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Abstract
Background: Structural equation modelling (SEM) has been increasingly used in medical statistics
for solving a system of related regression equations. However, a great obstacle for its wider use
has been its difficulty in handling categorical variables within the framework of generalised linear
models.

Methods: A large data set with a known structure among two related outcomes and three
independent variables was generated to investigate the use of Yule's transformation of odds ratio
(OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between
binary variables whose covariance structure can be further analysed by SEM. Percent of correctly
classified events and non-events was compared with the classification obtained by logistic
regression. The performance of SEM based on Q-metric was also checked on a small (N = 100)
random sample of the data generated and on a real data set.

Results: SEM successfully recovered the generated model structure. SEM of real data suggested a
significant influence of a latent confounding variable which would have not been detectable by
standard logistic regression. SEM classification performance was broadly similar to that of the
logistic regression.

Conclusion: The analysis of binary data can be greatly enhanced by Yule's transformation of odds
ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of
results is aided by expressing them as odds ratios which are the most frequently used measure of
effect in medical statistics.

Background
Statistical problems that require going beyond standard 
logistic regression
Although logistic regression has become the cornerstone
of modelling categorical outcomes in medical statistics,
separate regression analysis for each outcome of interest is
hardly challenged as a pragmatic approach even in the sit-

uations when the outcomes are naturally related. This is
common in process evaluation where the same variable
can be an outcome at one point in time and a predictor of
another outcome in future. For example, preterm delivery
is both an important obstetric outcome and a risk factor
for low birthweight, which in turn can adversely affect
future health. Sequential nature of these outcomes is not
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encompassed by repeated measures models which deal
with the same outcome at different time points. Another
example of a research problem difficult to handle by logis-
tic regression model is when an outcome is determined
not only by direct influences of the predictor variables but
also by their unobserved common cause. For example,
survival time since the onset of an immune system disease
may be adversely affected by concomitant occurrence of
various markers of disease progression indicating immu-
nosupression as an underlying common factor, the latter
being an unobserved latent variable whose estimation
requires solving a system of related regression equations.

Structural equation modelling (SEM) is a very general sta-
tistical framework for dealing with above issues. In recent
years, it has been increasingly used in medical statistics. In
addition to traditional areas such as psychometric proper-
ties of health questionnaires and tests, behavioural genet-
ics [1], measurement errors [2] and covariance structure in
mixed regression models [3] have received particular
attention. In addition to specific applications, important
research methodology issues in SEM have been given
more space in medical statistics, among which a compar-
ison with multiple regression [4], the relevance of latent
variable means in clinical trials [5] and power of statistical
tests [6] deserve special attention.

However, a great obstacle for wider use of SEM has been
its difficulty in handling categorical variables. The aim of
this paper is to briefly review main aspects of this diffi-
culty and to demonstrate a new approach to this problem
based on a simple transformation. Two examples with
both simulated and real data are provided to illustrate this
approach.

SEM includes both observed and unobserved (latent) var-
iables such as common factors and measurement errors.
The Linear Structural Relationships (LISREL) model [7]

was the first to spread in psychometric applications due to
the availability of software. Other formulations of SEM
and corresponding software emerged (see [8] for an over-
view). The details of these models, as well as important
issues regarding their identifiability, estimation and
robustness, are beyond the scope of this work but an illus-
tration of the situations where SEM is needed is presented
instead (Figure 1). As a general rule, SEM is indicated
when more than one regression equation is necessary for
statistical modelling of the phenomena under investiga-
tion.

The left part of Figure 1 shows a situation where two out-
comes, denoted Y1 and Y2, are mutually related (a feed-
back loop) and influenced by two predictors, denoted X1
and X2. For example, the outcomes could be demand and
supply of a particular health service or risk perception and
incidence of a particular health problem. The predictor
variables' error terms, denoted e1 and e2, may be correlated
(r) if an important variable influencing both predictors is
omitted, i.e. in the case of bias in exposure measures. The
terms d1 and d2 indicate disturbances of the two outcomes.
The right part of Figure 1 illustrates a combination of
common factors and regression model. In this case, it is of
interest to test whether the outcome Y is determined not
only by direct influences of the predictor variables,
denoted X1, X2, X3 and X4, but also by their latent determi-
nant as indicated by the regression coefficient b.

