
Wang et al. Cancer Cell Int  (2016) 16:9 
DOI 10.1186/s12935-016-0280-y

PRIMARY RESEARCH

Inhibition of glycolytic enzyme 
hexokinase II (HK2) suppresses lung  
tumor growth
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Abstract 

Background:  The most common genetic changes identified in human NSCLC are Kras mutations (10–30 %) and p53 
mutation or loss (50–70 %). Moreover, NSCLC with mutations in Kras and p53 poorly respond to current therapies, so 
we are trying to find a new target for the treatment strategies.

Methods:  Flow cytometry, crystal violet staining and immunoblotting were used to assess cell cycle arrest, prolifera-
tion and apoptosis in lung cancer cell lines after 2-DG treatment and lentivirus infection by shRNA knock down. IHC 
and western blotting were carried for NSG xenograft model with 2-DG treatment and lentivirus infection by shRNA 
knock down.

Results:  Knocking down Kras down-regulated the glycolytic enzyme hexokinase II (HK2) in KP2 (mouse lung cancer 
cell line with Kras mutation and p53 deletion) and H23 (human lung cancer cell line with Kras mutation and p53 
mutation) cell lines. Genetic studies revealed that HK2 was required for the human and mouse lung cancer cell 
growth in vitro and in vivo. Our pharmacological studies confirmed that 2-DG, an inhibitor of HK2, inhibited human 
and mouse lung cancer cell growth through inducing cell apoptosis and autophagy.

Conclusions:  HK2 is a promising treatment target for NSCLC with Kras activating and p53 function loss.

Keywords:  NSCLC, HK2, Kras, 2-DG, Apoptosis

© 2016 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
More than one million people in the world die from 
lung cancer every year, so which is the leading cause of 
cancer mortality in human [1, 2]. Usually, lung cancer is 
defined in two types, small-cell lung cancer (SCLC) and 
non–small-cell lung cancer (NSCLC). NSCLC accounts 
for approximately 85 % of all the lung cancers at present. 
More than 70  % of NSCLC patients are advanced dis-
ease, and only 16 % can achieve the 5-year survival rate. 
For early stage, surgery combining with chemotherapy is 
the current standard of care. For stage III/IV of NSCLC, 
platinum-based combined chemotherapy is the stand-
ard approach, but chemotherapy has strong side effects 

to patients [3], so it is necessary to pursue new therapy 
strategies.

The most common mutations identified in human 
NSCLC are Kras mutations (10–30 %) and loss of func-
tion point mutations in p53 (50–70 %) [4]. Furthermore, 
for the patients harboring EGFR mutations (17  %) [5], 
resistant to EGFR tyrosine kinase inhibitors (TKIs) 
therapy, which has been proposed that the mutations 
in Kras and loss of functions in p53 may be the mecha-
nism of primary resistance to EGFR TKI [6, 7]. And many 
researches demonstrated that the lung cancer patients, 
harboring mutations in Kras or loss of functions in p53, 
have poor clinical outcomes to chemotherapy and EGFR 
TKIs [8–10]. Therefore, inhibition of Kras expression 
or stimulation of p53 functions is attractive therapeu-
tic strategy for this disease. However, it has, so far, been 
unsuccessful to attempt to develop drugs that target 
oncogenic Kras and convert mutant p53 proteins to a 

Open Access

Cancer Cell International

*Correspondence:  csama@sina.com 
1 The Clinical Department, College of Veterinary Medicine, China 
Agricultural University, Beijing 100193, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-016-0280-y&domain=pdf


Page 2 of 11Wang et al. Cancer Cell Int  (2016) 16:9 

functional state [11–13], so we try to find Kras and p53 
downstream therapeutic targets.

The well-established Kras gene encodes a small GTP-
binding protein that serves vital roles not only in medi-
ating cell growth, differentiation and apoptosis but also 
in regulating cell metabolism [14, 15]. Oncogenic Kras 
causes mitochondrial metabolism and the generation of 
reactive oxygen species (ROS) through regulation of the 
ERK-MAPK signaling pathway [16]. And it also mediates 
cancer metabolism by stimulation of glucose uptake and 
driving glucose intermediates into pentose phosphate 
pathways (PPP) and the hexosamine biosynthesis [15]. 
Activation of oncogenic Kras leads to mitochondrial dys-
function, causing decreased respiration, and increased 
glycolysis [17]. Therefore, oncogenic Kras might promote 
and maintain tumor growth by increasing the Warburg 
effect and anabolic (biosynthesis) pathways.

