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Abstract In this paper, we study first-order hyperbolic systems of any order with multiple
characteristics (weakly hyperbolic) and time-dependent analytic coefficients. Themain ques-
tion is when the Cauchy problem for such systems is well-posed in C∞ and in D′. We prove
that the analyticity of the coefficients combined with suitable hypotheses on the eigenvalues
guarantees the C∞ well-posedness of the corresponding Cauchy problem.
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1 Introduction

This paper is devoted to hyperbolic systems of the type

Dtu − A(t, Dx )u = 0, t ∈ [0, T ], x ∈ R
n,

where A is a m × m matrix of first-order differential or pseudo-differential operators with
t-analytic entries and the eigenvalues λ1(t, ξ), λ2(t, ξ), . . . , λm(t, ξ) of the matrix A(t, ξ)

are real. In this case, we say that the matrix A(t, ξ) is hyperbolic.
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It is well known that the corresponding Cauchy problem

Dtu − A(t, Dx )u = 0, t ∈ [0, T ], x ∈ R
n,

u(0, x) = g(x),
(1)

is C∞-well-posed if the coefficients of the system are smooth and the eigenvalues of A(t, ξ)

are distinct (so (1) is strictly hyperbolic). In this case, also large time asymptotics are well
studied even allowing fast oscillations in coefficients, see, e.g., [27] (and also an extended
exposition of such problems in [28]).

At the same time, if we do not assume that all the eigenvalues are distinct, much less is
known even if A(t, ξ) is analytic in t . For example, if we assume that the characteristics
(even x-dependent) are smooth and satisfy certain transversality relations, the C∞-well-
posedness was shown in [21]. However, in the case of only time-dependent coefficients these
transversality conditions are not satisfied.

In general, in presence of multiplicities the well-posedness is usually expected to hold in
Gevrey spaces, see for instance [1–6,16,22,23,25], to mention only very few, and references
therein. This happens even when the coefficients are analytic. For example, for the scalar
equation

∂2t u − 2t∂t∂xu + t2∂2x u = 0

in one space variable, the Cauchy problem is well-posed in the Gevrey class γ s for s < 2
and ill-posed in γ s for s > 2.

The first results of this type for t-dependent hyperbolic systems of size 2 × 2 and 3 × 3
have been obtained by D’Ancona, Kinoshita and Spagnolo in [7,8]. For x-dependent 2 × 2,
systems some results are also available, see, e.g., [15]. Later, the former results have been
extended to any matrix size by Yuzawa in [29] and to (t, x)-dependent coefficients jointly by
Kajitani and Yuzawa in [20]. In such problems, the existing techniques apply equally well
for equations with coefficients (or characteristics) of lower (e.g., Hölder) regularity. More
precisely, if the eigenvalues of A are of Hölder order α ∈ (0, 1] in t and their multiplicity
does not exceed r , then the Cauchy problem (1) with initial data in the Gevrey class γ s have
a unique solution u in (C1([0, T ], γ s(Rn))m provided that

1 ≤ s < 1 + α

r
. (2)

In this direction, equations with even lower (e.g., distributional) regularity have been also
considered, see, e.g., [14] and also [10].

Recently, different authors have studied weakly hyperbolic scalar equations with analytic
coefficients (see, for instance [18] and [13]), but systems have not been fully investigated
from this point of view. For a discussion on the C∞ well-posedness of hyperbolic 2 × 2
systems and hyperbolic systems with non-degenerate characteristics, we refer the reader to
Nishitani’s recent book [24].

Here, for thefirst time,weconsiderm×m first-order hyperbolic systemswith analytic coef-
ficients and multiple eigenvalues and we prove that under suitable conditions on the matrix
A, formulated in terms of its eigenvalues, they are C∞-well-posed, in the sense that given
initial data in C∞ the Cauchy problem (1) have a unique solution in (C1([0, T ];C∞(Rn))m .

Thus, it is the purpose of this paper to investigate under which conditions on the matrix
A the solution u does actually belong to the space C1([0, T ];C∞(Rn))m . The main idea
is an extension to systems of the previous works on higher-order equations with analytic
coefficients and lower-order terms after a reduction to block Sylvester form.

