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Abstract

Background: Neurodegenerative diseases are incurable and debilitating indications with huge social and
economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease
models could offer a knowledge framework to help decipher the complex interactions that occur at molecular
and cellular levels. This motivates the need for the development of an approach integrating highly curated and
heterogeneous data into a disease model of different regulatory data layers. Although several disease models
exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in
semantic web technology, we still do not have cure for complex diseases like Alzheimer’s disease. One of the key
reasons accountable for this could be the increasing gap between generated data and the derived knowledge.

Results: In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling
curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well
curated and context specific data for integration into one single semantic web-based framework, RDF. This increases the
probability of the derived knowledge to be novel and reliable in a specific disease context. This infrastructure integrates
highly curated data from databases (Bind, IntAct, etc.), literature (PubMed), and gene expression resources (such as GEO
and ArrayExpress). We illustrate the effectiveness of our approach by asking real-world biomedical questions that link
these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified
MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the
effort and challenges faced during generation of such an indication-specific knowledge base comprising of curated and
quality-controlled data.

Conclusion: Although many alternative approaches have been proposed and practiced for modeling diseases, the
semantic web technology is a flexible and well established solution for harmonized aggregation. The benefit of this
work, to use high quality and context specific data, becomes apparent in speculating previously unattended biomarker
candidates around a well-known mechanism, further leveraged for experimental investigations.
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Background
Alzheimer's disease (AD), the most prominent neurode-
generative disease (NDD), has become a global threat to
the aging society, affecting nearly 115 million people by
2050 [1]. The imperfect understanding of the AD
etiology has created a large gap in translating the pre-
clinical findings into clinical trials dominantly observed
in high drug attrition rates [2]. Early diagnosis and pre-
ventive interventions could facilitate substantial reduc-
tion in the number of affected cases to 9 million by 2050
[3, 4]. Particularly, reliable biological markers of disease
and disease progression could assist in early diagnosis
and treatments catered to the patient [5]. In this direc-
tion, considerable global research efforts have been dedi-
cated to investigate molecular players underlying AD
pathogenic events, contributing to an ever-growing
wealth of disparate data. Refinement of this information
into actionable knowledge representations requires a
good interoperable and formalized framework, capable
of inferring potential biomarkers across different facets
of the molecular physiology. Additionally, in silico
disease models that integrate complementary data from
various resources are capable of recapitulating key
mechanisms for a given condition [6–8].
Among others, most widely used data integration

strategies include data warehousing (e. g., Pathway Com-
mons [9]), data centralization (e. g., UniProt [10], IntAct
[11]), and federated databases (e. g., BioMart [12]). An
example of a data integration framework is tranSMART
[13], which consists of a data warehouse covering vari-
ous types of data and related data mining applications
required for translational research and biomarker
discovery workflows. Such a harmonized aggregation of
heterogeneous data sources facilitates interpretation over
a large knowledge space [14].
However, one fundamental challenge with most of

these integration approaches is to cope with the variabil-
ity and heterogeneity in content, language, and formats
of incoming data from different source repositories.
Moreover, regular updates of these data resources are
necessary to keep up with newly added information and
to avoid incompleteness. The inaccessibility to the inte-
grated data resources, due to altered database structure
or change in the naming conventions is unavoidable
[15]. Semantic web technologies have overcome the
above described challenges up to an extent by revolu-
tionizing the lossless exchange of data and formalizing
the data format into a computable knowledge [16],
calling it “smart data" [17]. The capability of using rich
formal descriptions for data and its standardized map-
ping allows complex querying in a more efficient way
without information loss.
Resource Description Framework (RDF) is the World

Wide Web Consortium (W3C) proposed standard for

semantic integration and modeling of data. RDF uses the
syntax of Extensible Markup Language (XML) and im-
poses structural constraints to represent the meta-data
as a set of triples containing directed edges. One big ad-
vantage lies in the usage of common namespaces across
the different data domains encoded as Unified Resource
Identifiers (URIs). Initiatives such as Identifiers.org [18]
provide persistent official identifiers in the biomedical
domain, allowing sustained interlinking between distinct
data resources. This allows high levels of seamless inter-
operability between data sources and the capability to
access and map against additional related data unam-
biguously, called data federation. On the contrary, large
efforts are still needed during an initial definition of the
ontologies to build the schema for data representation.