Hexokinases (HKs) catalyze the first essential step in 
glucose metabolism by phosphorylation of glucose to 
glucose-6-phosphate (G-6-P) [18]. There are four major 
isoforms (HK1, HK2, HK3, and HK4) characterized in 
mammalian tissue [19]. Among these, only the high level 
of HK2 expression has wildly been observed in cancer 
cells and is associated with poor overall survival in can-
cer patients [20, 21]. Patra et al. [18] found HK2 overex-
pression in mutant Kras overexpression and p53 knock 
out transgenic mouse models. Now our genetic studies in 
details address that HK2 is required for lung cancer cell 
growth in mouse KP2 cell (mouse lung cancer cell line 
with Kras mutation and p53 deletion) and human H23 
cell (Human lung cancer cell line with Kras mutation and 
p53 mutation) in  vitro and in  vivo. And our pharmaco-
logical studies furthermore suggest that HK2 is one of the 
most important potential therapy targets for Kras overex-
pression and p53 function lose-driven lung cancer.

Methods
Cell lines, cell culture and reagents
Mouse lung cancer cell (KP2) line was generous gifted 
from Prof. Taylor Jackson. Human lung cancer cell (H23) 
was obtained from American Type Culture Collection. 
KP2 and H23 cells stably expressing GFP-LC3. All these 
cells were cultured in DMEM supplemented with 10  % 
FBS. 2-DG was purchased from Sigma-Aldrich and for-
mulated in PBS.

Plasmids and viral transfections
PLZW plasmids expressing human HK2 were obtained 
from Addgene. All other shRNAs were from the Bio-
Medical Genomics Center at The University of Min-
nesota. These are lentiviral shRNAs and are as follows: 
Kras (TRCN0000034384 and TRCN0000055356; 

TRCN0000055357 for human and mouse), HK2 
(TRCN0000037670 and TRCN0000037609; TRCN00 
00037669 for human; and TRCN0000037672 for 
mouse), AKT (TRCN0000039793; TRCN0000039794; 
TRCN0000039796 for human and mouse). In this study, 
we used the calcium phosphate transfection method to 
transfect vector into actively growing HEK-293T cells 
as described previously [22]. In briefly, the pLKO.1 vec-
tor backbone as the negative control vector has no hairpin 
insert. Firstly, shRNA-encoding plasmids need to be mixed 
thoroughly with envelope and packaging plasmids (VSVG, 
REV and pMDL) and then co-transfected into adherent 
HEK-293T cells using the calcium phosphate method. Col-
lected virus-containing supernatant at 36  h after transfec-
tion, and centrifuged to remove cell and cell debris, and then 
infected the target cell with 8 μg/ml polybrene. To generate 
stable cell lines, cells were selected with 8 μg/ml puromy-
cin 24  h later and knockdown efficiency was detected by 
immunoblotting.

Cell growth evaluation and clonogenic survival assay
Seeded 2 × 105 cells in each well in 6-well plates to ana-
lyze cell growth by 2-DG treatment. Incubated the cells 
overnight for cells attaching. To study whether the inhi-
bition of cell growth treated with 2-DG is dose and time 
dependent, we collected cells treated with different con-
centration of 2-DG (2.5, 5,10, 10 mg/ml) for 48 h and cells 
treated with 10 mg/ml 2-DG for different time (12, 24, 48, 
60, 72 h). Stained the cells with 0.25 % (w/v) trypan blue 
and counted. Washed the cells twice with PBS, and fixed 
in 10  % formalin for 10  min at room temperature, and 
then stained with methanol (10  % v/v) containing crys-
tal violet (0.1 % w/v). Removed excess crystal violet and 
washed several times with distilled water and dried them. 
For clonogenic survival assay, seeded 2 × 104 cells in each 
well of 6-well plate with stably expressing shRNA. After 
1 week, fixed cell colonies in 10 % formalin and stained 
with crystal violet (0.1 % w/v).

