we can just set:

P(φ) =
1

ν
(cosh(ν φ) + µ) ⇒ V (φ) ∝ (cosh(ν φ) + µ)2 . (4.23)

B) a 6= 0, b 6= 0 and a/b < 0. In this case we can just set:

P(φ) =
1

ν
(sinh(ν φ) + µ) ⇒ V (φ) ∝ (sinh(ν φ) + µ)2 . (4.24)

C) a 6= 0, b = 0. In this case we can just set:

P(φ) =
1

ν
(exp(ν φ) + µ) ⇒ V (φ) ∝ (exp(ν φ) + µ)2 . (4.25)

7Note that for the sake of our following arguments the solution of [16] is rewritten here in terms of

exponentials rather than in terms of hyperbolic functions cosh and sinh.
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Figure 3. In this figure we show the hyperboloid ruled by lines of constant φ that are circles and of

constant B that are hyperbolae. In this figure we also show the stereographic projection of points

of the hyperboloid onto points of the unit disk.

4.3.1 Elaboration of case A)

Let us consider the case of the momentum map of eq. (4.23). The corresponding two-

dimensional metric is:

ds2φ =
1

4

(
dφ2 + sinh2 (ν φ) dB2

)
(4.26)

which can be shown to be the pull-back of the (2, 1)-Lorentz metric onto a hyperboloid

surface. Indeed setting:

X1 = sinh(νφ) cos(Bν)

X2 = sinh(νφ) sin(Bν)

X3 = ± cosh(νφ) (4.27)

we obtain a parametric covering of the algebraic locus:

X2
1 +X2

2 −X2
3 = −1 (4.28)

and we can verify that:

1

4ν2
(
dX2

1 + dX2
2 − dX2

3

)
=

1

4

(
dφ2 + sinh2 (ν φ) dB2

)
= ds2φ . (4.29)

A picture of the hyperboloid ruled by lines of constant φ and constant B according to the

parametrization (4.27) is depicted in figure 3. Applying to the present case the general

rule given in eq. (2.12) that defines the VP coordinate C we get:

C(φ) =

∫
dφ

P ′(φ)
=

log
(
tanh

(
νφ
2

))

ν2
⇔ φ =

2Arctanh
(
eCν2

)

ν
(4.30)
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from which we deduce that the allowed range of the flat variable C, in which the canonical

variable φ is real and goes from 0 to ∞, is the following one:

C ∈ [−∞ , 0] . (4.31)

Next applying to the present case the general formula given in eq. (2.14) that yields the

Kähler function J(φ) we obtain:

J(φ) =

∫
P(φ)

P ′(φ)
dφ =

log(sinh(νφ))

ν2
+
µ log

(
tanh

(
νφ
2

))

ν2
. (4.32)

Substituting eq. (4.30) into (4.32), after some manipulations we obtain:

J(C) = (µ+ 1)C −
log
(
1− e2Cν2

)

ν2
+

log(2)

ν2
(4.33)

which corresponds to the following metric:

ds2C =
1

4

∂2J(C)

∂C2

(
dC2 + dB2

)
=

1

4

(
dB2 + dC2

)
ν2csch2

(
Cν2

)
. (4.34)

Upon use of the coordinate transformation (4.30) the line element ds2C flows into ds2φ and

viceversa.

It remains to be seen how such a metric is canonically written in terms of a complex

coordinate z = ζ. In this case the appropriate relation between ζ in the unit circle and the

real variables C,B is the following:

ζ = eν
2(iB+C). (4.35)

With this position we find:

ds2C =
1

ν2
dζ dζ̄

(
1− ζ ζ̄

)2 = ∂ζ ∂ζ̄

[
−

1

ν2
log
(
1− ζ ζ̄

)
+
µ+ 1

2 ν2
log |ζ ζ̄|2

]

︸ ︷︷ ︸
J(C)=K(ζ , ζ̄)=Kähler potential

dζ dζ̄. (4.36)

On the other hand from the position (4.35) it is evident that the shift in B is a compact

rotation of the complex coordinate ζ.