Semantics in life sciences
The idea of semantic web prevails in various domains,
including life sciences. Recently, "The Monarch Initia-
tive" [19] has taken the semantic route to enable reason-
ing over genotype-phenotype equivalence within and
across species. They leverage on ontologies to link exter-
nal curated data resources for generating new hypothesis
and prioritizing candidates/variants based on the pheno-
typic similarity. Stevens et al. [20] launched TAMBIS,
multi-data application tool, which allows biologists to for-
mulate complex molecular biology questions to databases
such as Swiss-Prot [21], Enzyme [22], CATH [23], BLAST
[24], and Prosite [25] through well-defined semantics.
Among the early users of RDF, Lindemann et al. [26]

applied it to centralize and flexibly access the heteroge-
neous and varying quality of medical data obtained from
several clinical partners. The importance of semantic
mining in the life science domain was brought to lime-
light by the Bio2RDF project [27], which demonstrated
the possibility of querying life science knowledgebases
by linking public bioinformatics databases and providing
public SPARQL endpoints. Subsequently, Linking Open
Drug Data (LODD) [16] demonstrated linking drug data
information from DrugBank [28] and clinical trials
resources. Chem2Bio2RDF [29] demonstrates the poten-
tial usage of the above two mentioned RDF repositories
in the field of chemoinformatics.
Observing the immense advantage of linked open data,

several major publicly available life science databases
such as UniProt, DisGeNet [30], Protein Data Bank
Japan (PDBj) [17], and EBI resources such as Gene Ex-
pression Atlas [31], ChEMBL [32], BioModels [33],
Reactome [34], and BioSamples [35], have made their
data available in the form of RDF. Thus, the RDF plat-
form has been increasingly adopted as a standard for
data exchange. Amidst prime users of RDF in elucidating
disease pathophysiology, Shin et al. [36] demonstrated
systematic querying of linked experimental data to
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explore the effect of genes that are regulated by volatile
organic compounds in human blood. Qu et al. [6]
showed semantic framework capability in drug re-
purposing by proposing Tamoxifen, an FDA approved
drug for Breast Cancer, as a candidate drug for Systemic
Lupus Erythematosus. The above reported association
has already been tested in mice by Sthoeger et al. [37],
showing a leverage of semantic web in a real world sce-
nario. Furthermore, Willighagen et al. [38] presented the
linkage of several RDF technologies in molecular che-
moinformatics and proteochemometrics.
To our knowledge, there has been very limited applica-

tion of semantic web approaches to the research of neuro-
degenerative diseases. Linked Brain Data (LBD) [39] is an
upcoming initiative which focusses on understanding the
brain functionality by integrating resources such as gen-
omic, proteomic, anatomical and biochemical resources
with respect to neuroscience. Using such a multi-level
knowledgebase, they aim to understand the association
between cognitive functions and brain diseases. Lam et al.
[40] made the first attempt to develop an e-Neuroscience
data integration framework, AlzPharm [41]. They ex-
tracted AD-related drug information from BrainPharm
[42] to be further integrated with manually inferred
hypotheses from the scientific literature and published ar-
ticles (SWAN [43]). They demonstrated the usage of such
a model by clustering AD drugs based on their molecular
targets and to filter publications (claims and hypotheses)
specific to Donepezil effect on treatment of AD. Although
AlzPharm made use of manually inferred hypothesis, they
lack the validation of their findings with experimental data
such as gene expression and pathways.

Motivation
Despite the current advancements in semantic web tech-
nology, we still do not have cure for complex diseases like
AD. One of the key reasons accountable for this could be
the increasing gap between generated data and the derived
knowledge. In order to increase the probability of the
derived knowledge to be novel, data quality and data
reliability is highly desirable. Moreover, the contextual
specificity of the data is of paramount importance.
Compared to relational database management system

(RDBMS) technologies, in RDF the relations have expli-
cit meaning (expressiveness) in a given context and are
directly accessible; allowing the user to extract meaning-
ful knowledge from the data as opposed to an unstated
structured data. In addition, RDF structures are more
adaptive and flexible, allowing fluidity in the data rela-
tionships. This overcomes the fragility of RDBMS; where
if the underlying representation of the keys and flat table
changes, the tentacled connections are lost. Moreover,
triples from RDF can be transformed into RDBMS struc-
ture and vice-versa. One another advantage of RDF is its

graph representation that enables us to better explore
relations through network topological characteristics
such as relatedness, network perturbation, centrality, in-
fluence, etc. The usage of automated reasoners have
largely been beneficial to understand the semantics and
to expand the associated relations [44].
In this paper we propose NeuroRDF, an approach harnes-

sing the potential of RDF as a framework for modeling neu-
rodegenerative diseases to enable a close, biologically
sensitive integration of well curated, complementary, and
multi-faceted data. The fundamental principle of this strat-
egy is to take advantage of semantics to develop a context
specific, multi-layered in silico disease model, represented
as a formalized, and computationally processable domain
knowledge. A fine-grained analysis of the metadata from
various data resources empowers the user to ask more fo-
cused questions around a hypothesized pathomechanism
involving previously neglected or hidden candidates, further
leveraged for experimental investigations. Considerable ef-
forts have been invested to process and manually curate
huge amounts of data that is required to build such a
knowledge base around a specific indication. This includes
for example the in-depth assessment of the respective
phenotype, the type of tissue used in an experiment, and in-
formation around the donor of the tissue like gender, age,
and possible comorbidities. Querying such a highly curated
and focused knowledgebase increases the chances of unrav-
eling novel hypothesis, which could have been lost over
time or pave way to newly emerging knowledge.
We used SPARQL to traverse each of these knowledge

graphs (derived from distinct resources) in an integrative
manner, allowing highly disease specific analysis of the
underlying data. Using this approach, we demonstrate an
example on how to prioritize novel candidates in AD
mechanism.

