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Abstract

Background: Advanced cognitive abilities are widely thought to underpin cultural traditions and cumulative
cultural change. In contrast, recent simulation models have found that basic social influences on learning suffice to
support both cultural phenomena. In the present study we test the predictions of these models in the context of skill
learning, in a model with stochastic demographics, variable group sizes, and evolved parameter values, exploring the
cultural ramifications of three different social learning mechanisms.

Results: Our results show that that simple forms of social learning such as local enhancement, can generate
traditional differences in the context of skill learning. In contrast, we find cumulative cultural change is supported by
observational learning, but not local or stimulus enhancement, which supports the idea that advanced cognitive
abilities are important for generating this cultural phenomenon in the context of skill learning.

Conclusions: Our results help to explain the observation that animal cultures are widespread, but cumulative
cultural change might be rare.

Keywords: Multi-scale approach, Agent-based model, Mechanism specificity, Traditions, Cumulative culture,
Self-organization

Background
Individuals in various animal species develop group spe-
cific behavioral habits through learning and cultural trans-
mission [1]. In many cases such behavior is directly
related to diet preferences and extractive foraging, and is
thought to enhance survival and reproductive success [2].
In humans, cultural inheritance can also enable individu-
als to acquire complex skills and knowledge that would not
be possible within the lifetime of a single individual [3, 4].
Such culturally defined phenotypes are known to have a
considerable impact on the evolutionary process [5].
Here we use the term ‘cultural phenomena’ to refer to

processes whereby behaviors are inherited across gener-
ations via social influences on learning. We focus on (1)
traditions, which are group-specific behavioral patterns
that remain stable over time, and (2) cumulative cultural
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change, which describes cultural change across genera-
tions that allows individuals to achieve phenotypes that
they could not achieve within their lifetime through aso-
cial learning. Traditions have been identified in various
animal species, including fish [6, 7], capuchin monkeys
[8], great apes [9–11] and cetaceans [12]. In contrast,
cumulative cultural change is generally considered in the
context of technical skills and is widely considered to be
uniquely human [4, 13].
Explanations for the prevalence of both these cultural

phenomena across the animal kingdom have focused on
social learning mechanisms and the cognition that these
are assumed to entail. The term ‘social learning mech-
anism’ (henceforth SLM) relates to the kinds of cues to
which individuals pay attention when learning from con-
specifics [14, 15]. When considering inheritance of tradi-
tions, some researchers have emphasized that cognitively
demanding forms of social learning would be required
to maintain the fidelity and adaptedness of traditions
[16–20]. Moreover, it is generally accepted that the key
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to generating cumulative cultural change is transmission
fidelity of learned skills, and the cognitively demanding
forms of social learning on which the latter is thought to
rely [4, 13].
In contrast, results from multi-scale simulation mod-

els suggest that simple SLMs, like local and stimulus
enhancement, are sufficient for generating traditional dif-
ferences between groups and cumulative cultural change
of diet repertoires in the context of learning what to
eat [21–23]. This result extends the concept of cumula-
tive culture to ‘non-technical’ learning contexts, although
it should be noted that the cumulative cultural change
found in the models [21, 22, 25] can be characterized
as bounded, in the sense that it is restricted to a fixed
set of existing opportunities in the environment. This
contrasts with the apparent open-ended cumulative cul-
tural processes mentioned above, often with increases in
behavioral complexity, a characteristic of humans, and
implies that researchers should distinguish between dif-
ferent kinds of cumulative cultural process. In any case,
the simulation results generate the hypothesis that special
cognitively sophisticated forms of SLM are not neces-
sary for generating traditional differences and cumulative
cultural change.
In the present study, we investigate whether this hypoth-

esis also holds in the context of skill learning, the more
intuitive context in which to consider cumulative cultural
change. It may be fairly straightforward to generate cul-
tural phenomena in relatively simple learning contexts,
such as diet learning, since high fidelity copying only
concerns what kind of resource is interacted with. For
skill learning, high fidelity copying would involve both
what resource is interacted with and how it is interacted
with. Whether simple SLMs suffice to generate cultural
phenomena in this context is therefore uncertain.
To evaluate whether different SLMs can support tra-

ditional differences between groups and cumulative cul-
tural change in the context of skill learning, we study
group foragers that learn what to eat and develop skills
in order to process resources, and in the process consider
three SLMs. Local enhancement (LE), where an animal is
more likely to interact with, and learn about, objects at
a particular location following observation of other ani-
mals at that location [15], is implemented as arising as a
byproduct of grouping [24]. Following van der Post et al.
[22], stimulus enhancement (SE) is implemented as an
increased probability to choose a given resource type hav-
ing observed another forager eating that resource type,
an implementation that closely follows its definition [15].
Finally, observational learning (OL), which is a general
term that represents a number of SLMs, including imi-
tation and emulation [15], following Franz and Matthews
[23], is implemented as a gain in skill that is propor-
tional to the difference in skill between an observer and

a demonstrator. Of these three SLMs, only OL affects
skill learning directly. SE and LE could in principle lead
to increases in skill level, but only indirectly. Such indi-
rect increases in skill levels could occur if LE or SE
lead to reduced repertoire diversity and enable foragers
to spend their limited skill development time on fewer
resources [26].
While we test a hypothesis generated by previous the-

ory, our study is not simply an extension of previous mod-
els. Here we directly contrast multiple SLMs in a relatively
complex model with a large parameter space. To facili-
tate the exploration of parameter space, we use evolved
parameter values for behavioural and learning parameters
based on van der Post et al. [26]. In this way parameters
are optimized relative to foraging success, and the differ-
ent SLMs are compared using parameters that derive from
this standardized criterion. The earlier models did not use
evolved parameters.
In order to include evolved parameters in our model,

we included the relatively natural assumptions of dynamic
group sizes and stochastic birth-death processes in pop-
ulations with multiple groups [26], as opposed to the
fixed group sizes and regularized birth-death processes
in simulations with only one or two groups as assumed
in earlier models [21–25]. However, since we change the
learning context and population level assumptions, and
now include evolved parameters, we will be unable to
pinpoint the exact cause of any differences in the results
we find relative to earlier models. Nevertheless, despite
these limitations, our approach is particularly suitable to
assess whether simple SLMs are sufficient to generate tra-
ditions and cumulative cultural change in the context of
skill learning.
Drawing on previous work [21, 24], we focus on cohe-

sive grouping and environments with patchy resources
where each patch has multiple resource types. This pro-
vides an empirically relevant context for primates and
other social learning species, and is the context in which
LE was found to generate both cultural phenomena [21].
In addition, previous work has established that protracted
learning (as opposed to instantaneous learning) is a pre-
requisite for both traditions and cumulative culture [24].
If learning is protracted it becomes susceptible to stochas-
tic variation in sampling frequencies, leading to arbi-
trary differences in the evaluation of, and preferences for,
different resource types. This generates a positive feed-
back where more familiar resources are more favourably
evaluated and hence more often chosen [21, 23, 24].
As a result, in diverse environments, learning can lead
to idiosyncratic sub-optimal behavioral repertoires (i.e.
local attractors in learning space that are history-defined
and self-reinforcing). Social learning through LE and SE
causes behavioral repertoires and familiarity biases to be
shared amongst group members, thereby leading to the
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emergence of traditions [21–24]. Here, in the context of
skill learning, we vary the protractedness of skill learn-
ing by varying the ‘task difficulty’ of resources in the
environment.
Based on the above mentioned theory we address the

