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Abstract

enables accurate Y haplogroup assignment.

Background: Y haplogroup analyses are an important component of genealogical reconstruction, population
genetic analyses, medical genetics and forensics. These fields are increasingly moving towards use of low-coverage,
high throughput sequencing. While there have been methods recently proposed for assignment of Y haplogroups
on the basis of high-coverage sequence data, assignment on the basis of low-coverage data remains challenging.

Results: We developed a new algorithm, YHap, which uses an imputation framework to jointly predict Y chromosome
genotypes and assign Y haplogroups using low coverage population sequence data. We use data from the 1000
genomes project to demonstrate that YHap provides accurate Y haplogroup assignment with less than 2x coverage.

Conclusions: Borrowing information across multiple samples within a population using an imputation framework

Background
The non-recombining portion of haploid chromosome Y
is passed intact from father to son with a mutation rate
several times greater than autosomes [1]. As such, patterns
of variation in Y are widely used to uncover historical pat-
terns of human migration; are important in genealogical
reconstruction and have application in forensic analyses.
The Y Chromosome Consortium (YCC) published a
revised Y-chromosome DNA haplogroup tree in 2008,
consisting of approximately 600 markers which can be
used to characterize 20 major global haplogroups, la-
beled A-T, as well as sub-classification into a total of 311
haplogroups at the finest level of resolution. Different
major haplogroups have been found at high frequencies
in different geographical regions, for example the E clade
in Africa, and the O clade in Eastern Asia. Particular
fine-level haplogroups are found in multiple locations,
such as Rla in Eastern Europe, South Asia and Central
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Asia, indicating migration of Rla from Eurasian Steppes
to the new world. The C3 haplogroup, found at high fre-
quency throughout Asia is commonly interpreted as ge-
nealogical remnants of the empire of Genghis Khan [2].

Y haplogroup assignment has traditionally been car-
ried out by targeted genotyping using a combination of
short tandem repeat typing, multiplex PCR and mini-
sequencing [3,4], often using a hierarchical strategy in
order to first refine the major haplogroup, and subse-
quently genotype markers within that haplogroup which
illuminate finer levels of resolution. Such a procedure re-
quires substantial amount of wet-lab analysis, requires
stringent replication and quality control to eliminate er-
rors which can arise due to the limited amount of infor-
mation collected at each step. More recently, personal
genetic companies have included specific Y chromosome
markers on custom genotyping arrays [5,6]. Neverthe-
less, the resolution available from genotyping arrays is
limited by markers included on the chip.

High coverage high throughput sequencing has the
potential to capture all single nucleotide and insertion/
deletion variation, and as such provide near-perfect as-
signment of individuals to Y haplogroups. One recently
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published method (AMY-tree) demonstrated the effect-
iveness of assigning Y haplogroups with high coverage
sequence data [7]. As high coverage sequencing of large
population samples remains expensive, low coverage
population sequencing, in which each individual is se-
quenced at less than 2x haploid coverage is an attractive
alternative, but this will not capture all individual-level
variation. AMY-tree, for example, found insufficient in-
formation in low coverage genomes from 1000 genomes
project for confident haplogroup assignment [7].

We hypothesize that, given the sharing of haplogroups
within an ethnically homogenous population, it should be
possible to borrow information across individuals within a
population in order to improve haplogroup assignment. In
this manuscript, we present the YHap tool, which has been
designed for assigning haplogroups to low-coverage popu-
lation re-sequencing data. YHap borrows information
across all samples to assign samples to haplogroups prob-
abilistically, thus providing an accurate representation of
the inference which can be made from the data collected.
YHap is a complete solution and can also be applied to
high-coverage sequence data, as well as data from geno-

typing arrays.

Methods
We use the set of haplogroups and mutations defined in
[8]. We map the forward and reverse primers described
in this manuscript to identify the reported strand of the
variation in the GRCh37 reference. After strand correc-
tion, we identify whether the mutant allele is the equal
to the alternative or reference allele, so that we can sub-
sequently work in reference/alternative allele space on
the forward strand, consistent with conventional geno-
type calling schema. Next, we map each mutation to its
position on the pre-defined Y phylogenetic tree T. Fi-
nally we create a haplogroup matrix H of size NL
where L is the total number of nodes in T (including leaf
and internal nodes) and N, is the number of pre-
defined Y markers. Each entry Hy = {H;;,} is a probability
distribution vector expressing the probability that a sam-
pled individual from the clade below node j carries allele
g (in this case either the reference or alternate allele). At
leaf nodes, this probability vector is either {0,1} or {1,0},
and at internal nodes, it is the proportion of descendant
leaf nodes with reference or alternate alleles, respectively.
To assign a sequenced individual to a specific hap-
logroup, we obtained genotype likelihoods at each puta-
tive variant site (inclusive of all markers in H) from
chromosome Y VCEF files of the 1000 genome project.
This results in a matrix G of size N*M where M is the
number of sequenced samples, N is the number of puta-
tive variants, and G;; = {G;;e} is a vector of genotype like-
lihoods. We then generated an augmented H* matrix by
adding in extra sites in G but not H with probability