Methods
The developed generic semantic web-based workflow in-
tegrating heterogeneous data resources is outlined in
Fig. 1. This multi-layered model integrates data from
various public resources such as databases, literature,
and gene expression information. The harmonization of
heterogeneous data to build RDF models was achieved
by using several data/file parsers. The workflow also
includes a pre-processing step to monitor the quality of
each incoming data type for specificity.

Data collection and resources
This subsection depicts briefly the different data re-
sources integrated into the NeuroRDF.

Database-derived interactions for healthy brain
A closer look into the healthy human brain interac-
tions could improve identification of the dysregulated
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mechanisms which further surges the plausibility of
identifying AD drugs in clinical trails [45, 46]. How-
ever, the mainstream AD research is biased towards
the well known disrupted events such as APP, and tau
rather than recognizing their role in normal brain
functions [47].
Several publicly available databases provide protein-

protein interactions (PPIs) and microRNA-target inter-
actions (MTIs), which can be derived using multiple
sources and methodologies. For instance, Human Pro-
tein Reference Database [48], Molecular INTeraction
database [49], and miRTarBase [50] focus on experimentally
verified interactions that are manually mined from litera-
ture by expert biologists. In addition to literature-derived
information, Biomolecular Interaction Network Database
[51] centralizes interactions from high-throughput tech-
nologies. Few other databases such as STRING [52], and
miRWalk [53] also provide predicted interactions.
However, none of these databases mine interactions
specific to a given context (for example AD pathology
or normal physiology).
A lot of published healthy state PPIs are not directly

measured in human cells but in artificial conditions such
as human cell lines, human genes transfected into yeast
cells, etc., missing out on the biological plausibility in
humans and context specificity [54]. Hence, considerable
effort by Bossi and Lehner [55] was invested to verify
the tissue specificity of PPI interactions from 21 data-
bases (including a few above mentioned) using human
gene expression data. Furthermore, this additional action
to ensure validity of the interactions in normal state aids
improved prediction of genes in disease state [56]. In
that direction, our group has extracted a subset of these

experimentally confirmed PPIs belonging to healthy
brain physiology [57]. Currently, the healthy brain PPI
network contains 7,192 genes and 45,001 PPIs.

Extracting AD-specific interactions from literature
The bridging factor between researchers and scientific
accomplishments are published as texts, warehoused in
large repositories like PubMed [58]. These biomedical
articles are the major information source of functional
factors such as proteins, genes, microRNAs (miRNAs),
etc. However, their functional descriptions are scattered
as unstructured text in literature [59]. Text-mining
methods could help us mine these articles and retrieve
the associated relations/evidence for a given context.
Since proteins are the chief players in almost all bio-
logical processes and miRNAs have been established in
the last decade as important regulators of gene expres-
sion, we focus our current research on MTIs and PPIs.
In order to harvest AD-specific knowledge from the

literature, we used our in-house state-of-the-art named
entity recognition (NER) system ProMiner [60] and the
semantic search engine SCAIView [61]. Identification of
genes/proteins and disease mentions was accomplished
using dictionaries. The disease dictionary was built using
MeSH [62], MedDRA [63], and Allie [64] databases.
Currently, it contains 4,729 concepts and 64,776 syno-
nyms [65], which are normalized to MeSH names.
Human Genes/Proteins dictionary [60] was compiled
from three different resources: SwissProt, EntrezGene
[66], and HGNC [67]. Currently, this dictionary consists
of 36,312 entries and 515,191 synonyms. All the identi-
fied gene/protein names were normalized to HUGO
gene symbols for maintaining homogeneity across all

Fig. 1 Overall workflow of NeuroRDF. The workflow illustrates the collection of data from various resources such as databases, and literature,
followed by steps taken to pre-process and prune the collected data. These high-quality data are represented semantically as RDF models and
stored in a triplestore. The stored knowledge can later be queried for biologically interesting questions
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data resources and also for future comparisons and
visualizations.
To identify MTIs from MEDLINE abstracts, we applied

our previously developed approach [65]. Here we ex-
tracted novel miRNA mentions using a regular expression.
These mentions were normalized to miRBase database
identifiers [68]. In addition, relation dictionary containing
the major classes of relationship terms between miRNAs
and their target genes/proteins was also developed. A tri-
occurrence based approach was used to extract the MTIs
(co-occurring with a relation term) at the sentence level.
Using the above-mentioned dictionaries, our group

previously harvested AD specific PPIs from MEDLINE
abstracts and full text articles [69]. Here we used the
interaction terms compiled by Thomas et al. [70]. A
state-of-the-art machine learning based approach [71]
was applied to retain true pairs of PPIs in a given sen-
tence. Both approaches have been optimized for recall.
Hence, the obtained relations have been manually fil-
tered for false positives. After manual inspection, 339
PPIs for 301 proteins and 99 MTIs for 36 microRNAs
that are specific to AD were obtained. Articles published
in languages other than English could lead to increased
information content, however a dedicated approach to
harvest them is needed. Moreover, separate parsers are
needed. Thus, for this work we extracted interactions
from the biomedical literature in English.