Western blotting
Washed the cells twice with ice-cold PBS and then lysed 
with ice-cold lysis buffer (50 mM HEPES pH 7.4, 150 mM 
NaCl, 2 mM MgCl2, 5 mM EGTA pH 8.0, 1 mM dithi-
othreitol, 0.5  % Triton X–100, 10  % glycerol, 1  mM 
Na3VO4, 1  μM microcystin–LR and protease/phos-
phatase inhibitor cocktail) for 30 min on ice. The lysates 
were centrifuged at 12,000 rpm for 5 min at 4 °C. Equiva-
lent samples were resolved by SDS-PAGE and transferred 
onto PVDF membranes. Membranes were blocked with 
5 % non-fat milk in PBS and then probed with indicated 
primary antibody overnight at 4 °C. In this study, the fol-
lowing antibodies were used: Kras (Millipore), HK2 (Cell 
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signaling technology), Cleaved PARP (human) (Cell sign-
aling technology), Cleaved PARP (mouse) (Cell signaling 
technology), LC3II (Cell signaling technology), Alpha-
tubulin (Santa Cruz Technologies) and all of them were 
used at 1:1000 dilution. Then, primary antibody was 
detected with HRP-conjugated anti-mouse or anti-rabbit 
secondary antibody (GE Healthcare). Western HRP sub-
strate was from Millipore.

Immunohistochemistry (IHC)
All immunohistochemical analyses were carried out 
as previously described [23]. In this study, the follow-
ing antibodies were used: LC3II, cleaved caspase-3 (Cell 
Signaling) and Ki67 (Millipore), and all of them were 
used at 1:100 dilution.

Xenograft mouse model and treatment
The animal protocol was approved by the Institutional 
Animal Care and Use Committee of the University of 
Minnesota, and carried out at the Hormel Institute’s 
AAALAC-accredited animal facility. Subcutaneously 
injected 1 × 106 cells (suspended in 100 μl of PBS) into 
the lower flank of NSG mice (005557 from The Jackson 
Laboratory; http://jaxmice.jax.org/strain/005557.html). 
To further study the Kras and HK2 function in vivo, the 
mice were injected with control, Kras knockdown KP2 
cells, HK2 knockdown KP2 cells, or rescuing HK2 KP2 
cells, monitored for tumor progress and euthanized all 
mice at 4  weeks after injection. Tumors were weighed 
and photographed. Once xenograft tumors for the study 
of 2-DG treatment were established (the tumor volume 
is about 50–100 mm3), two groups of mice were treated 
with PBS (Control) or 2-DG (800  mg/kg in PBS) by I.P. 
injection (daily for 15 days). Mice were euthanized, and 
tumors were dissected, weighed and fixed in 10 % forma-
lin for histopathology and IHC analysis.

Statistical analyses
Statistical significance is determined by Student’s t test 
or ANOVA analysis with Graphad Prism (v.5). P  <  0.05 
is considered to be statistically difference, and P < 0.01 is 
significant difference.

Results
Knockdown of oncogene Kras suppresses lung cancer 
cell growth and down regulates HK2 expression in vitro 
and in vivo
Kras expression is very important in Kras-driven lung 
cancer cell lines. In this study, we chose KP2 and H23 
cell lines to confirm the essential role of oncogenic Kras 
in Kras-driven lung cancer. First we knocked down onco-
genic Kras expression in KP2 and H23 cell lines with 

Lentivirus-mediated small hairpin RNA targeting Kras 
caused significant reduction of Kras (Fig.  1a, b). Then 
we generated three stable cell lines in KP2 cells and one 
stable cell line in H23 cells with varying degrees of Kras 
protein reduction. ShKras-01, shKras-02 and shKras-03 
can robustly decrease total Kras protein in KP2 cells com-
pared with control vector-infected cells. However, only 
shKRAS-03 can robustly reduce Kras protein in human 
H23 cells, and shKras-01and shKras-02 cannot decrease 
Kras. Knockdown of Kras in KP2 cells and H23 cells sig-
nificantly attenuated their colony formation by crystal vio-
let staining analysis (Fig. 1c, d). Furthermore, the growth 
of KP2 xenograft tumor cells stably expressing shKras 
in NSG mice was significantly suppressed compared to 
KP2 cells with a vector shRNA (P =  0.0028) (Fig. 1e, f ). 
IHC staining of ki67 shows tumor cell growth was obvi-
ously inhibited in Kras-knockdown KP2 xenograft group 
(P = 0.001) (Fig. 1g, h). These data support that shRNA-
mediated knockdown of oncogenic Kras suppresses 
growth of KP2 cells and H23 cells in vitro and in vivo.