following questions: (1) Do all the SLMs tested generate
traditional differences? (2) Do all the SLMs tested gener-
ate cumulative cultural change? (3) Does task difficulty
enhance cultural phenomena? Here we expect the mag-
nitude of traditional differences to increase with greater
task difficulty when learning is more protracted, and
that cumulative cultural change will occur when within-
lifetime optimization is increasingly limited, which should
occur with greater task difficulty; (4) Do SE and OL
enhance traditional differences and cumulative culture?
Compared to LE, we expect that traditional differences
will be enhanced by SE, because SE enhances within-
group similarity [22], and predict that OL will have the
same effect. We also expect SE to enhance the cumulative
cultural process [22], and in particular, OL, which leads
to direct increases in skill levels, is expected to gener-
ate cumulative cultural change of large magnitude; (5) Do
cumulative cultural increases in skill level and repertoire
quality contribute to energy intake? Next to increases in
repertoire quality [21] we expect increases in skill to con-
tribute to cumulative cultural increases in energy intake.
While only OL affects skill learning directly, SE and LE
could in principle lead to increases in skill level indirectly.
This can happen if LE or SE lead to reduced repertoire
diversity and enable foragers to spend their limited skill
development time on fewer resources [26].

Methods
Our model is an event-based, individual-based model
with a spatially-explicit environment and is freely avail-
able at https://bitbucket.org/dvanderpost/aapjes_bmc_
eb_2016_b. The key design feature of the model is that
we define behavioral decision making and the outcome
of behavioral events, including learning, at a local spatio-
temporal scale. We then study the meso- and macro-
scale consequences of that local behavior to establish
the mapping between different mechanisms at a local
scale and information processing and payoffs at a larger
scale. While the model is formulated ‘keeping primates in
mind’, and a large number of parameter values are based
on estimates of natural primate systems, we expect our
conclusions to generalize to other animal taxa, particu-
larly those with similar movement patterns and repertoire
sizes. The model is based on previous models of learn-
ing in group foragers [21, 22, 24], but now includes skill
learning, dynamic populations and group sizes, and evolv-
ing parameters. Increments in skill arise through asocial
learning or through observational learning (a form of
social learning).

The following model description is limited to those
aspects needed to gain a reasonable understanding of the
results, with key parameters listed in Table 1. For further
details see Section 1 in Additional file 1.

Model overview
We first give a short overview of the model, followed by
further details.

Entities: The model is composed of groups of foragers
and patches made up of resource items, which are situated
in continuous space (Fig. 1a and Additional file 2).

Table 1 List of key parameters and variables

Name Description Values

R Number of resources species 250

Qr Maximum energy reward of
resource type r

N(0.1, 0.1)

Hr Practice time needed before
obtaining half the maximal reward

0.1..10

Sr Scalar for the sigmoid function
describing how rewards increase
with practice

1..4

EC Rate at which resource types are
replaced by new types

0..R types per year

N Population size 100

G Maximum number of foragers in a
group

20

COPY_SPACE Distance at which foragers can
observe what their neighbors are
doing

20

K Effectiveness of observational
learning

0.1

M Maximal time to process and
consume a resource item

1 min

air Expected reward forager i has for
resource type r

any

aie Expected quality of the
environment of forager i

any

eir Energy reward forager i obtains
from resource type r

any

cir Certainty of forager i about reward
obtained from resource type r

0.. inf

sir Skill of forager i for processing
resource type r

0..1

tir Experience (total time) forager i as
processing resource type r

0.. inf

λi Reinforcement learning rate 0..1

εi Exploration rate 0..1

γi Stimulus enhancement 0..1

ωi Probability to OBSERVE neighbor 0..1

τi Duration of OBSERVE 0.01..1 min

φi Update parameter for aie 0..1

δi MOVE distance of forager i 0.. inf

Upper case letters and names: invariant parameters that do not change during
simulations. Lower case letters: (learning) variables that change during a forager’s
lifetime. Greek letters: parameters that can evolve but are invariant during a
forager’s lifetime. Subscripts: i = forager identity; r = resource type

https://bitbucket.org/dvanderpost/aapjes_bmc_eb_2016_b
https://bitbucket.org/dvanderpost/aapjes_bmc_eb_2016_b
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Fig. 1Model details. a Simulation snapshot. Each forager is indicated by a SEARCH area (gray semi-circle), REACH (gray circle) and a movement
trajectory (red to blue line). When a foragers observes another forager the foragers are connected by an olive-green line. For illustration purposes, the
resource items are shown as colored circles, and patches by a larger gray circles. Each patch can be assumed to be a distinct patch type, with unique
resource types (different colours within a patch). b Illustration of decision-making algorithm. Rectangles are actions and ellipses are decision-making
points. After completing one of the actions at the right hand side, all foragers start the decision-making process at the top left (SAFE?). RAND is a
random number between 0 and 1, and ωi is the probability to do OBSERVE. MOVETOFOOD is always followed by EAT. MOVE consists of at many 1
meter steps to complete a distance of δi . c Illustration of how rewards eir change with time spent practicing that skill for different resource types
(Eq. 5): resources for which not much practice is needed (solid lines, low H) and those for which a lot of practice is need (dashed line, high H); and
resources for which rewards increase fast immediately (black lines, low S) and those for which they increase slowly initially (gray lines, high S).
d Illustration of how selectivity (Eq. 1) affects which subset of resources are chosen: overall resource quality distribution given by N(0.1, 0.1) (light
gray) and subsets chosen when selectivity is low (dark gray, aie = 0.1) and high (black, aie = 0.3), given σi = 5 and assuming the forager knows all
resources perfectly

State variables: Resources items are defined by a posi-
tion, and a type which is characterized by quality Qr , and
two parameters defining how difficult the resource type
is to process (Hr and Sr), or ‘task difficulty’. Hr defines
the practice time (or experience) needed to develop half
of the maximal skill for that resource type, and Sr defines
the shape of the function of how skill increases with expe-
rience (see ‘Skill learning’ below). Patches are emergent
from clumps of resource items in space, and have a type
defined by a set of 5 resource types that only occur in
patches of that type. Foragers are defined by a position
and heading, a current action and a time to its comple-
tion, short-term memory about movement and foraging
goals, and long-term memory about the rewards associ-
ated with resources and resource processing skill. Foragers
can differ in their information about resources and skill
levels, as well as in their propensity for learning as defined
by parameters that can mutate (see Table 1).