AD gene expression data
A standard approach to test any generated hypothesis is
to assess the gene expression of the involved candidates
between affected and healthy patients or in the absence of
human data we fall back to animal models or derived cell
cultures [72–75]. High-throughput technologies such as
microarray, RNA-seq provide potential to measure gene
expression simultaneously for different experimental/bio-
logical conditions. These studies are assembled in widely
adopted public archives: The NCBI Gene Expression
Omnibus (GEO) [76] and ArrayExpress [77].
For querying AD-specific gene expression data, we used

previously developed database, NeuroTransDB [78], which
contains highly curated meta-data information for eligible
AD studies. It assembles studies from public resources
namely, GEO and ArrayExpress, using a keyword based
search approach. Among the 45 prioritized AD human
studies, we filtered for microarray studies that measure
gene expression in brain tissue extracted from both AD
and healthy patients. In addition, availability of raw data
was a mandate for applying uniform pre-processing. In
total, we obtained eight microarray studies to be integrated
in NeuroRDF: GSE12685, GSE1297, GSE28146, GSE5281,
E-MEXP-2280, GSE44768, GSE44770, and GSE44771.
To assess the quality of the arrays we applied ArrayQuali-

tyMetrics [79] package. The selected studies (independent

of the platform type) were pre-processed using Bioconduc-
tor (Version 3.0) packages in R [80], by applying similar
methods for maintaining consistency by reducing variance.
All studies conducted on Affymetrix chips were normalized
by robust multi-array average method (rma) [81]. Similarly,
package limma [82] was applied on Rosetta/Merck Human
44 k 1.1 microarray chip. All the chips were normalized for
background correction and quantile normalization. The
normalized intensity values were log2-transformed
and duplicate probes were averaged. To identify the
differentially expressed genes between healthy and
Alzheimer’s patients we used limma package by ap-
plying Benjamini and Hochberg's method to control
for false discovery rate (adjusted p-value ≤ 0.05).

Data curation
Although the current text-mining methods have started
to leverage expert curators to extract PPIs, MTIs, etc.
from text, the extracted information are still prone to
false positives [83]. Moreover, it is not straightforward to
use these systems for retrieval of context-specific triples
due to technological limitations [84]. Hence, the meticu-
lousness of the identified triples to occur in a certain cell
type, disease state, or events captured in AD-specific
documents is not guaranteed. Thus, the need for manual
verification is unavoidable, especially when considering
the full text articles. The previously published test cor-
pus used for evaluating the constructed AD PPI network
contained AD-specific PPIs extracted by the machine
learning approach from 200 full text articles [69]. Man-
ual inspection by the authors resulted in retaining PPIs
from 38 articles that are truly specific to AD, thus dis-
carding 81 % of the originally retrieved articles. Similarly,
we retained only 68 abstracts from 250 articles (27 %)
that were retrieved using our tri-occurrence based ap-
proach for AD MTIs [65]. Thus, we can conclude that
only about 20–30 % of the (relation extraction based)
extracted PPIs and MTIs are truly relevant to AD, point-
ing out the need of manual curation.
Similarly, in our recent publication [78], we have

highlighted the key issues related to retrieval and reusabil-
ity of the datasets from public transcriptomics archives,
such as GEO and ArrayExpress. We showed that a simple
keyword based search not necessarily asserts the specifi-
city of the retrieved datasets to the queried disease or
organism. When manually inspected, we reported nearly
20 % of these retrieved studies to be irrelevant for AD
query. In addition, basic metadata annotations such as
age, gender, etc., which strongly contributes to the differ-
ential estimates, were observed to be incomplete. Brazma
et al. [85] had earlier reported that not all the data submit-
ted to GEO or ArrayExpress are MIAME compliant [86].
We additionally noticed these missing annotations being
scattered as unstructured prose in database webpages,
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publications, supplementary material, figures, etc., leading
to a steep increase in the needed curation effort. Al-
though the published research articles are rich in anno-
tations, a large number of experiments have missing
citations [87], which have to be added manually. More-
over, inconsistencies between the information stored in
the archives and in the associated publications were
also noted. On an average, about 30 min to 2 h of cur-
ation effort was needed to retrieve pertinent informa-
tion for a single dataset. The outcome of this work
resulted in a highly curated metadata database, Neuro-
TransDB, which is used in this work for extracting rele-
vant AD gene expression studies.

Generation of RDF models
RDF data model
RDF allows the generation of models for processed data
that exchanges information on the Web [82]. The RDF
data model stores all the relationships between different
entities as triples (subject-predicate-object). In RDF
terminology, the subject, the predicate and the object
are known as resources and are represented by a
unique “Uniform Resource Identifiers (URIs)" in order
to support global data exchange. Literals are constant
values such as numbers and strings mapped to the re-
sources. Literals can only be used as objects but never
as subjects or predicates.