SEM has received many criticisms, most of which have
been concerned with vulnerability of complex models
relying on many assumptions, as well as with uncritical
use and interpretation of SEM. These are well placed con-
cerns but are not intrinsic to SEM; even well known and
widely applied techniques such as regression share the
same concerns. Complex phenomena require complex
models whose inferential aspects are more prone to error
as the number of parameters increases. SEM is often the
only statistical framework by which many of these issues
can be addressed by testing and comparing the models
obtained [9].

Handling categorical variables in SEM
Specific criticism regarding the treatment of categorical
and ordinal variables in SEM has been a strong deterrent
for its wider use. Naive treatment of binary and ordered
categorical variables as if they were normally distributed
in some SEM applications was partly due to the lack of via-
ble alternatives in its early days. Inadequate use of stand-
ardized regression coefficients as the measures of effect in
some SEM applications was also criticised [10]. Even
when distributional properties of categorical variables
were taken into account, the interpretation of SEM param-
eter estimates in terms of impact measures such as attrib-
utable risk was not applied. Standard errors and

Statistical problems needing SEM approachFigure 1
Statistical problems needing SEM approach.
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confidence limits – rarely used in SEM – are generally
underestimating structural model uncertainties such as
selection of relevant variables and correct specification of
their influences.

A recent review of handling categorical and other non-
normal variables in SEM [11] listed four main strategies:
a) asymptotic distribution free (ADF) estimators adjusting
for non-normality by taking into account kurtosis in joint

multivariate distribution [12], b) the use of robust maxi-
mum likelihood estimation or resampling techniques
such as jacknife or bootstrap to obtain the standard errors
of SEM parameters as these are most affected by departure
from multivariate normality [13], c) calculating polyse-
rial, tetrachoric or polychoric correlations for pairs of var-
iables with non-normal joint distribution by assuming
that these have an underlying (latent) continuous scale
whose large sample joint distribution is bivariate normal,
then using these correlations as the input for SEM [14],
and d) estimating probit or logit model scores for
observed categorical variables as the first level, then pro-
ceeding with SEM based on these scores as the second-
level [15]. The ADF estimation generally requires large
samples to keep the type II error at a reasonable level and
extremely non-normal variables such as binary may be
difficult to handle with sufficient precision. The last two
strategies critically depend on how well the first-level
model fits the data.

A review of statistical models for categorical data reveals
the lack of a method capable of handling more than one
regression equation [16]. Although log-linear models for
contingency tables may analyse related categorical out-
comes and their relationship with independent variables,
possibly complex interactions between the variables in
the model do not indicate the direction of influences as in
regression models. This underlines the need for a SEM
framework for categorical data analysis in order to handle
both dimensionality reduction and regression techniques
within the same model (cf. the right part of Figure 1).

Two major recent developments in handling categorical
data include Muthen's extension of SEM to the 'latent var-
iable modeling' approach [17] and an extension of gener-
alized linear models to latent and mixed variables under
GLLAMM (Generalized Linear Latent And Mixed Models)
framework [18]. Despite coming from different statistical

Simulated modelFigure 2
Simulated model.
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Table 1: Simulated data: Observed odds ratios (OR), associated 95% confidence intervals (CI) and SEM regression coefficients with 
corresponding standard errors (SE) obtained via ML estimation (N = 5000)

Observed association SEM-predicted effects

Parameter* OR (95% CI) for the 
variable pairs

Correlation (Q) estimate Regression estimate (SE) in 
Q-metric

Regression estimate (95% 
CI) in OR-metric**

a1 (BIN1→YBIN) 2.138 (1.887, 2.423) 0.3627 0.0281 (0.0039) 1.058 (1.042, 1.074)
a2 (BIN2→YBIN) 3.711 (3.255, 4.232) 0.5755 0.1036 (0.0044) 1.231 (1.210, 1.253)
a3 (BIN3→YBIN) 0.364 (0.321, 0.414) -0.4660 -0.4979 (0.0033) 0.335 (0.329, 0.341)
a4 (MBIN→YBIN) 10.883 (9.411, 12.586) 0.8137 0.7760 (0.0050) 7.929 (7.554, 8.337)
b1 (BIN1→MBIN) 2.632 (2.304, 3.006) 0.4493 0.4479 (0.0093) 2.622 (2.507, 2.746)
b2 (BIN2→MBIN) 4.095 (3.561, 4.709) 0.6075 0.6070 (0.0093) 4.089 (3.863, 4.337)
b3 (BIN3→MBIN) 1.083 (0.955, 1.229) 0.0398 0.0276 (0.0093) 1.0568 (1.019, 1.096)