For C → −∞, namely for large and negative values of the argument we have the

following expansion of the Kähler potential

J(C) =
log(2)

ν2
+ (µ+ 1)C +

e2Cν2

ν2
+
e4Cν2

2ν2
+
e6Cν2

3ν2
+O

(
e8Cν2

)

⇓

∂2CJ(C) = 4 ν2 e2Cν2 + 8 ν2 e4Cν2 + 12 ν2 e6Cν2 +O(e8Cν2)
C→−∞
=⇒ 0 (4.37)

while for C → 0, which corresponds to the boundary of moduli space, we have a logarithmic

singularity:

J(C) =
log(2)

ν2
−

log
(
−2ν2

)

ν2
−

log(C)

ν2
+ µC −

1

6
C2ν2 +O

(
C3
)
. (4.38)

The interpretation of the parameter µ is evident from the above formulae. It introduces a

Fayet-Iliopoulos term.
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Figure 4. Plots of the inflaton potential corresponding to the gauging of a compact U(1) isometry

inside SL(2,R). The potential is displayed as function of either the canonical coordinate φ (first

picture) or the VP coordinate C (second picture) or the modulus of the complex coordinate ζ

according to the formulae displayed in eq. (4.39). In each picture the curves of the same type (solid,

dashed or long dashed) correspond to the same value of the Fayet Iliopoulos parameter µ, but to

different values of the curvature parameter ν.

It is useful to write the D-type scalar potential in three different forms, as function of

the canonical field φ, as function of the VP coordinated C and as function of the complex

coordinate ζ:

V ∝ (cosh (ν φ) + µ)2 =

(
µ+

2e2Cν2

1− e2Cν2
+ 1

)2

=
1

ν4

(
µ+ 1− µ ζ ζ̄

1− ζ ζ̄

)2

. (4.39)

The plots of these potential forms are displayed in figure 4.

4.3.2 Elaboration of case B)

Let us now consider the case of the momentum map of eq. (4.24). The corresponding

two-dimensional metric is:

ds2φ =
1

4

(
dφ2 + cosh2 (ν φ) dB2

)
(4.40)

which can be shown to be another form of the pull-back of the Lorentz metric onto a

hyperboloid surface. Indeed setting:

X1 = cosh(νφ) sinh(Bν)

X2 = sinh(νφ)

X3 = ± cosh(Bν) cosh(νφ) (4.41)
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Figure 5. The hyperboloid surface displayed in the parametrization (4.41). The lines drawn on

the hyperboloid surface are those of constant B and constant φ respectively. Both of them are

hyperbolae, in this case.

we obtain a parametric covering of the algebraic locus:

X2
1 +X2

2 −X2
3 = −1 (4.42)

and we can verify that:

1

4ν2
(
dX2

1 + dX2
2 − dX2

3

)
=

1

4

(
dφ2 + cosh2 (ν φ) dB2

)
= ds2φ. (4.43)

A three-dimensional picture of the hyperboloid ruled by lines of constant φ and constant

B is displayed in figure 5.

Applying to the present case the general rule given in eq. (2.12) that defines the VP

coordinate C we get:

C(φ) =

∫
dφ

P ′(φ)
=

2Arctan
(
tanh

(
νφ
2

))

ν2
⇔ φ =

2Arctanh
(
tan

(
Cν2

2

))

ν
(4.44)

from which we deduce that the allowed range of the flat variable C, in which the canonical

variable φ is real and goes from −∞ to ∞, is the following one:

C ∈
[
−

π

2 ν2
,
π

2 ν2

]
. (4.45)

Next applying to the present case the general formula given in eq. (2.14) that yields the

Kähler function J(φ) we obtain:

J(φ) =

∫
P (φ)

P ′(φ)
dφ =

2µArctan
(
tanh

(
νφ
2

))

ν2
+

log(cosh(νφ))

ν2
. (4.46)
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Substituting eq. (4.44) into (4.46), after some manipulations we obtain:

J(C) = µC −
1

ν2
log
(
cos
(
Cν2

))
(4.47)

which corresponds to the following metric:

ds2C =
1

4

∂2J(C)

∂C2

(
dC2 + dB2

)
=

1

4

(
dB2 + dC2

)
ν2 sec2

(
Cν2

)
. (4.48)

Upon use of the coordinate transformation (4.44) the line element ds2C flows into ds2φ and

viceversa.