More precisely, the analysis of this paper will consist of the following three steps:
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• First, wemake an observation (Theorem 2.2) that the results of Yuzawa [29], and Kajitani
and Yuzawa [20], can be extended to produce the existence of some (ultradistributional)
solution to the Cauchy problem (1). It is then our task to improve its regularity to C∞ or
to D′ depending on the regularity of the Cauchy data. This step is done in Sect. 2.1.

• Second, we consider matrices A(t, Dx ) in Sylvester form and prove (in Theorem 2.5)
that in this case the Cauchy problem (1) is well-posed in C∞. This step is done in Sect.
2.2.

• Third, we extend the above to any weakly hyperbolic matrix A or, in other words, we
show that we can drop the assumption of Sylvester form for the matrix A. This is done
by transforming a general m × m system

Dt − A(t, Dx )

into the m2 × m2 block Sylvester system, which is a key idea of the paper, so that we
could use the established result in that case. This extended system will be still hyper-
bolic (in fact, the principal part will have the same eigenvalues), but such reduction
will (unfortunately) produce some lower-order terms. Therefore, we carry out a careful
analysis of the appearing matrix of the lower-order terms by considering the suitable
Kovalevskian and hyperbolic energies in different frequency domains. This will yield the
desired C∞-well-posedness as well as the distributional well-posedness for the original
Cauchy problem (1) in Theorem 3.3. This analysis will be carried out in Sects. 3 and 4.

In Sect. 3.1 we illustrate the appearing Levi-type conditions in the example of 2 × 2
systems. We also note that the obtained conditions can be expressed entirely in terms of the
coefficients of the matrix A(t, x) (rather than its eigenvalues) and are, therefore, computable.
We refer to [18] and to [13] for the discussions of such expressions.

Finally, we note that in problems concerning systems, it is often important whether the
system can be diagonalised or whether it contains Jordan blocks, see, e.g., [21] or [15], for
some respective results and further references. However, this is not an issue for the present
paper since we are able to obtain the well-posedness results avoiding such assumptions. We
also note that ideas similar to those in this paper can be also applied in other situations for
less regular coefficients, see, e.g., [14] and [26].

2 Preliminary results

In this section, we discuss several preliminary results needed for our analysis. First, we
make an observation that the results of Yuzawa [29], and Kajitani and Yuzawa [20], can be
extended to produce the existence of an ultradistributional solution, thus enabling our further
reductions. Then, we look at systems in the Sylvester form.

2.1 Ultradistributional well-posedness

For convenience of the reader we recall Yuzawa’s well-posedness result proven in [29]. We
begin by introducing for ρ > 0 and s > 1, the space Hl

�(ρ,s) of all f ∈ L2(Rn) such that

〈ξ 〉le�(ρ,s)
̂f (ξ) ∈ L2(Rn

ξ ),

where �(ρ, s) = ρ〈ξ 〉 1
s . Let now the coefficients of the matrix A be of class Cα and let

s be as in (2). Theorem 1.1 in [29] states that if the initial data g have entries in Hl
�(T,s),
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then the Cauchy problem (1) has a unique solution u(t, x) such that e(T−t)〈Dx 〉 1s u(t, x) ∈
(C([0, T ]; Hl))m ∩ (C1([0, T ]; Hl−1))m , for t ∈ [0, T ] and x ∈ R

n . From Lemma 1.2 in
[19] by Kajitani, one has that for any f ∈ γ s

c (Rn) and l ∈ R there exists ρ > 0 (depending
on f ) such that f ∈ Hl

�(ρ,s) and conversely, if f is a compactly supported element of some

Hl
�(ρ,s), then it is a compactly supported Gevrey function of order s. It then follows that the

previous well-posedness results in Hl
�(ρ,s) spaces can be formulated in Gevrey classes. More

precisely, Theorem 1.2 in [29] states that given initial data with entries in γ s
c (Rn) for s as in

(2), there exists a unique solution u ∈ C1([0, T ]; γ s(Rn))m of the Cauchy problem (1). For
the advantage of the reader, we recall that hyperbolic equations and systems possess the finite
speed of propagation property. This ensures that if the initial data are compactly supported,
then the solution u is compactly supported with respect to x (u ∈ C1([0, T ]; γ s

c (Rn))m) and
that Theorem 1.2 holds for non-compactly supported initial data as well.