Although oncogenic Kras is one of the most impor-
tant of the potential targets for drug development, so 
far, it has been unsuccessful to attempt to develop drugs 
that directly target oncogenic Kras. Therefore, it is very 
important for Kras-driven lung cancer therapy to pursue 
the key gene regulated by Kras, and to find its inhibitors 
or drugs. To decipher the relations of Kras and HK2, 
we checked HK2 protein by immunoblotting in Kras-
knockdown cells, KP2 and H23. As shown in Fig. 1a, HK2 
is significantly decreased in Kras-knockdown KP2 and 
H23 cells compared with the mock group. HK2 protein 
level had no significant change when shKRAS-01 and 
shKRAS-02 did not knock down Kras protein in H23 
cells in Fig. 1b.

HK2 is required for lung cancer cell growth in vitro 
and in vivo
To investigate whether it was required for Kras over-
expression and p53 function lose-driven lung cancer 
cell growth, we knocked down HK2 in KP2 cells and 
H23 cells with three independent shRNAs: shHK2-01, 
shHK2-02 and shHK2-03. ShHK2-01 targeted mouse or 
human HK2 and caused a significant reduction of endog-
enous HK2 in KP2 cells and H23 cells compared to the 
mock cells (Fig. 2a, b). ShHK2-02 and shHK2-03 only tar-
geted HK2 in human H23 cells and caused a significant 
reduction of HK2 (Fig.  2b). Knockdown of HK2 in KP2 
and H23 cell lines significantly attenuated cell growth 
in vitro by crystal violet staining analysis (Fig. 2c, d). Fur-
thermore, the growth of KP2 xenograft tumor cells sta-
bly expressing shHK2-1 in NSG mice was significantly 
suppressed compared to KP2 cells with a mock shRNA 

http://jaxmice.jax.org/strain/005557.html
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transfection (P = 0.0055) (Fig. 2e, f ). As shown in Fig. 2e, 
f, knockdown HK2 significantly reduced xenograft tumor 
growth with less Ki67 expression (P =  0.0048) (Fig.  2g, 
h). The down-regulation of HK2 has been observed in 
Kras knocked down cells (Fig.  1a, b). Then we overex-
pressed HK2 in three independent Kras-knockdown 

KP2 cell lines and one Kras-knockdown H23 cell line 
(Fig. 2i, j). As expected, up-regulation of HK2 in the four 
independent Kras-knockdown lung cancer cells rescued 
the phenotypes that cell growth was inhibited in Kras-
knockdown cell lines in  vitro (Fig.  2k, l). Furthermore, 
the xenograft tumor growth with Kras-knockdown KP2 
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Fig. 1  shRNA-mediated knockdown of oncogenic Kras reduces HK2 expression and suppresses growth in NSCLC cell lines. a, b Protein level of Kras 
and HK2 was detected in KP2 and H23 cells expressing shRNAs for Kras. c, d Clonogenic survival assays were performed to assess cell growth. Colo-
nies were stained by crystal violet after 7 days of cell growth. e, f Xenograft tumor growth. 1 × 106 cells expressing scramble shRNA (CON) or shRNA 
for Kras were subcutaneously injected to the lower flank of NSG mice. Representative images of tumors at 4 weeks after injection are shown (e). 
Quantification of tumors weight (P < 0.01) (f). g IHC staining of cell proliferation marker Ki67 from control or Kras-knockdown KP2 cells. h Quantifica-
tion of Ki67 expression from representative images shown in g (P < 0.01)
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Fig. 2  HK2 is required for Kras-driven lung tumor formation. a, b Protein level of HK2 was detected in KP2 and H23 cells expressing shRNAs for HK2 
by WB. c, d Colonies were stained by crystal violet after 7 days of cell growth after knockdown of HK2 in KP2 and H23 cells. e–h Xenograft tumor 
growth of HK2 knockdown. Subcutaneously injected 1 × 106 cells expressing scramble shRNA (CON) or shRNA for HK2 in the lower flank of NSG 
mice. Representative images of tumors 4 weeks after injection are shown (e). Quantification of tumors weight from tumors developed in NSG mice 
(P < 0.01) (f). g IHC staining of Ki67 from tumors developed in NSG mice carrying control or HK2-knockdown KP2 cells. h Quantification of Ki67 
(P < 0.01) expression from representative images shown in G. i–p Rescuing HK2 assay. Protein level of HK2 was detected in three independent KRAS 
knockdown KP2 cell lines and one KRAS knockdown H23 cell line, all of which over-express HK2 (i, j). Then these cells were fixed and stained with 
crystal violet after 7 days (k, l). m–p Xenograft tumor assay of rescuing HK2 in Kras-knockdown KP2 cells. Subcutaneously injected 1 × 106 KP2 
cells expressing shRNA for Kras or Kras knockdown KP2 cells harboring up-regulating HK2 in the lower flank of NSG mice. Representative images of 
tumors at 4 weeks after injection are shown (m). Tumors weight (P < 0.01) from tumors developed in NSG mice (n). o, p IHC staining and quantita-
tive analysis of cell proliferation marker Ki67 (P < 0.01)
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cells stably over-expressing HK2 in NSG mice was sig-
nificantly promoted compared to Kras-knockdown KP2 
cells with a scramble vitro virus (P = 0.0078) (Fig. 2m, n). 
The Ki67 IHC staining in xenograft tumor also showed 
that up-regulation of HK2 significantly increased in Kras-
knockdown KP2 cells (P  =  0.0066) (Fig.  2o, p). These 
results support that the HK2 is required for Kras-driven 
cell growth in vitro and tumorigenesis in vivo.