Processes and scheduling: The implemented processes
in our model are: (i) local decision making and move-
ment of foragers; (ii) learning; (iii) life-history updating
and demographics; and (iv) environmental updating.
Local decisionmaking is governed by a decision-making

algorithmwhich encodes sensing, decisionmaking, move-
ment, grouping and the updating of short-term memory.
In simulations with grouping, foragers belong to a par-
ticular group, and follow behavior rules that ensure that
groups move cohesively through the environment. All for-
agers are placed in a queue according to the time their
action ends. The forager with the least time remaining is
next to choose an action and is put back in the queue
according to the time its new action ends. In this event-
based setup, actions of foragers can overlap in time, and
some foragers can complete multiple quick actions (e.g.
move) while others are engaged in actions that take more
time (e.g. searching for food).
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The learning algorithms include representations of indi-
vidual and social learning, and update long term memory
about properties of resources that foragers interact with
as a consequence of their decisions.
Life-history updating occurs at regular time intervals

and includes: (i) metabolism or energy expenditure; (ii)
digestion of consumed resources; (iii) deaths and (iv)
births of foragers; and (v) splitting of groups. After a
forager dies, a forager is selected from the remaining pop-
ulation to reproduce, thus maintaining a fixed population
size. Foragers are selected to reproduce in relation to their
energy levels, where a doubling in energy leads to an 8-
fold increase in the probability to reproduce. Offspring
inherit the parameter values of their parents with a chance
of mutation (see Table 1). In simulations with grouping,
groups grow due to births until they reach a maximum
size, and then split randomly into two equally sized daugh-
ter groups. Groups shrink due to deaths and disappear
when the last group member dies.
Environmental updating occurs at regular intervals and

involves the ‘growth’ of all resource items at the begin-
ning of each year and ‘environmental change’ that changes
an existing resource types into an unknown (for for-
agers) new resource type. ‘Resource consumption’ occurs
when foragers consume resources as determined by ‘local
decision making’.

Spatio-temporal scaling: The environment is a contin-
uous space of about 40 km2, foragers take steps of a
meter at a speed of 0.5 m/s, and patches are 20 meters
in diameter (Fig. 1a and Additional file 2). Foragers can
observe resources up to 2 meters away, and can observe
which resources their neighbors are interacting with at 20
meters (a best case scenario for social learning, Additional
file 3). There are no constraints on observing group mem-
bers for grouping purposes in order to ensure cohesive
groups, but the spread of groups tends to be in the order of
5–40 meters. All movement occurs in continuous space
and there are no constraints on direction.
The timescale is defined in terms of the foragers’ behav-

ioral actions that vary in duration from about a few
seconds to a minute. In the model a year is defined as
360 days, and a day is 12 hours or 720 minutes, where
we focus on daylight time in a day. Thus foragers can
complete many hundreds of behavioral actions in a day
and learn from them. Energy expenditure (metabolism)
occurs every minute. Digestion occurs every 100 minutes
(DIGESTIONTIME). Foragers can live maximally for 20
years, but can die before that at any minute.

Resources
In our default setting, resource items of 250 resource types
are distributed in 24500 patches with 1200 items each.
There are 50 patch types, and a patch type is characterized

by the presence of five resources types that only occur
in that patch type (as in trees with fruit, leaves, flow-
ers etc). In order to generate variation across patches of
a given type, each patch of a given type is defined by
three resource types which are randomly selected from
the five resource types that characterize that patch type.
While these parameter values typically underestimate the
diversity of natural environments, we strike a pragmatic
balance between model complexity and simulation envi-
ronments that are too simple, and where learning hardly
plays a role [24]. We compare this ecological context with
randomly distributed resources without patches, and pure
patches where each patch type has only one resource type.
Resource items disappear when consumed by foragers,

and are then unavailable for consumption. Resource
‘growth’ happens once a year, when all resource items
that have been consumed by foragers reappear in the
exact same position (for computational reasons) and with
the same type. Environmental change occurs randomly
at any minute with a given probability and changes a
randomly selected resource type into another newly gen-
erated resource type which is unfamiliar to the foragers.
For ease of interpretation we express this as a rate,
namely how many resource types change per year (EC).
All resource items of the disappearing type change into
the new resource type. We vary environmental change
EC across simulations to determine the effect of environ-
mental change. We compare this kind of environmental
change to one where resources do not disappear and
change into new ones, but where resources remain famil-
iar but change in quality.
The quality of a resource type Qr is drawn from a ran-

dom distribution with mean 0.1 and standard deviation of
0.1 (Fig. 1b light gray), and all items of a given resource
type have the same quality. Thus we generate variation in
quality across resource types which enables the learning
process to be studied as an optimization process. Quality
defines the maximal reward that a forager can obtain from
a resource type when it has sufficient experience with pro-
cessing that resource type. Task difficulty is defined by
Hr , the practice time (or experience) needed to obtain
half of the maximal reward of that resource type, and Sr ,
which defines how the reward increases with experience
(see ‘Skill learning’ below). Sr varies randomly between 1
and 4 (integer values only) and Hr is varied across simu-
lations to determine an overall difficulty of learning in the
environment.

Local decision making
Foragers can choose between several local actions,
namely, MOVE, SEARCH, MOVETOFOOD, EAT,
MOVETOGROUP, OBSERVE and NOTHING, which
are selected according to a decision-making algorithm
(Fig. 1b). In the algorithm, individuals start by checking
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if they are safe (CHECKSAFE), which implies having a
sufficient number of neighbors (9) in SAFESPACE (17
meters). During CHECKSAFE, foragers can also observe
group members within COPYSPACE (20 meters), and can
monitor the resources with which those neighbors inter-
act (Fig. 1a). These observations are relevant for stimulus
enhancement (SE) and observational learning (OL).
If not safe, foragers do MOVETOGROUP, which means

that a forager moves towards the center of its group, cal-
culated as the mean position of the other members of
its group (Fig. 1b, first line). Once safe, the forager then
aligns its own heading with the average direction of other
members of its group in ALIGNSPACE (20 meters). This
attraction-alignment algorithm ensures that foragers stay
together but travel in a relatively efficient manner through
the environment.
If safe, foragers do OBSERVE (τi minutes) with proba-

bility ωi, which leads to observational learning (OL, see
below; (Fig. 1b, second line). Otherwise, with probability
1 − ωi, foragers will select one of the remaining actions.
If foragers are not HUNGRY (stomach content is at a
maximum capacity of 20 resource items), foragers will do
NOTHING (1 min; Fig. 1b, third line). Stomach contents
are reset to zero at DIGESTIONTIME.
If HUNGRY, and if they have already selected a resource

item for consumption (FOODTARGET), foragers will
EAT (1 min), or MOVETOFOOD if the item is beyond
reach (0.9 meters) and EAT once the item is within reach
(Fig. 1b, fourth line). If foragers do not yet have a FOOD-
TARGET but their last action was SEARCH, this means
they did not find any resource items in view sufficiently
attractive and then they will MOVE forward δi meters in
the direction the foragers are facing (Fig. 1b, fifth line).
If they did not yet SEARCH, they will SEARCH (Fig. 1b,
sixth line). During SEARCH up to 20 resource items in
view (2 meters) are assessed in sequence (Fig. 1a, grey
semi-circles). The 20 items are randomly selected from
those in view. The search terminates as soon as an item
is chosen for consumption, or when none of the items is
chosen.