It remains to be seen how such a metric is canonically written in terms of a complex

coordinate ζ. In this case the appropriate relation between ζ in the unit circle and the real

variables C,B is different. Setting:

ζ = i tanh

(
1

2
(B − iC)ν2

)
(4.49)

which implies:

C = −
i

ν2
(
ArcTanh(− i ζ)−ArcTanh

(
i ζ̄
))

B =
1

ν2
(
ArcTanh(− i ζ) + ArcTanh

(
i ζ̄
))

(4.50)

we find:

J(C) = K
(
ζ, ζ̄
)
= −i

µ

ν2
(
ArcTanh(− i ζ)−ArcTanh

(
iζ̄
))

−
1

ν2
log
(
1− ζ ζ̄

)
(4.51)

ds2C =
1

ν2
dζ dζ̄

(
1− ζ ζ̄

)2 = ∂ζ ∂ζ̄ K
(
ζ, ζ̄
)
dζ dζ̄ . (4.52)

The identification (4.49) allows us to understand the nature of the isometry B → B + c

which is non compact. To this effect let us consider the image of the SL(2,R) dilatations

inside the SU(1, 1) group:

Λρ =

(
1 1

i −i

) (
eρ 0

0 e−ρ

) (
1
2 − i

2
1
2

i
2

)
=

(
cosh ρ −i sinh ρ

i sinh ρ cosh ρ

)
. (4.53)

The action of this group on the complex coordinate ζ inside the unit circle is given by the

following linear fractional transformation:

Λρ · ζ =
ζ cosh(ρ)− i sinh(ρ)

cosh(ρ) + i ζ sinh(ρ)
. (4.54)

For an infinitesimal parameter ρ≪ 1 we have:

ζ → ζ + δρζ ; δρζ = −i
(
1 + ζ2

)
ρ . (4.55)

Consider next the effect of a shift of B on the complex coordinate ζ as given in eq. (4.49).

We find:

∂B ζ =
1

2
ν2 i sech2

(
1

2
(B − iC)ν2

)
=

1

2
ν2 i

(
1 + ζ2

)
. (4.56)

This shows that indeed the B-shifts realize the action of the non compact subgroup (4.54)

on the complex coordinate ζ.
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Figure 6. Plots of the inflaton potential corresponding to the gauging of a non-compact SO(1, 1)

isometry inside SL(2,R). The potential is displayed as function of either the canonical coordinate

φ (first picture) or the VP coordinate C (second picture). In each picture the curves of different

type (solid, dashed or long dashed) correspond to different values of the Fayet Iliopoulos parameter

µ, and to the same value ν of the curvature parameter.

Knowing the Killing vector we can now write the scalar potential in three different

ways as function of the canonical coordinate φ, of the VP coordinate C and of the complex

coordinate ζ. We find:

V ∝ (sinh(νφ)+µ)2 =
(
µ+ tan

(
Cν2

))2
=

(
ζ̄
(
ζ + ζ̄

)
ζ + ζ + ζ̄ + 2µ

(
ζζ̄ − 1

)

4ζζ̄ − 4

)2

. (4.57)

The behavior of this family of potentials is displayed in figure 6. Note that when written

in terms of the complex variable ζ the potential does not appear to depend only on one

variable. Yet this is so since the potential depends only from the C-variable defined by

eq. (4.50).

Asymptotic behavior. It is now important to consider the behavior of the Kähler

function J(C) as given in eq. (4.47) when the VP coordinate approaches the boundary of

its own range. The point C = 0 is perfectly regular for J(C) and indeed, in consideration

of eq. (4.45), it is well inside the range of definition. The boundary is approached when

C → ± π
2 ν2

. For this reason we set C = π
2 ν2

− ξ and we consider the behavior of the Kähler

function for ξ ≃ 0. We obtain:

J(ξ) = −ξµ+
πµ

2ν2
−

log
(
ν2
)

ν2
−

log(ξ)

ν2
+O

(
ξ2
)
. (4.58)

In this way we put into evidence the logarithmic singularity which characterizes the be-

havior of the Kähler function in at the boundary. Once again it also appears that the

parameter µ plays the role of Fayet Iliopoulos term. Considering now the behavior of the

function ∂2CJ(C) for C → 0, which is the center of the bulk for the field manifold, we find:

∂2CJ(C)
C→ 0
≃ ν2 + ν6C2 +

2ν10C4

3
+O

(
C5
)
. (4.59)

We see that the metric coefficient goes to a constant and this is the obstacle to interpret

the symmetry B → B + c as a compact rotation. Indeed as we have seen it is rather a

hyperbolic transformation.
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Curv. Gauge Group V (φ) V (C) V (z) Comp. Struct.