2‑DG, HK2 inhibitor, suppresses growth of mouse 
and human lung cancer cells
In above text, we mainly showed HK2 is essential for 
Kras-driven lung cancer at the genetic level. Then we 
test if these genetic phenotypes could be replicated by 
the pharmacological inhibition of HK2 enzymatic activ-
ity with 2-DG treatment. First, we examined the growth 
of KP2 cells and H23 lung cancer cells with 2-DG treat-
ment. Counting cell numbers and crystal violet staining 
analysis were used to detect the relative growth of KP2 
and H23 cells treated with 2-DG. The results indicate 
that cell growth is inhibited by 2-DG treatment with 
dose and time dependent (Fig.  3a–f). Then, KP2 and 
H23 cells were treated with concentration of 10 mg/ml at 
12, 36 and 60 h, and DNA content was analyzed by cell 
flow cytometry after staining with propidium iodide. As 
shown in Table 1, 2-DG inhibited KP2 cell growth mainly 
by reducing S phase cells and significantly increasing 
G1 phase arrest cells, but the increased G1 phase arrest 
H23 cells at different time is not so much changing. The 
Table 1 also shows that apoptosis (sub G1) in both KP2 
and H23 cells is increased stronger gradually over time. 
To further confirm the occurring of apoptosis, we did 
the western blot to check the apoptotic marker. Cleaved 
PARP is markedly increased in KP2 and H23 cells after 
2-DG treatment (Fig. 3h–k). Also we checked autophagy 
pathway, LC3II expression detected by immunofluores-
cence and immunoblotting, as shown in Fig.  4g, 2-DG 
induced the increase of GFP-LC3 puncta in KP2 and 
H23 cells with stably expressing GFP-LC3. Then, dose 
and time-dependent increase of LC3-II levels were also 
detected by immunoblotting (Fig.  3h–k). Collectively, 
these data support that pharmacological inhibition of 
HK2-mediated glycolysis in KP2 and H23 cells might 
reduce cancer cell growth through inducing cell cycle 
arrest and activating autophagy and apoptosis pathway.

2‑DG suppresses tumor growth in vivo
Since 2-DG treatment inhibits cell growth in  vitro, we 
predict the same efficacy of 2-DG in vivo. The NSG mice 
were subcutaneously injected with KP2 cells and treated 

with PBS or 2-DG (800 mg/kg BW) by I.P injection for 
15 days. Our results revealed that tumor weights in the 
mice receiving 2-DG were significantly reduced in com-
parison with the control group (P  =  0.0086) (Fig.  4a, 
b). The significant reduction of ki67-positive cells in 
2-DG-treated mice group than in the control showed 
that 2-DG had inhibited KP2 cell proliferation capac-
ity (P =  0.004) (Fig.  4c, d) in xenograft tumor sections 
with IHC staining. Increased cleaved caspase 3 detected 
by IHC in the 2-DG-treated group in comparison with 
the control confirmed significant induction of KP2 cell 
apoptosis (P = 0.0083) (Fig. 4c, e). IHC staining of LC3II 
in 2-DG treatment mice were also significantly induced 
in compared with those in the control group (P = 0.009) 
(Fig. 4c, f ). Taken together, these studies showed that the 
2-DG, HK2 inhibitor, suppresses lung cancer cell growth 
in vivo.