* Arrows point to the dependent variables in the model (see Figure 2)
** Back-transformed from Q to OR by (1+Q)/(1-Q)
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backgrounds, both Muthén's Mplus software [19] and
GLLAMM are capable of modelling a mixture of continu-
ous, ordinal and nominal scale variables, multiple groups
(including clusters) and hierarchical (multi-level) data,
random effects, missing data, latent variables (including
latent classes and latent growth models) and discrete-time
survival models. Both of these developments are based on
the vision of generalized linear models as a unifying
framework for both continuous and categorical variables,
where the latter are first transformed into continuous lin-
ear functions and subsequently modelled by SEM. This
paper follows the same line but proposes a different trans-
formation for categorical variables, so far unused in SEM.
A simulated and a real data example with a latent con-
founding variable are presented.

Methods
Data generation and transformation
This work illustrates the application of SEM for binary var-
iables using Yule's transformation to approximate the
matrix of Pearson's correlation coefficients from odds
ratio (OR) by a well known formula (OR-1)/(OR+1). The
first example is based on known data generating processes
to avoid uncertainty about true model, virtually inevitable
for empirical data. A data set with 5000 observations was
generated to allow normal theory approximation. First,
three continuous random variables, denominated x1 to x3,
were created from the uniform distribution. The variables
were uncorrelated in the population. Their binary ver-
sions, denominated BIN1 to BIN3, were obtained by cod-
ing the values above the mean as one versus zero
otherwise. Two continuous dependent variables were cre-
ated by the following equations: m = 1.5 x1 + 2 x2 + e1 and
y = 0.5 x2 - 2.5 x3 + 1.3 m + e2, with e1 and e2 being normally
distributed random errors (N~0,1), generated from differ-
ent seeds. The binary versions of the dependent variables,
denominated MBIN and YBIN, were created by applying
the logistic regression classification rule, i.e. score 1 if
exp(m)/(1+exp(m)) and exp(y)/(1+exp(y)) exceed 0.5 ver-
sus 0 otherwise, where 'exp' stands for 'exponentiation'.

Observed odds ratios between the variables of interest in
the generated data sets are reported in table 1. The struc-

tural relationships among the variables in the second data
set are depicted in Figure 2.

In addition, a random sample of 100 observations was
taken from the generated data set with 5000 observations
in order to illustrate small sample performance of the SEM
based on Yule's transformation compared to logistic
regression. Finally, a real data example with related binary
obstetric outcomes, including premature birth, lower seg-
ment Caesarian section, low birthweight (<2500 g) and
utilization of special baby care unit, was used to compare
the SEM with logistic regression as a standard technique
applied to this type of data. The data were extracted from
obstetric records of 10574 multiparous women with sin-
gleton pregnancies who delivered a baby between 1st

August 1994 and 31st July 1995 in nine maternity units in
England and Wales [20].

Yule's transformation was used to estimate the matrix of
Pearson's correlation coefficients for both simulated and
real obstetric data. The correlations were used as input for
SEM. For the simulated data, both logistic and SEM anal-
ysis were repeated for a random subset of 100 observa-
tions taken from the original data set. Maximum
likelihood (ML) estimation was used.

SEM raw regression coefficients were back-transformed
from Q-metric into odds metric by (1+Q)/(1-Q) to get an
impact measure for the binary predictor variables. SAS
software procedures CALIS and LOGISTIC were used for
SEM and logistic analysis, respectively [21].

Evaluation of classification performance
Raw data residuals were calculated as the difference
between observed and SEM-predicted values for both data
sets. The predicted values were calculated by multiplying
the raw regression parameters obtained in SEM with cor-
responding observed values of the predictor variables. The
back-transformation from SEM parameters, denoted S, to
the odds metric is given by (1+S)/(1-S) and provides the
odds of being the case for each independent variable;
summing these odds over the independent variables gives
the odds of being the case for each profile of independent

Table 2: Multivariate logistic regression for generated data: parameter estimates (standard errors) for large (N = 5000) and small (N = 
100) samples

YBIN outcome MBIN outcome

N = 5000 N = 100 N = 5000 N = 100

Intercept -0.5735 (0.0787) -0.3470 (0.6320) -0.0835 (0.0627) 0.9316 (0.4745)
BIN1 0.5602 (0.0781) 0.3234 (0.5362) 1.0596 (0.0713) 0.9921 (0.9921)
BIN2 0.9941 (0.0791) 1.3645 (0.5409) 1.4787 (0.0734) 1.4472 (0.5842)
BIN3 -1.5431 (0.0844) -1.6759 (0.5551) 0.0708 (0.0691) -0.8168 (0.5530)
MBIN 2.3781 (0.0873) 1.7528 (0.6260) - -
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variables. The odds greater than one were classified as
SEM predicted cases versus otherwise.