RDF schemas
We constructed the RDF schemata by abiding the stand-
ard RDF graph notation where an ellipse represents
Resource, an arrow for Property, and rectangle for Literal.
In all the RDF schemas, we have maintained a common
resource representation for the “Gene" namespace adapted

from Bio2RDF that maps to the NCBI gene database. For
the namespaces with no available ontologies, we created
an internal namespace, called “SCAI". Some of the proper-
ties were described using URIs from Dubin Core Metadata
Element [88].
Four separate schemas (for each data resource) have

been generated that are centered on genes for interoper-
ability, associating each gene product to its official gene
symbol. In the AD PPI schema (see Fig. 2), proteins and
their interactions were represented using the Uniprot
Core Ontology [89]. Supporting literature evidence were
adapted to URIs from Bio2RDF namespaces. The article
resource was linked to its PubMed ID, sentence in which
the interaction has been mentioned, and the associated
journal. Experimental evidence that validates the given
interaction (if any) were mapped to BioPax [90], MGED
[91], ONTOAD [92], and SCAI namespaces. In the MTI
models (see Fig. 3), literature, genes, and proteins name-
spaces were adapted similarly to the PPIs. To represent
the miRNAs, we applied the Bio2RDF namespace that
links it to miRBase database [93].
For the PPI schema encoding the healthy state, as seen

in Fig. 4, we used the same ontologies as in case of AD
PPI. Additional interaction evidence such as brain
region, reference database, experimental evidence, and
literature information were described using Core, BioPax,
and Bio2RDF namespaces.
The microarray schema has two branches that are

linked to the experiment: sample details and differential
expression analysis. The majority of the resources and
properties are linked to URIs from EBI's Atlas (atlas) [94]
and MGED [91] namespaces, cf. Fig. 5. Gene expression
experiments could contain several samples that are
measured in different conditions. A detailed description of

Fig. 2 Schematic representation of the Diseased PPIs in RDF. The figure describes AD specific PPI interactions along with supporting evidence
mined from literature
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each sample is needed for accurate analysis. Thus, we
associated each sample to its meta-data annotations,
namely age, gender, organism, organism part, platform,
and phenotype. Organism under investigation is mapped
to NCBI Taxonomy URIs [95]. The factor value of each
sample, i.e., the phenotype information, is described using
the EFO ontology [96]. Each platform array is made up of
multiple probes that may represent a gene. To be able to
retain the expression values for individual probes, we
linked the probe ID resource to platform. However, for
better reasoning, quantitative values retrieved from
statistical analysis are linked to genes and not to probes.
The meta-analysis results, derived from limma [82], such

as differential expression value of a gene and its associated
p-value are all linked to the gene symbols.

Construction, validation and storage of RDF models
We modeled all the triples (represented in the schemas)
using the Apache Jena API [97]. Resources, and Proper-
ties as Java classes were created from the ontologies
using the corresponding in-built methods in the API
and with the help of Schemagen [98].
In order to check for the correctness of our generated

RDF models, we made use of the online service RDF
validator [99]. By using such a service, we verified the
models using their graph and triples representation.

Fig. 4 Schematic representation of Healthy PPIs in RDF. The figure represents PPIs of healthy subjects extracted from
literature and PPI specific databases. The schema also contains meta-information about these PPIs

Fig. 3 Schematic representation of MiRNA-target interactions in RDF. The figure encapsulates miRNA mentions along with their corresponding
gene identifier from literature
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Triple stores, such as Virtuoso [100], provides an op-
portunity to store individual or integrated RDF models
in one endpoint. Taking advantage of this, we stored all
the generated RDF models as individual graphs in a sin-
gle Virtuoso instance. Using common URIs (e.g., “Gene"
identifier) as the connecting link between these models,
it is possible to traverse through them integratively.

Data mining and analysis
In RDF, all the stored triples are accessible using a com-
mon query language, SPARQL Protocol and RDF Query
Language (SPARQL) [101]. We generated a Java library
with embedded SPARQL queries to ask our endpoint
and the underlying networks biologically relevant ques-
tions. Queries were generated from individual models,
which were further integrated as nested queries to
traverse different graphs. Each query uses the common
Gene URI namespace (which is common across all
models) to pass on the results used to the next nested
query. One possibility to visualize the query results is
the SemScape Cytoscape [102], to represent the return
values as (sub-) graphs again.

Results and discussions
NeuroRDF covers a wide range of curated AD related
data resources, stored as four separate RDF models in a
single Virtuoso endpoint. It tries to address the main
concepts (complementary) that contributes significantly
to unraveling AD pathology.