Discussion
Many genetic and epigenetic lesions, which were 
detected in lung cancer, may represent potential ther-
apeutic targets for NSCLC [24, 25]. Five common 
oncogenes, Kras, EGFR, ALK, ERBB2, and BRAF are 
represented in more than 50  % of lung adenocarcino-
mas [26, 27]. The oncogene Kras is the most important 
potential target of these genes because of its sitting at 
the apex of multiple growth regulatory cascades. And 
most of Kras overexpression patients show loss function 
of p53 (50–70  %) [4]. Therefore, the strategy to target 
Kras and p53 may be the effective therapeutic method 
for NSCLC. In this study, we use shRNA method to 
down-regulate the expression of oncogenic Kras in KP2 
and H23 cells. Our results suggest that knockdown of 
Kras reduces cell proliferation in  vitro and decreases 
tumorigenesis in vivo which are in consistent with previ-
ous reports in the NSCLC cell lines [28] and pancreatic 
cancer cell line CAPAN-1 both harboring oncogene Kras 
[29]. Unfortunately, the previous studies certificated 
that the clinical trials of Kras inhibitors, aimed at Kras 
C-terminal farnesylation, did not show any significantly 
statistical difference [30, 31] and the clinical trials of 
inhibitors against downstream signaling proteins RAF 
and MEK were also not successful [32–34]. Therefore, 
focusing on other new therapeutic targets or signal path-
way for NSCLC may be an effective Achilles heel.

In contrast to normal cells, tumor cells mainly depend 
on an increased aerobic glycolysis as the major source 
of ATP to fuel cell growth due to defective mitochon-
drial oxidative phosphorylation (termed the Warburg 
effect, one hallmark of cancer) [35–37]. Previous study 
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Fig. 3  2-DG suppresses growth of Kras-driven lung cancer cells with autophagy and apoptosis pathway activation. a–f KP2 and H23 Cell growth 
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treated with or without 2-DG (10 mg/ml) for 48 h. h, i LC3II and Cleaved caspase3 protein level were detected by immunoblotting in KP2 cells and 
H23 cells treated with 2.5, 5, 10, 20 mg/ml 2-DG at 48 h. j, k Western blot detected LC3II and Cleaved caspase3 in KP2 and H23 cells treated with 
10 mg/ml 2-DG at 0, 12, 24, 36, 48, 60, 72 h
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revealed activation of oncogene Kras led to increase gly-
colysis  [17], but the mechanism is still not clear. In this 
study, we found that Kras knockdown led to decrease 
of HK2 protein expression, as shown in Fig.  1a, b. This 
result support Kras increases glycolysis through regu-
lating HK2 expression because HK2 is crucial for the 
Warburg effect [38]. Previous reports showed that the 
induction of oncogene Kras cause the AKT activation, 
the increase of phosphorylation at Ser473 [16]. Upon 
AKT activation, HK2 expression is upregulated through 
AKT-mediated HK2 phosphorylation [39, 40]. Mathupala 
et  al. also reported that activation of AKT-mTOR path-
way upregulates HK2 expression through induction of 
hypoxia-inducible factors binding to the HK2 promoter 
[20]. Therefore, our results confirmed knocking down the 
Kras in KP2 and H23 cells down-regulated AKT (Fig. 5a, 
b) and HK2 (Fig. 1a, b). If we overexpress the HK2 in KP2 
and H23 cells, the AKT is showing a little more activa-
tion in KP2 cells (Fig.  5c) and no significant change in 
H23 cells (Fig. 5d). Next we knocked down AKT in KP2 
and H23 cells and found down-regulated HK2 (Fig. 5e, f ), 
which means AKT-mTOR pathway is essential in onco-
gene Kras mediates HK2 expression. So we revealed the 
key mediator of glycolysis, HK2, may be a new therapeu-
tic target in Kras overexpression and p53 function lose-
driven NSCLC.

So far, our genetic studies show that the gene HK2 is 
required for the growth of Kras overexpression and p53 
function lose-driven lung cancer cells in vitro and in xen-
ograft models. Upon a conditional knockdown of HK2, 
cancer cells growth was significantly inhibited. Moreover, 
Wolf et  al. found HK2 knockdown by shRNAs inhibits 
tumor growth in a glioblastoma xenograft model [38]. 
Taken together, these results are consistent and reveal the 
HK2 involved in multiple types of carcinoma.