For logistic regression, the percent of correctly classified
outcomes was calculated using the cut-off point of 0.5 for
the estimated probability of outcome variables.

The classification performance of SEM and logistic regres-
sion was compared on a real data set with several obstetric
outcomes of interest [20] and on a small random sample
of 100 observations taken from the simulated data set of
5000 observations.

Power analysis
Statistical power analysis used a calculation based on non-
central chi-squared distribution, providing the number of
observations required to achieve the 90% power (beta or
type II error of 0.10), denoted as N [22,23]. If n denotes
the number of observations used in SEM, k denotes the

multiplying factor for a chosen power level, degrees of
freedom and alpha (type I error), and d denotes the chi-
square difference between the SEM with and without the
parameter(s) of interest, then N = k*n/d gives the required
sample size. Releasing one parameter at a time (one
degree of freedom), with fixed type I error of 5% and type
II error of 10%, point to the tabulated k-value of 10.51
[23]. This approach assumes that the model is correctly
specified.

Results
Table 1 contains observed odds ratios for the simulated
data set and their decomposition into regression effects
based on SEM using Yule's transformation of odds ratios.

A standard approach to the analysis of binary variables
using multivariate logistic regression for the simulated
data is presented in Table 2.

The normal probability plot of raw data residuals between
observed outcomes and the estimated probability of out-
come based on SEM for simulated data showed some
departure from the normal distribution (Figure 3). On the
other side, the residuals fall within the normal range. Both
SEM and logistic regression models for real obstetric data
(Figure 4) showed satisfactory fit regarding individual
data residuals.

The comparison of classification performance for SEM
versus logistic regression showed slightly better results
with the latter for one outcome in a small sample analysis
and very similar results for all other comparisons (Table
4). True positive fraction for events was always considera-
bly higher for SEM compared to logistic regression, albeit
at the expense of lower true negative fraction for non-
events.

Logistic regression showed better overall classification
rate due to better prediction of non-events (Table 5). On
the other hand, events were better predicted by SEM.

SEM permitted further investigation of the unobserved
determinant of observed obstetric risk factors in predict-
ing the need for specialised neonatal care through a latent
variable. A model was tested assuming that a common
cause of some of the risk factors is a latent confounding
variable influencing both observed risk factors and the
outcome of interest (special baby care unit) and adding
predictive power over and above the observed risk varia-
bles (Figure 5). The estimation was possible upon solving
the observed variables' parameters first (so-called path
analysis) and fixing the factor loading for preterm delivery
to the value of one – a convention allowing the compari-
son of the contribution of the other two observed risk var-
iables to the unobserved latent risk using premature birth

Normal probability plots for raw data residualsFigure 3
Normal probability plots for raw data residuals. Nor-
mal probability plots for raw data residuals in the simulated 
data model with two related outcomes: YBIN (top) and 
MBIN (bottom). Asterisk may represent up to 30 residuals.
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as unit risk. The factor loadings (standard errors) for Cae-
sarian section and low birthweight were -0.3948 (0.003)
and 0.8630 (0.001), respectively.

The relevance of the latent variable for predicting the use
of special care baby unit was also tested by linear regres-
sion with raw data SEM residuals (observed minus SEM
predicted probability of using special care baby unit) as
the dependent variable and the latent variable scores as
the predictor variable. The predictor was estimated at

0.0874 (standard error 0.0053) and was highly significant
(p < 0.001).