Food choice algorithm
During SEARCH, a forager’s decision to EAT a given
resource item is determined by its (i) exploration ten-
dency PE (see below), (ii) personal information about the
rewards associated with that resource type (air), and (iii)
whether the forager has been socially stimulated by see-
ing another forager eat that resource type PS (see below).
During evaluation of a resource item, these three factors
come together to determine the probability PF to choose
to eat that item as follows:

PF =P(r|air , aie, σi,PE ,PS) = min
[
1.0,

(
air
aie

)σi

+ PE + PS
]

(1)

where air is the reward forager i expects from resource
type r (personal information based on reinforcement
learning), aie is an assessment of the quality of resources
that can be found in the environment (see below), and σi
scales selectivity, i.e. how likely an individual selects when
the expected reward air < aie (the expected quality of
resources in the environment). Since associations are ini-
tially zero (air = 0), unknown resource types can only
be sampled via exploration (PE) or social stimulation (PS).
For solitary foragers this means that the exploration rate
PE must be greater than zero. For grouping foragers, social
stimulation PS could in principle replace exploration PE as
the means to sample unknown resources. Once expected
rewards air > 0,

(
air
aie

)σi
contributes to the probability of

choosing a certain resource type, which is maximal when
air > aie and less than one if air < aie. If air > aie, the for-
ager is certain to choose the resource item, irrespective of
PE and PS. The impact of PE and PS is therefore greatest
when resource are relatively unfamiliar (air < aie).
Selectivity is adjusted relative to environmental condi-

tions by adjusting the expected quality of the environ-
ment aie (Fig. 1d, compare dark gray and black). When
a forager’s stomach is not full at DIGESTIONTIME, the
forager decreases its environmental expectation: a′

ie =
(1.0−φi)aie; otherwise the expectation is increased: a′

ie =
(1.0+ φi)aie, where φi determines the rate with which the
expected quality of the environment aie is changed. Each
time the forager is too selective, it does not fill its stom-
ach and reduces its selectivity, and vice versa. As a result,
aie is tuned in order to optimise energy intake, within
the constraints of the algorithm. Qualitatively, this selec-
tion algorithm can give rise to the optimal food choice
rule [27] where only resources above a certain perceived
quality are eaten and all others are ignored (zero-one
rule). Note however that our algorithm works on per-
ceived quality and not actual quality since the foragers
are learning about resource quality and are not omni-
scient. Moreover, we let selectivity parameter σi evolve,
so that while the zero-one rule is possible, it need not
evolve and we don’t restrict the selection algorithm in
this sense.

Satiation aversion: foragers develop temporary aver-
sions after becoming satiated (stomach filled) with a given
resource type. Satiation aversion causes foragers to com-
pletely ignore that resource type for one DIGESTION
cycle (100 minutes) after which the aversion disappears.
Satiation is common in foragers like primates that con-
sume many secondary ‘toxic’ compounds [28], and/or
require a balanced diet [29]. This model specification was
added to ensure that foragers consume a diverse set of
resource types [21], as is typical for primates and as was
assumed in previous models [21, 24].
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Learning
In the absence of any social influences on learning, learn-
ing in our model is composed of (i) exploration, (ii) skill
learning, and (iii) reinforcement learning about rewards
associated with resources. All foragers start life without
any knowledge about resources, and so do not have any
expectation about energy rewards (air = 0) nor any
resource processing skill. To enable foragers to sample
(partially) unfamiliar resource types, and hence to start
learning, we implemented exploration. After processing
resource items, foragers develop skill, which increases the
rewards they can obtain from resources items of that
type. After consuming resource items, foragers develop
expectations about rewards via reinforcement, and can
use those to decide what to eat. Note that for simplicity we
do not include ‘forgetting’, and acquired skills and reward
estimates are maintained indefinitely. We do not expect
this to affect the results qualitatively.

Exploration: The probability that a forager explores an
item of resource type r is:

PE = P(r|εi, cir) = εi(1 − cir) (2)

εi is the exploration rate, and cir is the certainty with which
forager i assesses the reward of resource type r. Certainty
was included to ensure that foragers do not continue
exploring when already highly familiar with resources. For
completely unfamiliar resources cir = 0 and there is no
certainty. However, when rewards from resource types no
longer change, for instance because skill levels are high,
certainty becomes high, and foragers end up with a low
tendency to explore that resource type. Certainty cir is
updated as follows:

c′ir = (1− λi)cir + λi

(
1 − min

(
1.0,

∣∣∣∣eir − air
eir

∣∣∣∣
))

(3)

where eir is the reward forager i obtains from resource r,
and the same learning rate (λi) and discrepancy between
actual and expected rewards (eir − air) are used as during
updating of expected rewards (see Eq. 6).

Skill learning: A forager i’s skill sir for processing a spe-
cific resource r is a function of experience tir and ‘task
difficulty’:

sir = tSrir
HSr
r + tSrir

(4)

which is 0 when experience tir = 0 and tends to 1 when tir
becomes very large. Experience tir is the total time a for-
ager i has spent processing a resource type r in its life, and
increases each time the forager processes and consumes a
resource item of type r.

Skill sir determines the reward eir forager i obtains from
resource type r as a function of resource quality Qr :

eir = Qrsir + N(0,Z) (5)

where N(0,Z) represents environmental noise, where a
value is drawn from a normal distribution with mean 0
and a standard deviation of Z (0.005). Resource types
with high H (Fig. 1c, dashed lines) take longer to learn,
while resource types with high S have a shallow incre-
ment in rewards during initial learning (Fig. 1c, gray lines).
Note that for simplicity we assume that while for differ-
ent foragers the same resource items can provide different
energy, depletion from the environment and the num-
ber of items that can be eaten is the same. This can be
interpreted as foragers consuming a certain amount of
resource in a given amount of time irrespective of how
well it is processed, but that energy obtained depends on
processing. Moreover the item is then no longer available
for other foragers.

Reinforcement learning about expected rewards: The
rewards that foragers associate with each resource type r
are updated via reinforcement as follows:

a′
ir = air + λi(eir − air) (6)

where association air is the reward that forager i asso-
ciates with resource type r, eir is the energy obtained
from resource type r, and λi is the learning rate. This
corresponds to a Rescorla-Wagner model [30] where all
stimuli have the same salience. Associations are initially
non-existent (i.e. zero), and the reward is obtained imme-
diately after consumption of the resource leading to direct
reinforcement.