Page 2 of 5

vector H*; = {0.5,0.5}. The pipeline is similar for genotype
data, except that the genotype likelihoods are taken to be
either 1, if G;;=g or 0 otherwise. To illustrate the entries
of this matrix, we have included a heatmap of both the
standard Y chromosome consortium positions which are
polymorphic in the CEU, as well as the full H* matrix
trained on CEU data (Additional file 1: Figure S1).

We can calculate the assignment of each individual
using

J‘H Hl lNZg {01}

1J|g *P(g|H )
(1)

Where P(g|H,) = H;, and P(Gylg) = Gy

We can then calculate the posterior probability of each
haplogroup amongst a set of haplogroups, where prior
haplogroup probability distribution P(H)) is set to the
uniform distribution,

P(H|G,) — — L\ GlFL)P(H)

Zkrl,,LP(G-j |ka)P(ka)

By restricting the set of haplogroups considered in equa-
tion (2), YHap can be customized to either only assign to
within the major haplogroups (A through to T), or all pos-
sible haplogroups at the finest level of classification.

While this model is sufficient for assigning Y hap-
logroups individually, it does not capture shared informa-
tion between sequenced samples adequately, particularly
for low coverage sequencing. Given that a population sam-
ple will share individuals from the same haplogroup, and
while none of these individuals may have enough depth at
informative Y haplogroup markers, there is enough infor-
mation across the pooled reads from all samples from the
same haplogroup. However, we do not know a-priori
which samples can be pooled as coming from the same
haplogroup.

In order to pool information between samples, we treat
the allele probability distribution {H*;,} at markers present
in the sequence data but not present as haplogroup
markers, as parameters in our model. We update these pa-
rameters using expectation maximization, in which we
first calculate the posterior probability assigning each sam-
ple j to each haplogroup / using equation 2, and then up-
date the {H*;,} to reflect the average of genotypes assigned
to haplogroup [/ at position i, weighted by this posterior
probability of assignment. In this way, the model learns
which alleles are characteristic of the pre-defined hap-
logroups, and is thus able to more accurately assign indi-
viduals which may not have good coverage at those sites,
but which show similarity to other individuals across the Y
chromosome. The probabilities P(H)) are also updated
at each step to reflect the proportion of haplogroups
assigned in the population.

(2)
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Results

We applied YHap to low-coverage sequencing data gen-
erated in the pilot phase of the 1000 genome consortium
which were also part of the Hapmap project, including
19 YRI, 16 JPT, 21 CEU and 9 CHB samples [9]. Major
Y haplogroups have been previously assigned to these
samples as part of the Hapmap project. The average se-
quencing depth of these samples is 1.67X as described in
1000 genome Y chromosome analysis report. Compared
to haplogroups previously obtained from the Hapmap
project [10], YHap showed perfect assignment accuracy
(Table 1). We also used YHap on the Hapmap combined
phase 1,2,3 Y genotype data and obtained the same as-
signments previously reported with this data.

In order to investigate the ability of YHap to assign
finer-level haplogroups we compared YHap results ob-
tained at complete resolution (i.e. considering all hap-
logroup leaf nodes on the pre-defined Y phylogenetic
tree) on both Hapmap genotype data and also 1000 ge-
nomes low coverage sequence data (Additional file 1:
Table S1). We see that there is complete concordance at
the major haplogroup level, and there is increasing un-
certainty in assignment as the resolution of assignment
increases, particularly using dense genotype data. We
also observe that accuracy remains high amongst those
assignments which YHap assigns high confidence.

We compared YHap’s performance with AMY-tree on
the 1000 genome dataset. Firstly we consider those 1000
genomes samples which were also assigned with AMY-
tree based on high coverage Complete Genomics data
(Additional file 1: Table S2). YHap achieved greater reso-
lution than AMY-tree relative to this benchmark on 4 of
7 samples (correctly identifying R1b1b2 instead of R1;
inferring N instead of NO; D2a instead of D2). In 1 of 7
samples Yhap identified Elbla7 haplogroup, whereas
AMY-hap assigned Elbla8 using both 1000 genomes
and Complete genomics data, although in both cases
Yhap assigned the same haplogroup on the basis of Hap-
map genotype data.