The model suggested that propensity for premature birth
resulting in low birthweight upon delivery which did not
use Caesarian section increased the chances of special
neonatal care utilization. The raw SEM coefficient repre-
senting this effect, denominated b4 on Figure 5, was esti-
mated at 0.0956 with corresponding standard error of
0.016, leading to a highly significant t-value of 61.54.
Transforming back to odds metric via (1+b4)/(1-b4)

Comparison of SEM and logistic model estimates for the obstetric data exampleFigure 4
Comparison of SEM and logistic model estimates for the obstetric data example.
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resulted in odds ratio of 1.21 and corresponding 95%
confidence intervals from 1.14 to 1.29. Although a multi-
variate logistic regression model for the special baby care
unit utilization did not find the above combination of risk
factors statistically significant when it was added as inter-
action term to the risk factors themselves (odds ratio 1.16
with 95% confidence intervals from 0.72 to 1.86), it
should be stressed that this is a model different from the
above SEM.

Statistical power analysis found that only the b3 parameter
in table 3 would require a larger sample size (N = 5918)
than the one available to achieve the 90% power.

Discussion
The analysis demonstrated the viability of SEM using
Yule's Q-transformation of odds ratio as input for binary
variables models. On the level of individual data points,
the raw data residuals were within the normal range and
the discriminant rule for classification of outcomes into
events and non-events based on SEM Q-scores performed
slightly worse but still similarly to the results based on
standard approach using logistic regression. The conclu-
sion holds for the small sample example with generated
data and for the real data set tested here. All these ele-
ments point out to the feasibility and utility of SEM using

Yule's transformation for binary data, principally when
complex relationships between the variables are present.
For example, the investigation of the common cause of
obstetric risk indicators on the outcome of interest identi-
fied a latent confounding variable which increased the
chances of utilizing special neonatal care over and above
the impact of the same risk indicators taken as independ-
ent predictors (Figure 5). The interpretation of the latent
variable may lead to hypothesising a health service rou-
tine of treating premature births in a particular way (i.e.
restraining from Caesarian section) or a biological pro-
pensity for birth complications, with both of these alter-
natives leading to an increased need for intensive
neonatal care. This illustrates how SEM helps generating
and investigating complex hypothesis not available by
other methods. Yule's transformation may be helpful in
preparing binary data for SEM. By using odds ratio both as
a starting point and for the results presentation, the pro-
posed transformation facilitates the interpretation of
effects in the model.

For alpha level <0.05, both the univariate t-test and the
likelihood ratio test for the b3 parameter being equal to
zero indicated its statistical significance in SEM (details
not shown) despite non-significance of observed odds
ratio (table 3). However, the power of this test is less than

Table 4: Percentage of correctly classified events for logistic regression (LR) models in table 2 versus SEM in tables 1 and 3

Sample size N = 5000 N = 100

Outcome YBIN MBIN YBIN MBIN

Method LR SEM LR SEM LR SEM LR SEM

All outcomes 80.36 80.28 74.32 74.36 81.00 80.00 80.00 72.00
Events 91.30 93.32 83.46 91.66 91.18 85.29 80.00 76.25
Non-events 54.42 49.36 48.47 25.42 59.38 68.75 0.00 55.00

Table 3: Small sample (N = 100) parameter estimates and their standard errors (SE) for SEM using Q-statistic input (correlations 
estimated via Yule's transformation)

Observed association SEM-predicted effects

Parameter* OR (95% CI) for the 
variable pairs

Correlation (Q) estimate Regression estimate (SE) in 
Q-metric

Regression estimate (95% 
CI) in OR-metric**

a1 (BIN1→YBIN) 1.600 (0.669, 3.824) 0.2308 0.0068 (0.0410) 1.014 (0.863, 1.191)
a2 (BIN2→YBIN) 3.881 (1.561, 9.650) 0.5902 0.4354 (0.0485) 2.542 (2.032, 3.259)
a3 (BIN3→YBIN) 0.233 (0.092, 0.594) -0.6220 -0.5604 (0.0403) 0.282 0.220, 0.350)
a4 (MBIN→YBIN) 8.037 (2.700, 23.925) 0.7787 0.3387 (0.0568) 2.173 (1.589, 2.636)
b1 (BIN1→MBIN) 2.581 (0.856, 7.782) 0.4415 0.3697 (0.0625) 2.173 (1.657, 2.939)
b2 (BIN2→MBIN) 3.857 (1.278, 11.638) 0.5882 0.5854 (0.0625) 3.8239 (2.724, 5.847)
b3 (BIN3→MBIN) 0.512 (0.185, 1.418) -0.3230 -0.3441 (0.0624) 0.4880 (0.364, 0.637)