Differentially expressed genes
For the eight selected microarray datasets, gene expres-
sion analysis was performed between healthy and
diseased patients. Among these, GSE1297, GSE28146,
and E-MEXP-2280 resulted in no differential genes for
adjusted p-value cutoff 0.05. From the remaining studies,
only genes that exhibited a log2 fold change of > 1.5
were selected for analysis. In total, GSE5281 resulted in
4,278 genes under p-value cutoff and 2 up-, and 48 down-
regulated genes for the defined fold change cutoff. Simi-
larly, GSE44770 provided 254 differentially expressed
genes, among which 16 up- and 11 down-regulated were
selected further. In case of GSE44771, we obtained 335
differential genes that contain 11 up and 11 down-
regulated genes that show > 1.5 log2 fold change. For both,
GSE12685 and GSE44768, we obtained 1 and 51 genes
under the p-value cut-off. However, there were no genes
that had log2 fold change of >1.5. The list of all the
differentially expressed genes that were selected for fur-
ther analysis is provided in Additional file 1.

RDF models
Table 1 summarizes the content of the generated triple
store by providing some statistics of all integrated
networks. In total, there are 8353 unique triples in AD
PPI, 1,204,194, 667 unique triples in Healthy PPI, and
20,454 unique triples in gene expression RDF models
(Additional file 2). The number of unique predicates
(relations) for AD and healthy PPIs are 11, whereas
for MTI there are 5 and the gene expression model

Fig. 5 Schematic representation of Gene Expression Data in RDF. This figure represents gene expression data obtained from public resources
such as GEO and ArrayExpress

Iyappan et al. Journal of Biomedical Semantics  (2016) 7:45 Page 8 of 15



consists of 16. The number of entities present in
these models range from 300 to 78,852 (cf. Table 1).
In case of the gene expression data, to avoid large
triples we excluded the gene expression values of in-
dividual probes and included information only related
to differential expression. Uploading and querying these
models was not computationally expensive due to lower
set of predicates and relatively small file size.

Prioritization of AD candidates
To illustrate the potential of NeuroRDF approach and to
determine novel AD candidates from the high quality
integrated data, we exploit the underlying biological
association between the different data resources and
identify the previously unknown information.
Our prioritization criteria was based on the notion

that every data resource brings with it a piece of missing
biological information which is needed to understand
the mechanism of a certain candidate. We tried to
associate this distributed information by systematically
addressing the following questions:

(1)Whether candidates in the diseased network tend to
be associated with normal physiology. If yes, what
are the common players that could help us in the
differential estimates (called as causal candidates);

(2)Which microRNAs regulate the selected causal
candidates that could give insights into their post-
transcriptional dysregulation;

(3)Have any of the selected causal candidates assessed
for their level of differential expression in an
unbiased data source (e. g., gene expression data);

(4)How strong is the influence of the neighboring
genes on the casual candidates. This is based on the
assumption that strong candidates tend be
surrounded by dysregulated genes and have an
influence on the candidate itself;

(5)Is there any functional relatedness between the
causal candidates and their neighbors;

To answer these questions, we generated a set of
SPARQL queries. Figure 6 is an example SPARQL query
syntax used to obtain miRNAs that regulate the genes in
the AD networks. Similar querying has been applied to
build a system of faceted searches for the above de-
scribed questions. Firstly, we identified common genes
between the healthy and AD PPI networks. This query
resulted in 230 intersecting genes. Looking into the
MTIs, we found 13 of these genes to be regulated by at
least one microRNA (cf. Table 2). Among these 13
genes, 9 were observed to be differentially expressed:
APP, BACE1, ADAM10, IL1B, MAPK3, DLG4, LRP1
PTGS2, and TGFB1. Except for APLP2, and IL6, all the
other genes contained differentially expressed neighbors
either in AD or in healthy PPIs. There were no miRNAs
that were common to these 13 genes.
Sub-networks from the AD and healthy PPIs were ex-

tracted to investigate the prioritized candidates (see
Figs. 7 and 8). As observed from Fig. 8, for healthy PPIs
there was one larger sub-network (containing APP,
ADAM10, BACE1, MIF, MAPT, and LRP1) and a
smaller one containing two genes (PTGS2, and IL1B).
On the other hand, for diseased PPIs in Fig. 7, there
were two large sub-networks containing four (STAT4,
JUN, MAPK3, and STMN2) and five genes (APP, LRP1,
BACE1, DLG4, and TGFB1). The third sub-network was
made up of two genes (MAPT, and TUBA4A). Among
the prioritized candidates, APLP2 and IL6 had no com-
mon links to other prioritized candidates. Thus, they
were discarded for further analysis.

Relevance of prioritized AD candidates
The remarkability of complementing wet lab research
using the predictability and reproducibility of measured
outcomes is one of the core reasons why researchers are

Table 1 Statistics of generated RDF models stored in Virtuoso
endpoint

Models No. of triples No. of entries No. of
properties

Size (mb)

Alzheimer’s disease
PPI

8353 19900 11 0.894

Healthy State PPI 1204194 78852 11 99.102

MTI 667 300 5 0.095

Microarray 20454 9477 16 303.5

Fig. 6 Example SPARQL query for information retrieval from NeuroRDF. SPARQL query as seen in the figure retrieves the miRNAs for a given gene
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more inclined to the field of bioinformatics. Therefore,
in silico validation of predicted candidates for its rele-
vancy is of utmost importance. In this direction, we pin-
point the relevance of our prioritized candidates through
a literature survey.