−ν2 U(1) (cosh (ν φ) + µ)2
(
µ+ 2e2Cν2

1−e2Cν2
+ 1
)2

1
ν4

(
µ+1−µ ζ ζ̄

1−ζ ζ̄

)2
ζ = eC−iB

−ν2 SO(1, 1) (sinh (ν φ) + µ)2
(
µ+ tan

(
Cν2

))2
(

ζ̄(ζ+ζ̄)ζ+ζ+ζ̄+2µ(ζ ζ̄−1)
4ζ ζ̄−4

)2

ζ = i tanh
(
1
2(B − iC) ν2

)

−ν2 parabolic (exp (ν φ) + µ)2
(
µ+ 1

ν2 C

)2 (
1
2 µ+ i

ν2
(t− t̄)−1

)2
t = −iC +B

0 U(1) M4

[(
φ
φ0

)2
± 1

]2
M4

[
e2a2C

φ2
0

± 1
]2

1
4

(
z z̄− 2 a0

a2

)2
z = exp [a2 (C + iB)]

0 parabolic (a0 + a1 φ)
2 (a1C + β)2 1

2 (a1Imz + β)2 z = iC +B

Table 1. Summary of the potentials of D-type obtained from constant curvature Kähler manifolds

by gauging either a compact or a non compact isometries.

4.3.3 Elaboration of case C)

In the case the momentum map is given by eq. (4.25) by immediate integration of eq. (2.12)

we obtain the VP coordinate C(φ) and its inverse function:

C(φ) = −
e−νφ

ν2
⇔ φ(C) = −

log
(
−Cν2

)

ν
. (4.60)

The integration of eq. (2.14) for the Kähler potential is equally immediate and we find:

J(φ) =
φ− e−νφµ

ν

ν
⇔ J(C) = µC −

1

ν2
log (−C) + const . (4.61)

From the form of equation (4.61) we conclude that the appropriate solution of the complex

structure equation in this case is:

z = t = iC −B (4.62)

so that the Kähler metric becomes proportional to the Poincaré metric in the upper complex

plane (note that C is negative definite for the whole range of the canonical variable φ):

ds2 =
1

4

d2J

dC2

(
dC2 + dB2

)
=

1

4 ν2
dt̄ dt

(Imt)2
. (4.63)

As a consequence of equation (4.62), we see that the B-translation happens to be, in this

case, a non-compact shift symmetry.

As in the previous cases we can write the potential in three forms:

V = (exp[ν φ] + µ)2 =

(
µ+

1

ν2C

)2

=

(
1

2
µ+

i

ν2
(t− t̄)−1

)2

. (4.64)

The corresponding plots are displayed in figure 7. The results for the five type of potentials

that we have obtained from constant curvature symmetric spaces are summarized in table 1.
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Figure 7. Plots of the inflaton potential corresponding to the gauging of a shift-isometry (parabolic)

inside SL(2,R) (Starobinsky-like models). The potential is displayed as a function of either the

canonical coordinate φ (first picture) or of the VP coordinate C (second picture). In each picture

the solid lines correspond to positive values of the Fayet Iliopoulos parameter µ, while the dashed

lines correspond to negative values of µ, which develop a minimum at V = 0. The value of ν is the

same in all cases and it is negative ν = 1

4
.

5 Conclusions

Summarizing, the main result of the present paper concerns three related points:

A) The physical properties of the minimal supergravity models that encode one-field

cosmologies with a positive definite potential depend in a crucial way on the global

topology of the group G that is gauged in order to produce them. When it is compact

we have a certain pattern of symmetries and charge assignments, when it is non-

compact we have a different pattern.