Note that the characterisation of Gevrey functions via weighted Sobolev spaces can be
extended to Gevrey Beurling ultradistributions. We recall that f ∈ C∞(Rn) belongs to the
Beurling Gevrey class γ (s)(Rn) if for every compact set K ⊂ R

n and for every constant
A > 0 there exists a constant CA > 0 such that for all α ∈ N

n
0 the estimate

|∂α f (x)| ≤ CAA
|α|(α!)s

holds uniformly in x ∈ K . The space D′
(s)(R

n) of Gevrey Beurling ultradistributions is

defined as the dual of γ
(s)
c (Rn), while the space of E ′

(s)(R
n) of compactly supported Gevrey

Beurling ultradistributions is the dual of γ (s)(Rn). In analogy to Gevrey classes, one has that
a real analytic functional v belongs to E ′

s(R
n) if and only if for any ν > 0 there exists Cν > 0

such that

|̂v(ξ)| ≤ Cν e
ν〈ξ〉 1s

for all ξ ∈ R
n , and similarly, v ∈ E ′

(s)(R
n) if and only if there exist ν > 0 and C > 0 such

that

|̂v(ξ)| ≤ C eν〈ξ〉 1s

for all ξ ∈ R
n (see Proposition 13 in [11]). Combining these observations with Kajitani and

Yuzawa’s method in [29] and [20], one can easily extend Lemma 1.2 in [19] and deduce
the corresponding ultradistributional well-posedness results. More precisely, we have the
following lemma and well-posedness theorems.

Lemma 2.1 (i) For any v ∈ E ′
(s)(R

n) and l ∈ R there exists ρ > 0 such that v ∈ Hl
−�(ρ,s).

(ii) If v ∈ Hl
−�(ρ,s) is compactly supported then v ∈ E ′

(s)(R
n).

Proof (i) From the Fourier characterisation of ultradistributions, we have that there exist
constants c > 0 and ρ > 0 such that

|̂v(ξ)| ≤ c eρ〈ξ〉 1s ,

for all ξ ∈ R
n . It follows that

〈ξ 〉le−(ρ+1)〈ξ〉 1s |̂v(ξ)| ≤ c〈ξ 〉le−〈ξ〉 1s ,

where the right-hand side is clearly an element of L2. Thus, v ∈ Hl
−�(ρ,s).
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(ii) Let now A(Rn) be the set of analytic functions and Hl
−�(ρ,s) be the set of all functionals

v on A(Rn) such that

〈ξ 〉le−�(ρ,s)v̂(ξ) ∈ L2(Rn
ξ ). (3)

Assuming that v is compactly supported, we know that v̂ is an analytic function satisfying
an estimate of the type

|̂v(ξ)| ≤ c〈ξ 〉N , (4)

for some c > 0 and N ∈ N0. Since we can write (3) as

〈ξ 〉le−�(ρ,s)v̂(ξ) = g(ξ),

where g ∈ L2(Rn), by using (4) we conclude that |g(ξ)| ≤ c1e−ρ1〈ξ〉 1s for some c1, ρ1 > 0.
Hence, it follows that

|̂v(ξ)| ≤ c′eρ〈ξ〉 1s .

This proves that v is an ultradistribution in E ′
(s)(R

n). 
�
We can now recall the precise form of Kajitani–Yuzawa result described earlier.

Theorem 2.2 Let the coefficients of the matrix A be of class Cα and let A have real eigen-
values which do not exceed the multiplicity r and let

1 ≤ s < 1 + α

r
.

Then, for any initial data g with entries in Hl
−�(T,s) the Cauchy problem (1) has a unique

solution u(t, x) such that

e−(T−t)〈Dx 〉 1s u(t, x) ∈ (C([0, T ]; Hl))m ∩ (C1([0, T ]; Hl−1))m,

for t ∈ [0, T ] and x ∈ R
n.

As a consequence of Lemma 2.1 and Theorem 2.2, we obtain the following ultradistribu-
tional well-posedness result which will be the starting point for our analysis.

Theorem 2.3 Under the hypotheses of Theorem 2.2 for any initial data g with entries
in E ′

(s)(R
n), the Cauchy problem (1) has a unique ultradistributional solution u ∈

C1([0, T ];D′
(s)(R

n))m.