Next, we use Hapmap genotype data as a validation,
using results on 65 samples for which we have Hapmap
and 1000 genomes sequence data. Yhap achieved greater
resolution than AMY-tree in 30 of 65 samples, whereas
AMY-tree never had greater resolution than Yhap. As an
example, this included Yhap correctly identifying NA12005
as belonging to R1b1b2 haplogroup vs Root for AMY-tree
(Additional file 1: Table S3.) AMY-tree identified a hap-
logroup inconsistent with Hapmap data in 1 of 65 samples
(assigning NA11829 to DE instead of I), and YHap identi-
fied an inconsistent haplogroup in 2 of 65 samples (assign-
ing both NA18971 and NA18974 to C2 instead of C3,
where AMY-tree only assigned haplogroup C).

Finally, in order to investigate the relationships be-
tween sequencing depth and assignment accuracy, we
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randomly downsampled the original bam files from 1000
genome to 0.6X. For simplicity, we chose JPT to run the
test. We see that downsampling increases the uncer-
tainty of assignment (Additional file 1: Table S4), but
YHap accuracy remains high amongst those assignments
which are made with high posterior probability. This
demonstrates that as the underlying amount of informa-
tion decreases, YHap is still able to extract inference and
accurately represent the uncertainty of this inference.

The total complexity for the whole procedure is
O(N>T), conventionally, when using default settings, it
will take almost 10 min to locate 10 ~ 20 individuals and
approximately 200 Mb memory.

Discussion and conclusions

We have demonstrated the utility of using low-coverage
population sequence data to accurately resolve Y hap-
logroups at high resolution. This can be achieved via ef-
ficiently borrowing information between individuals in
the population which have a common Y haplogroup
using a probabilistic assignment model. Moreover, we
have demonstrated that it is possible to accurately quan-
tify the uncertainty in the haplogroup assignment, such
that even for very low coverage sequence data (0.6x) it
is possible to make inference of Y haplogroups, but
only achieve high certainty for a top-level haplogroup
assignment.

Moreover, YHap can inform discovery of new hap-
logroup markers. Essentially the conditional haplogroup
allele probabilities H*; (which are intialised with probabil-
ity {0.5,0.5 } which converge to {0,1} or {1,0} represent new
mutations which are exclusive to that haplogroup in the
population studied, and represent new mutations on the Y
haplogroup tree.

YHap currently only incorporates bi-allelic markers,
and does not accommodate STR markers, which is a
limitation we plan to address in future versions. We also
plan to extend Yhap to allow Mitochondrial haplogroup
assignment, however, this requires extending the model
to incorporate heteroplasmy as an unknown mixture of
multiple haplogroups in the same sample.

While Yhap has been designed using low-coverage
whole-genome sequence data, given that it only relies
on genotype likelihoods, it will also work for capture se-
quence data. This opens up the possibility of very cost-
effective Y chromosome haplogroup analysis on large
populations using a custom designed Y chromosome
capture array.

Availability
YHap is available from http://wwwl.imperial.ac.uk/
medicine/people/l.coin/.
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Table 1 Assignment of individuals included in this study to haplogroups