AD established candidates
Although there are no FDA approved biomarkers for AD,
researchers focus on some of the key candidates that are
hypothesized to be involved in AD. In the current NDD
research practice, APP has been established as the widely
used biomarker candidate. The classical pathological hall-
mark of AD is formation of amyloid-beta aggregates (lead-
ing to plaques) in brain. This is reported to be caused by
faulty proteolytic processing of APP that releases amyloid-
beta [103]. Another hallmark of AD is tau pathology
(MAPT gene), regulated by amyloid-beta. Hyperphosphor-
ylation of tau causes accumulation of neurofibrillary tan-
gles due to the disrupted functioning of axonal transport
[5]. However, it is also interesting to note the paradigm
shift in AD research due to recently failed drug trails that
focused mostly around these hypotheses [2]. Never-
theless, several neuroscientists still believe in the po-
tential of APP and the tau hypothesis for elucidation
of the underlying pathomechanism. As observed from
our generated sub-networks, our largest sub-network
was established around the APP gene.
When compared to APP, BACE1 has not been so fre-

quently studied. However these genes often fall into the
"most interesting gene zone" as far as AD is concerned
since it is involved in the formation of amyloid-beta.
BACE1 is the major enzyme (beta secretase) involved in
the cleaving of APP at beta site and generating soluble
amyloid-beta [104]. However, increased BACE1 activity
has been reported to be associated with amyloid-beta ag-
gregation in AD patients [105]. Bu et al. have detailed out
the evidence that LRP1 is a receptor for APOE, a contrib-
uting factor to AD [106]. Furthermore, in 1993, Strittmat-
ter, Roses and colleagues [107] have identified APOE4 as
the major risk for late-onset AD. TGFB1 polymorphism
has been widely associated with an increased risk of late-
onset AD. Deficiency in TGFB1 signaling leads to neuro-
fibrillary tangle formation increasing the advancement of
mild cognitive impairment patients to AD, by increasing
the depressive symptoms [108]. DLG4 is a post-synaptic
scaffolding protein that interacts with postsynaptic recep-
tors such as NMDA receptors for efficient postsynaptic
response [109]. However, its impairment has largely con-
tributed to the synaptic degeneration in AD. Mutations in
ADAM10 gene have been associated to late-onset AD.
ADAM10 enzyme has alpha-secretase activity to cleave
amyloid-beta, however BACE1 competes with ADAM10
for cleavage. Thus, its decreased expression has been
implicated in AD pathogenesis [110].

Table 2 Prioritized AD candidate genes

Intersected genes
between healthy
and AD PPI

MiRNAs Differentially expressed
neighbors

Number of
literature articles
for intersected
genes

Healthy PPI AD PPI

APP MIR101-1, ADAM10, TGFB1,

MIR106A, MAPT, BACE1,

MIR106B, MIF, LRP1

MIR124-1, BACE1, 24550

MIR137, LRP1

MIR153-1,

MIR181-C,

MIR29A,

MIR520C,

MIR19-1

BACE1 MIR107,

MIR124-1, APP,

MIR145, APP LRP1 1883

MIR298,

MIR29A,

MIR29B1,

MIR328,

MIR9-1

ADAM10 MIR451,

MIR144,

MIR1306, APP - 231

MIR107,

MIR103

IL1B MIR146A,

MIR155 PTGS2 - 1099

MAPK3 MIR15A, - STMN2, 276

MIR155 JUN

MAPT MIR16-1, APP TUBA4A 3367

MIR132

APLP2 MIR153-1 - - 134

DLG4 MIR485 - LRP1 151

IL6 MIR27B - - 748

JUN MIR144 - STAT4, 142

MAPK3

LRP1 MIR205 APP DLG4, 305

APP,

BACE1

PTGS2 MIR146A IL1B - 474

TGFB1 MIR155 - APP 276

This table summarizes the literature based evidences of intersected genes
between healthy and AD PPI and their corresponding miRNAs and
differentially expressed genes
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AD emerging candidates
To identify emerging knowledge in the context of AD, we
performed an individual gene analysis using SCAIView for
publications in PubMed. Here, we measured the co-
occurrence of the causal genes (including its differential

neighbors) and AD over a period of last 10 years, see Fig. 9.
Since the number of articles for the APP gene was rela-
tively too high each year, we normalized the number of lit-
erature evidence of other candidates using the APP gene's
article count for that year. Hence, the normalized range
for the literature distribution is between 0 and 1, where 1
is the highest number of articles for that year (the APP
gene). Please refer to Additional file 3 for details of the lit-
erature counts. Inspecting literature evidence, we found
that all the prioritized causal candidates have been studied
in the context of AD. Moreover, among their differentially
expressed neighbors, STMN2 (8 articles), MAPK4 (1 art-
icle), TUBA4A (2 articles), and MIF (15 articles) contained
fewer articles related to AD. Among these genes, STMN2
and MIF have been recently studied in the context of AD,
whereas, MAPK4, STMN2, and TUBA4A were implicated
in AD nearly two decades before but failed to establish as
robust biomarker candidates.