B) The global topology of the group G reflects into a different asymptotic behavior of

the function ∂2CJ(C) in the region that we can call the origin of the manifold. In the

compact case the complex field z is charged with respect to U(1) and, for consistency,

this symmetry should exist at all orders in an expansion of the scalar field σ-model

for small fields. Hence for z → 0 the kinetic term of the scalars should go to the

standard canonical one:

L
(can)
kin =

1

4
∂µz ∂

µz̄ . (5.1)

Assuming, as it is necessary for the U(1) interpretation of the B-shift symmetry, that

z = ζ = exp [α(iC −B)], where α is some real coefficient, eq. (5.1) can be satisfied if

and only if we have:

lim
C→−∞

exp [−2αC] ∂2CJ(C) = const (5.2)

which therefore is an intrinsic clue to establish the global topology of the inflaton

Kähler surface Σ.

C) The Fayet Iliopoulos terms always identified as linear terms in VP coordinate C in

the function J(C) are rather different in the complex variable z, depending on which

is the appropriate topology.
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Curv. Gauge Group V (φ) Values of ν Values of µ Mother series

−ν2 U(1) (cosh (ν φ) + µ)2 ν =
√
3
2 µ = 0 I1 or I7 with γ = 1

2

−ν2 U(1) (cosh (ν φ) + µ)2 ν = 2√
3

µ = 1 I7 with γ = 1
3

−ν2 U(1) (cosh (ν φ) + µ)2 ν = 2√
3

µ = −1 I7 with γ = 1
3

−ν2 SO(1, 1) (sinh (ν φ) + µ)2 ν =
√
3
2 µ = 0 I1 or I7 with γ = 1

2

−ν2 parabolic (exp (ν φ) + µ)2 ν = any µ = 0 all pure exp are integ.

Table 2. In this table we mention which particular values of the curvature and of the Fayet

Iliopoulos constant yield cosmological potentials that are both associated to constant curvature

and integrable according to the classification of [13].

These properties are general and apply to all inflaton models embedded into a minimal

N = 1 supergravity description. In the particular case of constant cruvature Kähler sur-

faces we were able to derive five models, two associated with a flat Kähler manifold and

three with the unique negative curvature two-dimensional symmetric space SL(2,R)/O(2).

Of these five models three correspond to known inflationary potentials: the Higgs potential

and the chaotic inflation quadratic potential, coming from a zero curvature Kähler mani-

fold and the Starobinsky-like potentials, coming from the gauging of parabolic subgroups

of SL(2,R). These latter potentials were already embedded in supergravity in [5] and [27].

The remaining two potentials, respectively associated with the gauging of elliptic and hy-

perbolic subgroups so far have not yet been utilized as candidate inflationary potentials

and possible they are incompatible with PLANCK data. In any case it is important to

emphasize that parabolic Starobinsky-like potentials are associated with higher curvature

supergravity models ([9, 39–41]) and it is an obvious question to inquiry what is the origin,

in this context, of the elliptic and hyperboic Starobinsky-like potentials we have found.

Furthermore let us stress that the Fayet Iliopoulos term (and its sign) drastically changes

the behavior of the scalar potential. In the Starobinsky case it is responsable for the de

Sitter inflationary phase. It is furthermore interesting to note that for some particular

values of the curvature and of the Fayet Iliopoulos parameter the models classified in this

paper become integrable. In table 2 we list such cases. They are in the intersection of the

list of table 1 with the list of integrable series of potentials classified in [13] and further an-

alyzed in [16]. By means of the arguments contained in this paper we have emphasized the

physical relevance of the global topology of the Σ Kähler surface associated with minimal

supergravity models of inflations. Global topology amount at the end of the day to giving

the precise range of the coordinates C and B labeling the points of Σ. In the five constant

curvature cases we presented these ranges are as follows. In the elliptic and parabolic case

C is in the range [−∞,−0] in the elliptic and while it is in the range [−∞,+∞] for the flat

case and it is periodic in the hyperbolic case. The cooordinate B instead is periodic in the

elliptic case, it is unrestricted in the hyperbolic and parabolic cases. The flat case with B

periodic is a strip. It is instead the full plane in the parabolic coordinate.
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Finally let us stress that the considerations put forward here can be extended to a

large class of inflationary models based on non symmetric spaces, namely associated with

Kähler surfaces Σ whose curvature is non-constant. Among them a subclass of models are

the integrable ones for which a preliminary analysis was given in [16]. In a forthcoming

publication [42] we plan to extend and improve such analysis for many models, also of

realistic type both non integrable and occasionally integrable.
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