Social influences on learning
Local enhancement (LE): Arises spontaneously through
grouping behaviour, since individuals are inclined to
approach locations in which othermembers of their group
are found, and thereafter to interact with resources in
those regions. We therefore do not directly implement
local enhancement, but it emerges spontaneously as soon
as foragers move in groups [24]. The local enhancement
that we consider is coarse grained, and does not direct
individuals to particular resources, or to features of those
resources.
For the two other social learning mechanisms, dur-

ing CHECKSAFE a random ‘demonstrator’ is selected
from any neighbors in COPYSPACE (see ‘Forager behav-
ior’) that are processing and consuming a resource. The
impact of the demonstrator depends on the social learning
mechanism.

Stimulus enhancement (SE): In addition to selecting
resources according to their expected reward and the
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tendency to explore a given resource type asocially, SE
increases a forager’s probability to consume resource type
r by:

PS = P(r|γi, d) = dγi (7)

where γi indicates the strength of SE, and d = 1 if forager
i observed a neighbor consuming resource r within the
last 30 minutes and otherwise d = 0. Only one resource
type r is subject to SE at a time. SE does not directly affect
expected rewards or skill.

Observational learning (OL): Occurs during the action
OBSERVE at rate ωi (see ‘Forager behavior’) and allows
forager i to increase its processing skill for a specific
resource type, in proportion to the time spent observing,
where the change in experience 
tir is:


tir = max
[
K
oik
M

(tkr − tir), 0.0
]

(8)

where K scales the increase, determining how effective
skill copying is, and oik is the effective time forager i
observes neighbor k: oik = min[ τi, pk], where τi is the
maximum time forager i decides to spend observing its
neighbor, and pk is the time left for neighbor k to com-
plete its present action. Greater observation time leads to
greater skill acquisition, where maximal observation time
is the maximal time it takes to process and consume a
resource (M). The increase in the skill level is bound to
the skill level of the observed individual, and there is no
skill gain if the skill level of the observed individual is
lower than, or equal to, the forager’s own skill level. A
forager does not know in advance whether a ‘demonstra-
tor’ is highly skilled or not. Observation does not provide
information about rewards.

Energy budget, population turn-over and selection
The energy budget is determined by (i) energy gain due
rewards from food intake which depends on learning
at every DIGESTIONTIME, (ii) a per minute energy
metabolism cost (METABOLISM, see Section 1 in
Additional file 1), and (iii) an energy costs of 5000 for a
reproduction event, which represents a substantial part
of total energy. Energy accumulates if energy intake from
food exceeds metabolism and reproduction costs. A lim-
ited stomach capacity and digestion intervals were added
to the model to ensure selective foraging, as is typical for
primates and as was assumed in previous models [21, 24].
In addition, an explicit metabolism cost, ensures that there
is a viability constraint in the model, where foragers must
gain enough energy from food otherwise they die.
Foragers die of old age (at 20 years), stochastically deter-

mined deaths, or starvation. Births occur as a function
of energy reserves each time a forager dies, keeping the

population constant at sizeN (100), where probability that
forager i reproduces is:

PR = P(i|N) = hWi∑N
j=1 hWj

(9)

where hi is an individuals energy level, N is the popula-
tion size, and W (=3) scales the strength of the selection
function.
The learning and foraging parameters δi, φi, σi, εi, λi,

γi, ωi, τi, are specific to forager i. Parameter combinations
that lead to greater energy levels lead to faster rates of
reproduction. An offspring inherits its parent’s parame-
ters, with a chance of mutation (0.05). In case of mutation,
a new parameter value is drawn from a normal distribu-
tion centered on the parent’s parameter value, and with
a standard deviation that is one fifth of the maximum
value of the parameter (see Table 1). Thus parameters
can vary between individuals and can evolve over time
via inheritance to offspring, mutation and natural selec-
tion. The mutation rate was selected operationally such
that parameters evolve consistently within a reasonable
time frame.
Foragers are born in their parent’s group. There is no

migration between groups. The population is inviable if
the average energy level does not rise above the minimum
energy needed to give birth.

Emergent dynamics
Since we only define local sensing and behavioral actions
of foragers, the development of a forager’s repertoire
emerges from its interaction with the environment over
time. This environment includes the resources and their
distribution, which affects the temporal autocorrelations
in encounters with resources. The movement of foragers
is characterized by inter-patch travel where no resource
items are found, and intra-patch search, assessment and
consumption of resource items. Within each patch, a for-
ager has access to the resource types that are present
in that patch. Over their lifetime, foragers encounter all
patch types and all the resource types they contain, many
times, thus there is ample opportunity to consume all
resource types repeatedly. On reaching a patch, a for-
ager’s experience with those resource types will depend on
previous encounters with those resource types, and if it
consumed those resources in the previous digestion cycle
it could be satiated with respect to those resource types.
The dynamics of foraging are characterized by learn-

ing and food choice [21, 24]. Foragers move through the
environment and when they encounter resource items,
the food choice algorithm determines whether any are
consumed (Eq. 1). Foragers start out exploring various
unknown resources (via PE and/or PS), and as they gain
experience about rewards, personal information tends
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to become more dominant in their food choices. Per-
sonal experience is updated after consumption events and
includes air , the assessment of rewards (Eq. 6) and the
increment of skill (Eq. 4) which in turn increases the
reward obtained (Eq. 5). Due to consumption of many
resources, the expectation of the environment aie will
increase, increasing the fraction of resources for which
aie is greater than an expected reward air . This increases
selectivity towards resources with high expected reward
air , and can lead to reduced food intake (i.e. a forager’s
stomach is no longer full at digestion). At this point the
expectation of the environment aie decreases again.
Thus the forager’s expectation of the environment aie

tends to equilibrate on a value in relation to values of
air , such that the intake of resource items is close to the
maximum of 20. This ensures that the forager is eating
selectively but still eating close to the maximal number of
resource items within each digestion cycle (DIGESTON-
TIME). The ratio of air to aie is therefore similar across
simulation types, irrespective of how fast air increases due
to differences in skill development time.
The combination of (i) food choice biased to resource

types with high expected reward air (selective foraging),
and (ii) learning via updating of air and experience tir ,
generates a positive feedback. This positive feedback gen-
erates a familiarity bias and a development process that
is contingent on stochastic initial conditions, leading to
idiosyncratic learning histories and somewhat arbitrary
variation between foragers in their knowledge of the envi-
ronment. Therefore, while learning is biased towards high
quality resources, due to an intrinsic familiarity bias in
the process, learning could get ‘stuck’ on a self-stabilizing
repertoire as soon as this repertoire fulfills the intake
needs of the forager [24]. Previous work has shown that
this familiarity bias becomes strong in environments with
pure patches, and when foragers do not become satiated
after eating a lot of a given food type [21, 24]. We there-
fore focus on patches with several resources and satiation
as a default case, so that the familiarity bias is not unrea-
sonably strong such that foragers only end up consuming
a few resource types.
The familiarity bias implies that foragers have greater

experience tir for some resources than others, and also
a more accurate assessment air of rewards eir . Since
learning rate λi typically evolves to high values [26], an
expected reward air is generally an accurate estimate of
the actual reward eir . The main cause for differences in
familiarity is therefore differences in processing experi-
ence tir and these determine differences between reward
eir and expected reward air . As a result, the impact of
social influences on learning therefore concern (i) biases
on choosing resource types, which indirectly affect expe-
rience tir in the case of LE and SE, and (ii) direct gains in
experience tir in the case of OL.