* Arrows point to the dependent variables in the model (see Figure 2)
** Back-transformed from Q to OR by (1+Q)/(1-Q)
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the pre-established criterion of 90% and the impact of this
parameter is clearly inferior to that of the other predictors
in the model. The tendency to include extra parameters
was also reported for SEM ML estimates where ordered
categorical variables were treated as continuous [24] and
may be expected for ADF estimates in SEM with raw
binary data input. It should be noted that binary variables
and the amount of noise introduced in the model ana-
lysed are serious obstacles to specifying the correct rela-
tionship between the variables for ADF estimation
methods, typically applied to the data with smaller depar-
ture from the multivariate normal distribution. However,
there has been some progress in developing both large
sample and finite sample robustness of SEM parameters
in handling non-normal data and outliers [25,26].

The advantage of SEM over separate logistic regression
models for each outcome is twofold. First, SEM can model
all regression equations simultaneously, thus providing a
flexible framework for testing a range of possible relation-
ships between the variables in the model, including medi-
ating effects and possible latent confounding variables.
Second, on a more general level, SEM parameters can
quantify the contribution of each predictor to the covari-
ance structure such as common factors model (Figure 5 is
an example), whereas neither the interaction of continu-
ous variables, defined as their crossproduct, nor the inter-
action terms for categorical independent variables in a
regression model, can do this. The modelling of a com-
mon cause of observed risk factors and its influence on the
outcome of interest is impossible outside SEM framework.
Genetic propensity for various diseases is probably the
most vivid example of the need for above model, enabling
an investigation of the latent confounding variables fre-
quently cited in the study design literature. This includes
latent growth models with a relatively long sequence of
indicators of an evolving process such as disease whose
symptoms are typically binary indicators used for statisti-
cal modelling of the outcomes of interest. It is no coinci-
dence that some recent developments in regression

modelling have been marked by the efforts to integrate
regression with a variety of covariance structure models
[1-3].

Another advantage of SEM using Yule's Q-transformation
of odds ratios for binary variables over two-level
approach, based on probit or logit model or estimated
correlations for non-normal variables as first level and
SEM as second level modeling, may lay in the fact that the
former is based on data transformation rather than esti-
mation, thus avoiding the sources of error due to the lat-
ter. However, this view is not universally accepted and the
discussion goes back to the beginning of the 20th century
when Karl Pearson and George Udney Yule argued
whether a measure of association of two binary variables
needs to assume underlying continuum and bivariate nor-
mal distribution [16]. While the former based his calcula-
tion of tetrachoric correlation on these assumptions, the
latter disagreed, saying that some categorical variables are
inherently discrete, so that the continuum assumption is
tenuous and in fact unnecessary because a measure of
association for such cases can be obtained directly from
cell counts in a 2 by 2 table as in odds ratio and its trans-
formation, today known as Yule's Q. Although the popu-
larity of odds ratio over Pearson's correlation in medical
statistic points to a prevailing tendency of embracing
Yule's view in this field, an attempt to reconcile the two
viewpoints has been made [16].

The fact that Yule's transformation is well known and
allows an easy back-transformation of model parameters
to odds metric makes it easier to interpret them as effect
measures. Although SEM estimates based on already exist-
ing methods for handling categorical variables could be
converted to an odds ratio metric for the purpose of inter-
pretation, it has been used very rarely in the publications
in the field and almost exclusively with GLLAMM.

Usual tools for evaluating SEM fit such as the analysis of
residuals are available not only for input covariance

Table 5: Classification performance for the obstetric data example (N = 10574): logistic regression (LR) and SEM with Q-metric input 
(see Figure 4)

Correctly 
classified (%)

Dependent variables

Caesarian section Low birthweight Special Care Baby Unit

LR * SEM LR * SEM LR * SEM

All outcomes 85.7 83.8 95.4 83.9 95.3 82.7
Events 0.0 15.5 26.7 72.7 36.5 69.0
Non events 100.0 95.2 99.1 84.6 99.2 83.6

* Note: Logistic regression used the same outcome and predictor variables as the SEM model in Figure 4 but needed separate logistic models for 
each dependent variable.
Page 8 of 10
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matrix but also for individual data points. When classifi-
cation of outcomes into events and non-events is of inter-
est, sensitivity and specificity parameters can easily be
obtained, thus making this approach applicable to a wide
range of research problems.