Given that HK2 plays the crucial role for cell growth 
in Kras overexpression and p53 function lose-driven 
lung cancer cells in vitro and in vivo, pharmacologically 
targeting HK2 may be explored as an effective therapy 
for NSCLC. 2-Deoxy-d-glucose (2-DG) as an inhibi-
tor of HK2 is a glucose molecule and cannot undergo 
further glycolysis. This drug also showed promising 
anticancer effects in preclinical models [41]. Previous 
studies in  vitro show that 2-DG is effective to inhibit 
some cancer cells growth [41, 42]. In vivo, 2-DG com-
bining with other drugs such as paclitaxel and Adriamy-
cin also could significantly decrease tumor proliferation 
in mice bearing human MV522 lung tumor carcinoma 
and osteosarcoma [43]. However, some later stud-
ies indicated that 2-DG treatment did not show sig-
nificant antitumor activity as a single agent in  vivo in 
some kinds of cancer cell lines [43–45]. Thus the effect 
of 2-DG against cancer is controversial. In our study, 
we choose the mouse KP2 cell (Kras mutation and p53 
deletion) and human H23 cell (Kras mutation and p53 
mutation) with high expression level of HK2 as research 
models, we found 2-DG not only inhibits KP2 and H23 
cell growth in  vitro, but also decreases tumor prolifer-
ation in SCID mice bearing KP2 lung cancer cells. As 
shown in Figs.  3 and 4, 2-DG inhibits cell growth and 
tumor proliferation in  vitro and in  vivo by inducing 
tumor cell apoptosis and autophagy through targeting 
HK2. The role of autophagy in tumorigenesis is com-
plicated because it may represent a protective response 
during under some stressful conditions such as toxic 
stimuli, radiation, and chemotherapy [46–48], but also 
can limit proliferation of cells by facilitating senescence. 
Thus, our next study will focus on whether autophagy 
induced by 2-DG in Kras overexpression and p53 func-
tion lose-driven NSCLC is cytoprotective response or 

Table 1  Summary of cell cycle arrest patterns in two lung cancer cells induced by 2-DG

Exposure  
time (h)

Treatment Cell lines

KP2 H23

G1% %G2 S% %Sub G1 G1% %G2 S% %Sub G1

12 Control 21.86 3.61 74.53 0.5 32.71 38.81 28.47 2.79

12 2-DG 44.40 0.96 54.64 0.71 31.56 48.78 19.65 3.47

36 Control 20.96 2.01 77.05 0.54 29.53 40.66 29.80 2.76

36 2-DG 70.48 0.77 28.75 2.22 34.26 48.83 16.92 4.04

60 Control 29.03 0.00 70.97 0.45 31.41 38.88 29.71 2.54

60 2-DG 87.37 7.67 4.95 4.23 39.84 43.58 16.59 8.85
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not cytotoxic. If 2-DG inducing autophagy is a survival 
response, the strategy that 2-DG combining with the 
inhibitor of autophagy such as CQ may be a synergistic 
effective therapy for NSCLC.

Conclusions
Briefly, our genetic and pharmacological studies fur-
thermore suggest that HK2 is one of the most impor-
tant potential therapy targets and its inhibitor 2-DG is 
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Fig. 4  2-DG reduces tumor growth in KP2 xenograft model. a–b NSG mice were subcutaneously injected with 1 × 106 KP2 cells. Once the tumor 
was measurable, two groups of mice were treated by I.P. injection with 800 mg/ml 2-DG or PBS for 15 consecutive days. Representative images of 
tumors after treatment with PBS or 2-DG are shown (a). Quantification of tumors weight from tumors (P < 0.01) (b). c Ki67, Cleaved Caspase-3 and 
LC3II were analyzed by IHC in Paraffin-embedded sections of control or treated tumor tissues. d–f Quantitative analysis of Ki67 Cleaved–caspase3 
and LC3II staining in xenograft tissue (P < 0.01)



Page 10 of 11Wang et al. Cancer Cell Int  (2016) 16:9 

showing promising therapy efficacy in Kras overexpres-
sion and p53 function lose-driven malignant lung cancer.
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