In groups, the actions of neighbors and group-level
dynamics can have indirect and direct influences on food
choices and learning [24]. Due to the need to stay in a
group (imposed in the model), there is a strong ‘consen-
sus’ or ‘conformity’ effect, where the decision of neighbors
to stop or not stop in a patch can affect the feeding
opportunities of foragers and hence their learning trajec-
tories. This social influence on learning due to group-
ing, which we refer to as LE, is an emergent process in
our model. This process occurs in patchy environments,
because grouping causes foragers to share the same forag-
ing opportunities at the same time. As a result, foragers in
groups share learning histories and develop similar behav-
ioral repertoires [24]. Moreover, the direct observation
of neighbors and its effects, depends on what neighbors
have decided to eat, or depends on copying opportunities
[22]. In turn, the effect of a social stimulus will depend on
what an observer already knows, and whether it can find
the resource type of interest. If a forager would already
choose a resource item on its own accord (air > aie) then
the social stimulus PS would not matter and the social
influence would be redundant. Moreover, PS can increase
the rate of food intake and feedback on selectivity via the
updating of the expectation of the environment aie.
When naive foragers are introduced due to population

turnover, and these follow the group, they end up spend-
ing time in patches that are already preferred by experi-
enced foragers. As a result, their development is biased
towards resources that the group already consumes. Since
familiarity and preference are self-reinforcing (also emer-
gent in the model) the young foragers could end up
developing the same preference biases and so can end
up inheriting their group’s behavioral repertoire [21]. If
behavioral repertoires are unique to a given group and
persist across generations, then this can be seen as tradi-
tional differences between groups or cultural variation.
In addition to developing more or less the same behav-

ioral repertoire as their group, young foragers could also
become more selective than older foragers, resulting in
their rejection of the lower quality resources in the group
repertoire [21]. This is possible because young foragers
experience a different ‘frame of reference’ with respect
to their repertoire development than older ones have,
where young foragers can select a subset within the reper-
toire of their group. In addition, young foragers could add
resource types to their repertoire that are novel for the
group since initially they do not have a familiarity bias.
However, these resource types will only be selected if they
are considered to be sufficiently rewarding relative to oth-
ers in the repertoire. Hence this process tends to lead
to the inclusion of relatively high quality novel resource
types. In sum, both the rejection of low quality resource
types and the inclusion of high quality ones, can gener-
ate a process whereby the repertoire quality in the group
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improves over generations beyond the lifespan of a single
forager. This can be seen as a cumulative cultural process
[21]. Note that this process will mainly occur in the early
stages when a group explores a new environment. After
a while the cumulative process levels off, and new gen-
erations no longer become more selective than previous
generations.

Simulations and analysis
In a previous study we used the same model to establish
the evolutionary attractors in different environmental
conditions, and determine the payoffs and informa-
tion production associated with different social learning
mechanisms [26]. These parameters define foraging and
different (social) learningmechanisms in the foragers. The
evolved learning parameters are exploration (εi), stimu-
lus enhancement (γi) and observational learning (ωi and
τi). The evolved foraging parameters (δi, σi, φi, λi) ensure
that the foraging and reinforcement learning parameters
are not arbitrarily defined, but have co-evolved with the
main parameters of interest. Here we studied whether and
how these evolved parameters lead to traditional differ-
ences between groups (cultural variation) and cumulative
cultural change in energy intake.
In our analysis we focused on questions that arose

from expectations based on previous research (see
Introduction). To address these questions we used non-
evolutionary simulations initialized with evolved parame-
ters to measure diet repertoire statistics in more detail. To
study the effect of protracted learning, we varied the task
difficulty of resources (Hr).
We consider traditions to be between-group differences

that are inherited over time due to social learning. To
quantify to which extent between-group differences are
inherited we combined (1) a measure of within-group
repertoire similarity across time, and (2) a measure of
between-group differences in repertoires at a given point
in time. Within-group similarity across time on its own is
insufficient for identifying inheritance, since next to social
learning, within-group similarity can also be generated
if all individuals converge on feeding on the same high
quality resources due to repertoire optimization. Thus we
needed to establish that the group-level repertoires that
were maintained over time were distinct from those of
other groups, hence ruling out population-level conver-
gence due to factors such as repertoire optimization.
To do so we calculated the difference between within-

group similarity over time and between-group similarity
at one specific point in time [21]. We calculated within-
group similarity over time as the overlap in repertoires at
year 120 and 100. This 20 year period ensured there is no
overlap in foragers at the two time points. For between-
group similarity we calculated overlap between a group
and other groups in an independent simulation with the

exact same environment. In this way we controlled for
relatedness between groups, and competition between
groups, which increase and decrease between-group sim-
ilarity respectively. We calculated average repertoire simi-
larity between groups k and l as:

Ōk,l = 1
GkGl

i=Gk∑
i=1

j=Gl∑
j=1;j!=i

�di • �dj
| �di|.| �dj|

(10)

where �di is the vector of number of items eaten per
resource type (behavioral repertoire) of forager i, �di • �dj is
the dot product of the behavioral repertoires of foragers
i, j, | �di| = √

(
∑r=R

r=1 |di,r|2) is the length of vector �di, R
is the number of resources types, and Gk is the number
of foragers in group k. This function returns a value of
1 if the group-level repertoire is identical in both groups
(i.e. either for the same group at different point in time
or between two groups at the same point in time), and it
returns a value of 0 if there is no overlap in repertoires
(i.e. the none of the resources in one repertoire exist in the
other repertoire).
For cumulative cultural change we focused on energy

intake over time. We used a conservative approach to
focus on whether cultural processes enable phenotypes
that are beyond what foragers can achieve within a single
lifetime. We therefore considered the difference between
(1) year 20, which represents the maximum that individ-
uals can achieve within their lifetime, and (2) year 120,
the end of our simulation by which time the cumula-
tive process had levelled off. The change was expressed
as a proportion of the measure at year 20, where total
energy intake is calculated as follows: (i) total energy

intake =
r=R∑
r=1

direir , where dir is the total number of

items of resource type r that were consumed by forager
i, and eir is the per item reward obtained. We repeated
this analysis on other repertoire measures in order to
analyze whether skill, repertoire quality and repertoire
diversity also change cumulatively: (ii) repertoire quality

=
r=R∑
r=1

zirQr ; (iii) repertoire diversity =
r=R∑
r=1

−zir log zir ;

(iv) average skill =
r=R∑
r=1

zirsir , where zir is the propor-

tion of resource r in individual i’s diet, Qr is the quality
of resource type r, and sir is the skill forager i has for
resource type r. Note that for repertoire diversity we only
considered resource types that had been consumed (i.e.
zir > 0). In contrast to measuring traditional differences,
we used different random seeds for the environment in
each simulation so as to not repeat the exact same pattern
of environmental change.
As a default we considered patchy environments with

multiple resource types in each patch (mixed patches) and
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with a low but reasonable rate of environmental change
[25]: a random 5 resource types per year were replaced
with a new kind of resource type with a randomly assigned
resource quality Qr . We did not vary parameters that
defined life-history characteristics and spatio-temporal
scaling as this is beyond the scope of study. In sum, while
the analysis contained a large number of parameters, the
vast majority of these provide a realistic simulation con-
text, and the parameter space for the remaining few was
explored within realistic bounds [26].