Although other measures of comparative model fit, abun-
dant in the SEM literature [9], may also be useful to assess
various aspects of this important issue, classification per-
formance is a preferred measure of predictive power in
practice, particularly if cross-validated. For example, both
data sets analysed here used saturated models which per-
fectly predicted the input correlation matrices, so the fit
indices based on the discrepancy between observed and
SEM-predicted correlation matrices obtained maximum
values possible, but this was not particularly informative.
On the other hand, SEM fit indices may be useful to select
the best model in many other situations.

Despite the advantages of SEM mentioned above, there
are several limitations of this work. First, Yule's Q is not
exactly Pearson's correlation coefficient but rather an
approximation to it which seems reasonable in large sam-
ples and for the types of models tested. Although the illus-
tration of a small sample size performance seems
satisfactory compared to logistic regression models, it is
yet to be tested fully for a much wider range of depend-
ency structures than presented here in order to evaluate
the robustness of the parameters obtained. However, this
requirement is a consequence of complex modelling
issues which often arise in SEM as Yule's Q is no new esti-
mator. Therefore, the findings about the properties of ML,
ADF and least squares estimators in SEM, accumulated for
almost three decades of research, apply here. This is the
main reason why no attempt of a simulation study of SEM

parameter estimates has been made in this work. Second,
the lack of a simple rule for variable selection in SEM and
the need to test a variety of models before selecting the
acceptable ones can make it difficult to use this approach
for quick decision making often favoured in routine appli-
cations of medical statistics. Model selection based on
Bayes factors [27] may be helpful in this situation. Finally,
although logit is the most popular transformation in
modelling binary outcomes in medical statistics, there are
many other link functions which may be more suitable for
a particular model. GLLAMM [18] theory and software
seem to be the most complete framework for such inves-
tigation up to date.

When the scale of SEM variables is not equal or their var-
iances differ significantly, covariance matrix input should
be preferred instead of correlation matrix input. Although
SEM standard errors are less accurate with the latter even
with the sample size of few hundreds, the data used here
had much larger sample sizes and therefore are less influ-
enced by the type of input matrix. In addition, the input
of all SEM variables was on the same scale, i.e. in the odds
metric. On the other hand, many SEM applications are
performed on moderate and small samples, so the covar-
iance matrix input would be preferable. With multivariate
normal distribution, sample covariance matrix contains
all the necessary information for SEM. However, with
non-normal data, kurtosis was shown to be the most rele-
vant parameter to be taken into account to correct the
standard errors of SEM parameters, as in ADF estimators
[12]. If means are of interest in SEM, input covariance
matrix can be augmented with this information as well.
Another way of dealing with SEM standard errors from
non-normal data is bootstrapping, already included in
several statistical packages with SEM module.

If the raw regression parameters from SEM exceed the
domain of the inverse of Yule's transformation function,
i.e. the interval from -1 to 1, then standardized SEM
parameters can be used to get the odds metric via (1+Q)/
(1-Q). Alternatively, a transformation mapping the raw
SEM coefficients to this interval may be used, such as
Yule's or logit, with corresponding back-transformation of
the results to odds metric.

Although this work does not address the question of the
association between continuous and dichotomous varia-
bles, extensions to include this case can be envisaged. One
strategy would be to transform continuous variables into
ordered categories with one of them serving as a baseline
and then calculate odds ratios using logistic regression.
Subsequently, Yule's transformation can be used to con-
vert the odds into correlation metric to be analyzed by
SEM. Another strategy would be to use polychoric or poli-
serial correlation for above situation and only substitute

SEM with latent risk variable for the obstetric data exampleFigure 5
SEM with latent risk variable for the obstetric data example.
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tetrachoric correlation by Yule's Q, particularly when the
structural relationships of interest are between binary var-
iables in the model and some exogenous variables are
ordered or continuous.

Further research is needed to elucidate various aspects of
the SEM based on Q-metric input, particularly small sam-
ple performance for a wide range of statistical models and
their classification performance. In addition, the variance
of odds ratios may be used to weight the estimated corre-
lation matrix, so that Q-metric input for SEM takes into
account the precision of the original scale and not only
the magnitude of association between two binary varia-
bles. Relative fit measures such as those recently proposed
by Agresti & Caffo [28] may help selecting among compet-
ing models of different kind.

Conclusion
SEM based on Q-transformation of odds ratios can be
used to investigate complex dependency structures such as
latent confounding factors and their influences on both
observed risk factors and categorical outcome variables.
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