We now turn to a preliminary setting of Sylvester matrices.

2.2 Systems in Sylvester form

From now on, we concentrate on the Cauchy problem (1)

Dtu − A(t, Dx )u = 0, t ∈ [0, T ], x ∈ R
n,

u(0, x) = g(x),

when the entries of the matrix A are analytic in t . By applying Theorem 2.3, we already know
that if we take initial data in (C∞

c (Rn))m , then a solution u exists in C1([0, T ];D′
(s)(R

n))m .
First, we briefly collect some preliminaries, for more details we refer the reader to [13,18].
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Thus, here we assume that A(t, ξ), the matrix of the principal part of the operator Dtu −
A(t, Dx ), is a matrix of first-order pseudo-differential operators of Sylvester type (we will
show in the next section that this assumption is not restrictive). It means that we can write
A(t, ξ) as 〈ξ 〉A0(t, ξ), where

A0(t, ξ) =

⎛

⎜

⎜

⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1
hm hm−1 . . . . . . h1

⎞

⎟

⎟

⎠

, (5)

for some h j , j = 1, . . . ,m, symbols of order 0 analytic in t . The eigenvalues of A0(t, ξ) are
exactly the eigenvalues of A(t, ξ) scaled by a factor 〈ξ 〉−1, i.e., 〈ξ 〉−1λ j (t, ξ), j = 1, . . . ,m.
Hence, they are symbols of order 0 in ξ analytic with respect to t .

Let us nowfix t and ξ and treat A0 as amatrixwith constant entries. Since A0 is hyperbolic,
we can construct a real symmetric semi-positive definite m × m matrix Q such that

QA0 − A∗
0Q = 0 (6)

and

det Q =
∏

1≤k< j≤m

〈ξ 〉−2(λ j − λk)
2.

The matrix Q is called the standard symmetriser of A0. Its entries are fixed polynomials
functions of h1, . . . , hm (or, equivalently, they can be expressed via the eigenvalues of A0),
and it is weakly positive definite if and only if A0 is weakly hyperbolic (see [17]).

Let Q j be the principal j × j minor of Q obtained by removing the first m − j rows and
columns of Q and let 
 j be its determinant. When j = m, we use the notations Q and 


instead of Qm and 
m . The following proposition shows how the hyperbolicity of A0 (or
equivalently of A) can be seen at the level of the symmetriser Q and of its minors (see [17]).

Proposition 2.4 (i) A is strictly hyperbolic if and only if 
 j > 0 for all j = 1, . . . ,m.
(ii) A is weakly hyperbolic if and only if there exists r < m such that


 = 
m−1 = · · · = 
r+1 = 0

and 
r > 0, . . . , 
1 > 0. (In this case there are exactly r distinct roots).

Clearly, when t and ξ vary in their domains, respectively, 
r becomes a symbol 
r (t, ξ)

homogeneous of degree 0 in ξ and analytic in t . When 
r is not identically zero, one can
define the function

˜
r (t, ξ) = 
r (t, ξ) + (∂t
r (t, ξ))2


r (t, ξ)
,

which is as well a symbol of order 0 in ξ and analytic in t . Note that if t 
→ 
(t, ξ) vanishes
of order 2k at a point t ′, then t 
→ ˜
(t, ξ) vanishes of order 2k − 2 at t ′.

In analogy with the scalar equation case treated in [13], the energy estimate that we will
use for the system Dtu − A(t, Dx )u = 0, when A is in Sylvester form, will make use of the
quotient

〈∂t QV, V 〉/〈QV, V 〉. (7)
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As already observed in [13], estimating the quotient 〈∂t QV, V 〉/〈QV, V 〉 is equivalent to
estimating the roots of the generalised Hamilton-Cayley polynomial

det(τQ − ∂t Q) =
m

∑

j=0

d j (t)τ
m− j (8)

of Q and ∂t Q, where d0 = det Q, d1 = −∂t (det Q), dm = (−1)m det(∂t Q) and, if m ≥ 2,
d2 = 1

2 trace(∂t Q∂t (Qco)), where Qco is the cofactor matrix of Q. From the identity

τ 21 + · · · + τ 2m =
(

d1
d0

)2

− 2
d2
d0

,

valid for the roots τ j , j = 1, . . . ,m, of the generalised Hamilton-Cayley polynomial, we
easily see that d2 is crucial when estimating (7). Let

ψ(t, ξ) := d2(t, ξ) = 1

2
trace(∂t Q∂t (Q

co)),

and we call ψ the check function of Q.
For the moment, we work under the following set (H) of hypotheses:

(i) A is a matrix of pseudo-differential operators of order 1,
(ii) A is in Sylvester form.