Results
Do all the SLMs tested generate traditional differences?
We find that all SLMs can generate traditional differences
under a wide range of environmental conditions. In Fig. 2a
we show average levels of traditional differences between
groups. We show statistically significant increases in tra-
ditional differences using solid symbols (Fig. 2, Wilcoxon
signed rank test with continuity correction and a Bonfer-
roni corrected α level of 0.0125 to maintain a familywise
error rate of 0.05). Statistically significant traditional dif-
ferences are generated for all H conditions, but are non-
negligible for H > 0.1 (Fig. 2a). At H = 0.1 we do
obtain statistically significant results since the distribu-
tion is skewed to be above zero, but the magnitude of
traditional differences is very small.

Do all the SLMs tested generate cumulative cultural
change?
In contrast to traditional differences, cumulative cultural
change is restricted to OL for a narrow range of environ-
mental conditions. In Fig. 2b we show average levels of
cumulative cultural increases in energy intake. Statistically
significant cumulative cultural change is only generated
for OL and only for H = 10 (Fig. 2b, solid triangles,

Wilcoxon signed rank test with continuity correction and
a Bonferroni corrected α level of 0.0125 tomaintain a fam-
ilywise error rate of 0.05). Note that foragers in groups
with LE or SE are not viable at H = 10 [26] and are
excluded.

Does task difficulty enhance cultural phenomena?
Our results confirm that learning needs to be sufficiently
protracted to generate traditions and cumulative cultural
change. In Fig. 2 we can observe that task difficulty must
be sufficiently high, (i.e. learning must be sufficiently pro-
tracted, before these cultural phenomena are generated,
H > 0.1). At H = 0.1 learning is very easy and all for-
agers are effectively all knowing and all the groups are the
same and there are no traditional differences. Once learn-
ing is sufficiently difficult (H > 0.1) traditional differences
can arise. However, the specific effects of different task
difficulties varies between traditions and cumulative cul-
tural increase, where the latter requires very high task
difficulty before is detectable. Moreover, increasing task
difficulty beyond H = 1 does not necessarily lead to
greater traditional differences, and after H = 1 tradi-
tional differences actually level off or even decline. This
occurs due to population-wide convergence on resource
types that are easy to learn which becomes increasingly
pronounced as task difficulty increases (see Section 2 in
Additional file 1 for more details).

Do SE and OL enhance traditional differences and
cumulative culture?
In contrast to our expectation, we did not observe that
SE and OL enhance traditional differences compared to
LE (Fig. 2a). In fact the greatest traditional differences are
found for LE. We also do not find that LE or SE generate
cumulative cultural change (Fig. 2b, squares and circles).

Fig. 2 Traditional differences a and cumulative cultural increase in energy intake b as a function of SLMs and task difficulty (H) for EC=5. Blue = LE,
Orange = SE, and Red = OL. Solid symbols represent those cases where we find a statistically significant increase in energy intake (Wilcoxon signed
rank test with continuity correction and a Bonferroni corrected α level of 0.0125 to maintain a familywise error rate of 0.05). LE and SE are inviable at
H10 and are excluded. Each data point is the mean of 10 simulations, and whiskers show standard deviation. The calculation of traditional
differences and cumulative cultural change is explained in the ’Simulations and analysis’ section
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The reason that between-group differences are great-
est for LE is that repertoire optimization is lowest for
LE (Fig. 3c, compare blue to orange and red). In SE
and especially OL, greater repertoire optimization [26]
leads to convergence in repertoires between groups,
diminishing between-group differences. For between-
group differences, we find nearly the exact same pat-
tern as for traditional differences (compare Fig. 3a with
Fig. 2a). For within-group similarity over time, we find
that similarity is high overall (Fig. 3b), but lowest for
LE (blue), and greatest for OL (red). Given that we
calculate traditional differences based on (1) between-
group differences (1 - between-group similarity) and (2)
within-group similarity across time, between-group dif-
ferences are the main determinant of traditional dif-
ferences in our results. Thus, even though LE exhibits
the lowest within-group similarity, due to large between
group differences, LE exhibits the greatest traditional
differences.

Do cumulative cultural increases in skill level and
repertoire quality contribute to energy intake?
As expected, we find that when OL generates a cumula-
tive cultural increase in energy levels, this is accompanied

by a cumulative cultural increase in skill level (Fig. 3d).
In Fig. 3d we can observe that OL at H = 10 leads to a
large increase in skill level. We find that next to increases
in skill, OL at H = 10 also leads to cumulative cultural
increases in repertoire quality (Fig. 3d). Thus the increases
in energy intake result from both increases in skill level
and repertoire quality.
In previous research we found that decreases in reper-

toire diversity could lead to increases in skill level, because
a narrower repertoire enables greater skill development
per resource type [26]. In Fig. 3d we show that there is
no decline in per capita repertoire diversity as skill lev-
els increase (blue). This indicates that the increase in skill
levels occurs via direct effects, where OL enables for-
agers to shortcut the developmental process by using the
experience of other foragers. As a result they can achieve
even greater levels of skill than the previous generations.
Moreover, given that there is no decrease in per capita
repertoire diversity (Fig. 3d), the increase in repertoire
quality implies a replacement, or even addition of high
quality resources to the repertoire. We therefore see an
increase in skill levels while repertoire diversity is main-
tained, which means that the overall level and quality of
knowledge increases.

Fig. 3 Between-group differences (1 - between-group similarity) (a), within-group similarity over time (b), repertoire quality c for different task
difficulty (H), and different kinds of cumulative process for OL at H = 10 (d). For a–c: Blue = LE, Orange = SE, and Red = OL. LE and SE are inviable at
H10 and are excluded. Each data point is the mean of 10 simulations, and whiskers show standard deviation. For d: Boxplots show minimum, 1st
quartile, median, 3rd quartile, and maximum, where data comes from 10 simulations. The calculation of repertoire statistics and cumulative cultural
change is explained in the ’Simulations and analysis’ section
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Discussion and conclusions
Our results inform the debate over the cognitive require-
ments of culture. The findings are consistent with the
idea that cognitively demanding SLMs are necessary for
the generation of cumulative cultural change, but imply
that traditions can result from simple SLMs. LE and
SE can generate traditional differences between groups
even though these basic SLMs do not affect skill learning
directly. Our results support the idea that animal cultures
will be widespread, but cumulative cultural change might
be rare.
Overall our results support previous theory in the con-

text of ‘learning what to eat’ [21] that predicts LE can
suffice to generate traditional differences between groups
in patchy environments. Here we demonstrate that this
result also holds in the context of skill learning with vari-
able group sizes, stochastic demographics and evolving
parameters. These findings lend support to the idea that
traditional differences between groups, even with respect
to skill learning, do not rely on cognitively demanding
forms of social learning [21, 23].
In contrast to previous ‘diet learning’ simulation results