MIF's role in AD
Macrophage Migration Inhibitory Factor (MIF) has for
long been known to participate in tumor proliferation
due to its pro-inflammatory cytokine functionality [111].
In general, MIF acts as a key regulator of inflammatory
activities such as innate and adaptive immunity [112].
Apart from that, it is also known to play a significant
role as an anti-apoptotic factor of neutrophils as well as
macrophages [113].
The MIF gene has been well studied in cancer and

inflammation. However, recent studies are emerging
around a plausible role of MIF in neurodegenerative dis-
eases, in particular AD. Moreover, Flex et al. [114] have
earlier reported that MIF polymorphisms are not linked

Fig. 7 Extracted sub-networks from AD PPIs network. This figure symbolizes the diseased sub-graphs that were generated using prioritized
candidates and their differentially expressed neighbors

Fig. 8 Extracted sub-networks from healthy PPIs network. This figure
symbolizes the healthy sub-graphs that were generated using
prioritized candidates and their differentially expressed neighbors
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to AD, but confirmed its complex immune and inflam-
matory activities. Although, APP and tau have been as-
sociated to play a key role in the pathophysiology of AD,
many researchers strongly believe in the role of inflam-
matory processes subsidizing to the pathology of AD.
This stems from the fact that activated microglial cells
discharge immunoregulatory cytokines which result in
various side-effects such as neuronal dysfunction and in-
hibition of hippocampal neurogenesis [115]. MIF is one
such pro-inflammatory cytokine which is known to bind
with amyloid-beta protein and enhance the plaque re-
moval and neuronal debris from the brain during normal
conditions [116]. Also, MIF has been identified to play a
role in neuronal survival by inhibiting the activation of
ERK-1/MAP kinases [117] (regulatory role in cell prolif-
eration and glucocorticoid action) as well as its ability to
surpass the p53 mediated apoptosis [118]. Although, the
precise molecular function of MIF in the context of AD
is unknown, it is known to play a role in inflammatory
processes around the plaque formation. MIF is also
highly expressed in the neurons of rat hippocampus, one
of the primary regions to be affected by AD [117]. Bryan
et al. [119] also report on the abnormal expression of
MIF in both microglia and in the hippocampal neurons
in human. This all makes MIF a plausible biomarker for
inflammatory responses in AD.

Conclusion
NeuroRDF approach has been designed to identify new
knowledge through semantic mining. The proposed inte-
grative approach takes advantage of the RDF technology
to integrate well-curated data from various sources
within a specific indication area. From our perspective,
it is necessary to focus on one indication or at least a

group of indications to build such a knowledge base for
precise modeling and analysis due to the high curation
effort one has to spend in order to reach the necessary
details. We showed how to harmonize three major het-
erogeneous resources (databases, gene expression data,
and literature) used in the research area to generate
hypotheses for underlying disease mechanisms. This ap-
proach supports identification of novel insights without
compromising over quality. Furthermore, new data re-
sources can be included without altering the overall
framework. The usage of well-accepted ontologies pro-
vides the advantage for further integration of external re-
sources and databases (e.g., federated queries). Using
such an approach, we were able to prioritize MIF gene
as an emerging candidate due to its role in inflammatory
processes implicated in AD pathogenesis.
The advantage of using an RDF schema is that it is

highly supportive for data interoperability. Although this
work represents the usage of the RDF schema specific
for AD, we have also extended the same to other disease
models such as Parkinson's and Epilepsy. However, the
curated data and the generated hypothesis for these two
diseases will be released in future under the terms of a
Neuroallianz agreement [120]. Also, these resources are
constantly kept up-to-date as they are transferred to
various upcoming projects such as AETIONOMY [121].

Additional files

Additional file 1: List of differentially expressed genes. This file contains
the list of differentially expressed genes (for each dataset used) that fall
under the adjusted p-value cutoff of 0.05. The differential expression
analysis was performed using limma package in R statistical environment.
The file is provided in an Excel format. (XLSX 68 kb)
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Additional file 2: The developed RDF models and the SPARQL queries
used are made available at: http://www.scai.fraunhofer.de/en/business-
research-areas/bioinformatics/downloads/neurordf.html. (ZIP 178 kb)

Additional file 3: Detailed count of literature evidences for prioritized
candidates. This file contains the detailed count of number of evidences
available for each prioritized candidate for each year since 2005 in
context of Alzheimer's disease. These statistics were retrieved using
SCAIView knowledge discovery tool (as of 18 May, 2016). (XLSX 35 kb)
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