Pop ID Hapmap' 1KG? Chip®> NGS* Pop ID Hapmap' 1KG? Chip® NGS* Pop ID Hapmap' 1KG2 Chip®> NGS*
CHB  NA18558 O N N1 Niclcl  CEU  NA06994  HI I I b1 YRI  NA18501 E3a Elblaga Elbla Elbla
CHB  NA18561 O 02b 02 O2b CEU  NAO7357 R R1b1b21  RIblb2 RIblb2 YRl  NA18504 E3a7 Elbla Elbla Elbla
CHB NA18562 O 0 O3a 0O3a3bl  CEU  NA10851 R R R1b1b2  Riblb2 YR NA18507 E3a7 Elbla Elbla Elbla
CHB NA18563 O 02b 02 O2b CEU  NA11829 HI I I b1 YRI  NA18516 E3a Elbla Elbla Elbla
CHB NA18572 O 0 O3a 0O3a3bl  CEU  NAI11831 R R R1b1b2 Ri1b1b2 YR NAI8522 E3a Elbla Elbla Elbla
CHB  NA18603 O 0 02 O2ala  CEU  NA11881 HI N I b1 YR NA18853 E3a Elbla8a Elbla Elbla
CHB  NA18605 O 0 0 03a3b1  CEU  NA11994 R R1b1b21  RIblb2 RIbib2 YR  NA18856 EI E1 E1/E2  EV/E2
CHB NA18608 O N N1 Niclc  CEU  NA12003 HI 12b 12b 12b YRl NA18871 E3a ElblaBa Elbla Elbla
CHB  NA18609 O 0 O3a 0O3a3bl  CEU  NA12005 R R1b1b2  RIblb2 RIblb2 YR  NA19098 E3a Elbla Elbla Elbla
JPT  NAT8940 D D2xD2b1  D2a D2a CEU  NA12043 R R1 R1b1b2  Ri1b1b2 YR NA19119  E3a Elbla8a Elbla Elbla
JPT  NA18943 O 02b 02 O2b CEU  NAI2144 R R1b1b21  RIblb2 RIblb2 YRl NA19138 E3a ElblaBa Elbla Elbla
JPT  NA18944 D D2b1 D2a D2a CEU  NA12154 R R1 R1b1b2 Ri1b1b2 YR NA19141 E3a Elbla8a Elbla Elbla
JPT  NA18945 O 0 03a 02b CEU  NA12155 R R1 R1al Rlalc YR NA19144 E3a Elbla8a Elbla Elbla
JPT  NA18948 D D2b1 D2a D2a CEU  NA12716 R R1 R1b1b2 Ri1b1b2 YR NA19153 E3a ElblaBa Elbla Elbla
JPT  NA18952 D D D2a D2a CEU  NA12750 HI N I b1 YRI  NA19160 E3a Elbla8a Elbla Elbla
JPT  NA18953 O 02b 02 02a CEU  NA1760 R R R1b1b2  Ri1b1b2 YR NA19171  E3a7 Elbla Elbla Elbla
JPT  NA18959 O 0 0O3a 0O3a3bl  CEU  NAI12762 R R1 R1b1b2 Ri1b1b2 YR NA19200 E3a7 Elbla Elbla Elbla
JPT  NA18960 D D2xD2b1  D2a D2a CEU  NA12812 R R1 Rib1b2  Ri1blb2 YR NA19207 E3a Elbla Elbla Elbla
JPT  NAT189%61 D D D2a D2a CEU  NA12814 R R1 R1b1b2 Ri1b1b2 YR NA19210  E3a7 Elbla Elbla Elbla
JPT  NAT8965 O 02b 02 O2b CEU  NA12872 R R1blb2g RIblb2 RIblb2

JPT  NA189%67 D D2b1 D2a D2a CEU NA12874 R R1 R R1b1b2

JPT  NA18970 D D2xD2b1  D2a D2a

T NA18971  C 1 Cla a3

JPT  NA18974 C C1 Cla a3

JPT  NAT9005 O 02b 02 02b

*E1b1a was formerly known as E3a.

"Hapmap indicates results from Hapmap consortium.

2IKG indicates results form 1000 genomes consortium.
3Chip indicates results from YHap applied to Hapmap genotype data.
“NGS indicates results from YHap applied to 1000 genomes consortium sequence data.

The resolution reported for YHap is the level at which a single assignment achieved greater than 90% posterior probability.

LEE/L/SOLT-L L /WO [BAUSIPIWIOIG MMM//:d1y

LES L “€10T Sonpwiojulolg JNG b 1 Bueyz

G Jo t abed



Zhang et al. BMC Bioinformatics 2013, 14:331
http://www.biomedcentral.com/1471-2105/14/331

Additional file

Additional file 1: Table S1. Concordance of Hapmap array data and
1000 genomes sequence data. Table S2. Haplogroup assignments
comparison using AMY Complete Genomics data based result as golden
standard. Table S3. Haplogroup assignments comparison using Yhap
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genomes project consortium: a map of human genome variation from
population-scale sequencing. Nature 2010, 467:1061-1073.

International HapMap Consortium, Altshuler DM, Gibbs RA, Peltonen L,
Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al:
Integrating common and rare genetic variation in diverse human
populations. Nature 2010, 467:52-58.

Hapmap array data based result as golden standard. Table S4. Accuracy
and certainty of half-coverage. Table S5. Accuracy and certainty of
downsampling on high-depth sample from 1000 genome project.
Figure S1. Heatmap representing probability that haplogroup carries
non-reference allele on only Y chromosom consortium SNPs. Figure S2.
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Cite this article as: Zhang et al: YHap: a population model for
probabilistic assignment of Y haplogroups from re-sequencing data.
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Heatmap representing probability that haplogroup carries non-reference
allele at all SNPs modelled.
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