[21, 22] we found that LE and SE are not sufficient for
generating cumulative cultural increases in energy intake.
Instead, cumulative cultural change is limited to environ-
ments with very high task difficulty (H = 10) and when
foragers are capable of OL. Thus it is possible that previ-
ous results [21] are not robust to the change in learning
context, and/or to one of the other assumptions that we
changed in our model: stochastic population dynamics
with variable group sizes, evolved parameters and envi-
ronmental change. This will have to be determined by fur-
ther model studies that revisit the ’diet learning’ context
and investigate whether stochastic population dynam-
ics with variable group sizes, evolved parameters and
environmental change alter the previously found results.
For now, we conclude that finding cumulative cultural
increases in energy intake is likely to be context depen-
dent. In particular, our results here support the idea that
cumulative cultural change is promoted by cognitively
demanding forms of social learning [4, 13].
In support of previous findings, we find that pro-

tracted learning is important for both cultural phenomena
[21, 24]. On the one hand, protracted learning tends to
limit the optimization of repertoires allowing for arbitrary
variation between groups and hence traditional differ-
ences. On the other hand, the within-lifetime limitation
of optimization of repertoires make cumulative cultural
processes possible. In previous work we also found that
protracted learning is important for the costs and bene-
fits associated with particular SLMs [26]. Thusmulti-scale
models with protracted learning allow us to study the
adaptive and cultural impact of particular SLMs rather
than assume them. In this way multi-scale models can be

used to evaluate the assumptions we make about social
learning in various top-down verbal and formal models.

Implications for the evolution of animal culture
Previously we found that LE did not increase energy
intake relative to solitary foraging [26], and concluded
that grouping would probably evolve for other reasons, for
example as an anti-predation strategy [31]. If so, then our
model here, like a previous model [21], predicts that tradi-
tional differences would evolve as a side-effect of grouping
without any special cognitive adaptation besides those
needed for living in groups.
Relative to this baseline of traditional differences as

an evolutionary byproduct, we showed in previous work
that SE and OL can readily evolve because they enhance
the level of foraging efficiency [26]. Here we show that
the evolution of such increased optimization need not
generate greater traditional differences between groups,
but could instead reduce them (Fig. 3a). It is intuitive to
assume that more accurate SLMs will increase within-
group similarity (or conformity) and hence increase dif-
ferences between groups [32]. However, this overlooks
the effect of SLMs on enhancing repertoire optimization
[26]. If all groups are able to correctly identify and eat the
highest quality resources then behavioral repertoires will
become similar [21], because the highest quality resources
are always a limiting subset (Fig. 1d). Despite this possi-
ble convergence between groups, we find that even when
learning parameters evolve, optimization can still be suf-
ficiently limited to allow for traditional differences.
While our findings support the idea that traditions

should be widespread in foragers in cohesive groups living
in patchy environments, for cumulative cultural change
we expect a large context dependency. Previous theo-
retical work on diet learning showed that cumulative
culture could arise as a side-effect of grouping and there-
fore might commonly occur in animal societies [21]. Our
results here suggest that in the context of skill learning,
cumulative cultural increases in energy intake may only
arise for OL and only in environments with high task
difficulty. The latter supports the idea that cumulative cul-
tural processes may occur predominantly in species with
cognitively demanding forms of social learning [4]. In par-
ticular, since SE and LE are inviable in environments with
high task difficulty, our results suggest that OL would
need to evolve before niches with high task difficulty could
be invaded, and only thereafter would cumulative cul-
tural increases in energy intake evolve. Previously we have
argued that through this process, the evolution of cogni-
tively demanding forms of social learning could open up
novel niches [26]. Further modelling work is needed to
confirm these expectations.
Our measure of cumulative cultural change is very gen-

eral and does not necessarily imply (i) the generation of
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behavioral complexity via the invention of novel behav-
ioral combinations, or levels technological of complexity,
nor (ii) open-ended change [4, 13, 33, 34]. In our model,
the latter cannot arise because novel behavioural oppor-
tunities cannot be generated, and the cumulative cultural
process is restricted to the opportunities that are available
in the environment, and is ‘bounded’. Thus, the com-
plexity of behavior remains limited in the sense that any
single behavior could be invented within the lifetime of
an individual [4]. However, this behavior-level view con-
trasts with our repertoire-level perspective, where we
consider culture cumulative if foragers exhibit a reper-
toire quality and overall skill level that they could not
achieve within a lifetime of asocial learning. Thus while
each single behavior could in principle be discovered by
any forager, the level of repertoire optimization, or total
‘ecological knowledge’, cannot. In future, this ‘ecologi-
cal knowledge’ perspective could be extended to spatial
knowledge, in order to establish a more complete per-
spective on the scope of cumulative culture next to diet
learning [21] and skill learning (present study) in group
foragers.
Bounded contexts appear reasonable for considering

cultural phenomena in many primate species [4] and
the kind of bounded cumulative culture observed here
provides a putative evolutionary precursor to more open-
ended forms of cumulative culture. However, our results
suggest that precisely because the cumulative process is
expressed at a repertoire level and bounded, detecting
existing cumulative cultural processes empirically may be
very difficult.Wewould expect a bounded cumulative cul-
tural process to operate for some time, but then level off.
Thus when observing primates in the wild, researchers
may well be measuring the outcome of a cumulative cul-
tural process, where the phenotypes observed cannot be
achieved within a single lifetime, even though changes in
time may not be detectable. Moreover, quantifying the
difficulty of acquiring a particular repertoire and detect-
ing social influences is extremely difficult [35], which
could help to explain the lack of empirical evidence for
such cumulative processes. Studying the reintroduction
of animal species to the wild may be a promising setting
in which to study the possibility of cumulative cultural
change in animals across generations. The difficulty of
successful re-introductions to the wild, especially those in
great apes [36], could be an indication of a dependence on
cumulative culture.
If ecologically-bounded contexts are an evolutionary

precursor to more open-ended forms of cumulative cul-
ture, then how can we use this to understand the tran-
sition between the two? At present many key variables
have been proposed to explain this transition including,
cognitive abilities for high fidelity copying [4, 13, 34],
large population sizes [37, 38] and high rates of

socialization and division of labour [33]. What is lacking
at present is a framework that explains how these fac-
tors originate and co-evolve. Extensions to the multi-scale
simulation model presented here could help to address
this question. In this sense our model represents a tan-
gible ecologically-bounded baseline in which researchers
could study how ecological bounds could be relaxed. In
particular, we expect that niche construction processes
[39, 40] will be critical in relaxing the bounds found
in our model, because these appear to be needed for
generating feedbacks between cultural inheritance and
opportunities for cultural innovation. In this way, cul-
tural processes can start to define their own possibilities
for change.
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