We can now state our preliminary well-posedness result for the Cauchy problem (1). This
result is obtained from Theorem 2.2 in [13] where the well-posedness in the scalar case
is obtained by reduction to a first-order pseudo-differential system with principal part in
Sylvester form. Note that for technical reasons we will work on slightly bigger open interval
(δ, T ′ + δ) containing [0, T ].
Theorem 2.5 Let Dt − A(t, Dx ) be the matrix operator in (1) under the hypotheses (H). Let
the entries of A(t, Dx ) be analytic in t ∈ (δ, T ′ + δ) and let the matrix A(t, ξ) be (weakly)
hyperbolic. Let Q(t, ξ) = {qi j (t, ξ)}mi, j=1 be the symmetriser of the matrix A0(t, ξ) =
〈ξ 〉−1A(t, ξ),
 its determinant andψ(t, ξ) its check function. Let
(·, ξ) �≡ 0 in (δ, T ′ +δ)

for all ξ with |ξ | ≥ 1 and let [0, T ] ⊂ (δ, T ′ +δ). Assume that there exists a constant C1 > 0
such that

|ψ(t, ξ)| ≤ C1˜
(t, ξ) (9)

holds for all t ∈ [0, T ] and |ξ | ≥ 1. Then the Cauchy problem

Dtu − A(t, Dx )u = 0, t ∈ [0, T ], x ∈ R
n,

u(0, x) = g(x),
(10)

is C∞ well-posed, in the sense that given g ∈ (C∞(Rn))m there exists a unique solution u
in C∞([0, T ],C∞(Rn))m, and it is also well-posed in D′(Rn), i.e., for any g ∈ (D′(Rn))m

there exists a unique solution u ∈ C∞([0, T ],D′(Rn))m.

For simplicity, we will refer to the well-posedness above as C∞ well-posedness and
distributional well-posedness in the interval [0, T ]. Note that by the energy estimates we
obtain first that the solution isC1 with respect to t ∈ [0, T ] and then, by iterated differentiation
in the original system, we conclude that the dependence in t is actually C∞.
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Our next aim is to extend the theorem above to any weakly hyperbolic matrix A, or in
other words to drop the assumption of Sylvester form for the matrix A. This will be done by
reducing a general system

Dt − A(t, Dx )

into block Sylvester form. Unfortunately, this will produce some lower-order terms and
therefore a careful analysis of the new matrix B of the lower-order terms will be needed to
achieve C∞ and distributional well-posedness. This will be done in the next sections.

3 Main result

We perform a reduction to block Sylvester form of the system in (1) by following the ideas
of D’Ancona and Spagnolo in [9]. We begin by considering the cofactor matrix L(t, τ, ξ)

of (τ I − A(t, ξ))T where I is the m × m identity matrix. By applying the corresponding
operator L(t, Dt , Dx ) to (1) we transform the system

Dtu − A(t, Dx )u = 0

into

μ(t, Dt , Dx )I u − C(t, Dt , Dx )u = 0, (11)

where μ(t, τ, ξ) = det(τ I − A(t, ξ)) and C(t, Dt , Dx ) is the matrix of lower-order terms
(differential operators of order m − 1). More precisely, μ(t, Dt , Dx ) is an operator of the
form

μ(t, Dt , Dx ) = Dm
t +

m−1
∑

h=0

bm−h(t, Dx )D
h
t ,

with bm−h(t, ξ) a homogeneous polynomial of order m − h.
We now transform this set of scalar equations of order m into a first-order system of size

m2 × m2 of pseudo-differential equations, by setting

U = {D j−1
t 〈Dx 〉m− j u} j=1,2,...,m,

where 〈Dx 〉 is the pseudo-differential operator with symbol 〈ξ 〉 = (1 + |ξ |2)1/2. We can
therefore write (11) in the form

DtU − A(t, Dx )U + L(t, Dx )U = 0, (12)

where A is a m2 × m2 matrix made of m identical blocks of the type

〈Dx 〉 ·
⎛

⎜

⎜

⎜

⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

−bm(t, Dx )〈Dx 〉m −bm−1(t, Dx )〈Dx 〉−m+1 · · · · · · −b1(t, Dx )〈Dx 〉−1

⎞

⎟

⎟

⎟

⎠

, (13)

123



On C∞ well-posedness of hyperbolic systems with multiplicities…

with b j (t, Dx ) a pseudo-differential operator of order j , j = 1, . . . ,m, analytic in t , and the
matrix L of the lower-order terms is made of m blocks of size m × m2 of the type

⎛

⎜

⎜

⎜

⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

li,1(t, Dx ) li,2(t, Dx ) · · · · · · li,m2−1(t, Dx ) li,m2(t, Dx )

⎞

⎟

⎟

⎟

⎠

,

with i = 1, . . . ,m. Note that the operators li, j , j = 1, . . . ,m2, are all of order 0 in ξ . Hence,
by construction the matrices A and L are made by pseudo-differential operators of order 1
and 0, respectively. Concluding, the Cauchy problem (1) has been now transformed into

DtU − A(t, Dx )U + L(t, Dx )U = 0,

Ut=0 = {D j−1
t 〈Dx 〉m− j u(0, x)} j=1,2,...,m .

(14)

This is a Cauchy problem of first-order pseudo-differential equations with principal part in
block Sylvester form. The size of the system has increased from m ×m to m2 ×m2, but the
system is still hyperbolic, since the eigenvalues of any block of A(t, ξ) are the eigenvalues
of the matrix 〈ξ 〉−1A(t, ξ).

We now want to analyse the matrix L in more detail and study its relationship with the
principalmatrix A. For this purpose,weobserve that bydefinitionof the operator L(t, Dt , Dx )

we have that

L(t, Dt , Dx ) =
m−1
∑

h=0

Ah(t, Dx )D
m−1−h
t ,

where

Ah(t, Dx ) = (−1)m
h

∑

h′=0

σ
(m)

h′ (λ)Ah−h′
(t, Dx ), (15)

with λ = (λ1, . . . , λm),

σ
(m)

h′ (λ) = (−1)h
′ ∑

1≤i1<...<ih′≤m

λi1 . . . λih′

and σ
(m)
0 (λ) = 1. We can now prove the following linear algebra lemma.

Lemma 3.1 The entries of the matrix L of the lower-order terms are of the type

〈ξ 〉−1
m−1
∑

k=1

ci(k), j (k)(t)D
k
t ai(k), j (k)(t, ξ),

where 1 ≤ i(k), j (k) ≤ m and ci(k), j (k) is a bounded function in t.

Proof We apply the operator L(t, Dt , Dx ) to Dt I − A(t, Dx ). By direct computations and
by formula (15), we have that

L(t, Dt , Dx )(Dt I − A(t, Dx )) =
m−1
∑

h=0

Ah(t, Dx )D
m−h
t

−
m−1
∑

h=0

Ah(t, Dx )

m−1−h
∑

q=0

(

m − 1 − h

q

)

Dq
t A(t, Dx )D

m−1−h−q
t (16)
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By now writing the last term in (16) as −X − Y , where

X =
m−1
∑

h=0

Ah(t, Dx )A(t, Dx )D
m−1−h
t

and

Y =
m−1
∑

h=0

Ah(t, Dx )

m−1−h
∑

q=1

(

m − 1 − h

q

)

Dq
t A(t, Dx )D

m−1−h−q
t

we easily see that
∑m−1

h=0 Ah(t, Dx )D
m−h
t − X = μ(t, Dt , Dx ), i.e., the principal part of the

operator L(t, Dt , Dx )(Dt I − A(t, Dx ), while the lower-order terms C(t, Dt , Dx ) are given
by −Y . Hence,

C(t, Dt , Dx ) =
m−1
∑

h=0

Ah(t, Dx )

m−1−h
∑

q=1

(

m − 1 − h

q

)

Dq
t A(t, Dx )D

m−1−h−q
t .

Note that Ah contains only powers of the operator A up to order h and therefore C contains
powers of A up to orderm−1 and derivatives of A from order 1 to orderm−1. Passing now to
the reduction to a first-order systemof sizem2×m2 of pseudo-differential operators,we easily
see that the entries of the matrix L in (12) are obtained by the matrix C and therefore from
AhD

q
t A suitably reduced to order 0, i.e., 〈ξ 〉−h Ah(t, ξ)Dq

t A(t, ξ)〈ξ 〉−1. Since 〈ξ 〉−h Ah(t, ξ)

is bounded with respect to t and ξ and 1 ≤ q ≤ m − 1, we conclude that the entries of the
matrix L are of the desired type. 
�

The representation formula in Lemma 3.1 implies the following estimate.

Proposition 3.2 The matrix L is bounded by the derivatives of the matrix A0 = 〈ξ 〉−1A up
to order m − 1, i.e., there exists a constant c > 0 such that

‖L(t, ξ)‖ ≤ c max
k=1,...,m−1

‖Dk
t A0(t, ξ)‖, (17)

for all t ∈ [0, T ] and ξ ∈ R
n, where ‖ · ‖ denotes the standard matrix norm.

We can now state our main result, which extends Theorem 2.5 to a general hyperbolic
matrix A.

Theorem 3.3 Let Dt − A(t, Dx ) be the matrix operator in (1). Let the entries of A(t, Dx ) be
analytic in t ∈ (δ, T ′ + δ) and let the matrix A(t, ξ) be (weakly) hyperbolic. Let Q(t, ξ) =
{qi j (t, ξ)}mi, j=1 be the symmetriser of the matrix A0(t, ξ) = 〈ξ 〉−1A(t, ξ), 
 its determinant
and ψ(t, ξ) its check function. Let 
(·, ξ) �≡ 0 in (δ, T ′ + δ) for all ξ with |ξ | ≥ 1 and let
[0, T ] ⊂ (δ, T ′ + δ). Assume that there exists a constant C > 0 such that

|ψ(t, ξ)| ≤ C˜
(t, ξ) (18)

and

max
k=1,...,m−1

‖∂kt A0(t, ξ)‖ ≤ C(
(t, ξ) + ∂t
(t, ξ)) (19)

for all t ∈ [0, T ] and |ξ | ≥ 1. Then the Cauchy problem

Dtu − A(t, Dx )u = 0, t ∈ [0, T ], x ∈ R
n,

u(0, x) = g(x),
(20)

is C∞ well-posed and distributionally well-posed in [0, T ].
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Before proceeding with the energy estimate which will allow us to prove Theorem 3.3 we
focus on the case m = 2. The following explanatory example will help the reader to better
understand the meaning of the hypotheses (18) and (19).

3.1 Example: the case m = 2

We recall that if λ1, λ2 are the eigenvalues of A then

Q(t, ξ) =
( 〈ξ 〉−2(λ21 + λ22)(t, ξ) −〈ξ 〉−1(λ1 + λ2)(t, ξ)

−〈ξ 〉−1(λ1 + λ2)(t, ξ) 2

)

,

with


 = 〈ξ 〉−2(λ1 − λ2)
2(t, ξ)

and

˜
 = 〈ξ 〉−2(λ1 − λ2)
2(t, ξ) + 2〈ξ 〉−2(∂tλ1 − ∂tλ2)

2(t, ξ),

and

ψ(t, ξ) = 1

2
trace(∂t Q∂t (Q

co))(t, ξ) = −〈ξ 〉2(∂tλ1 + ∂tλ2)
2(t, ξ).

It follows that in this case the hypothesis (18) looks like

(∂tλ1 + ∂tλ2)
2(t, ξ) ≤ C((λ1 − λ2)

2(t, ξ) + (∂tλ1 − ∂tλ2)
2(t, ξ))

and (19) is given by

‖∂t A0(t, ξ)‖ ≤ C〈ξ 〉−2((λ1 − λ2)
2(t, ξ) + |(λ1 − λ2)(t, ξ)(∂tλ1 − ∂tλ2)(t, ξ)|).

Note that when the matrix A is already in Sylvester form, the formulation of the hypotheses
(18) and (19) is simplified and sometimes trivial. For instance, when

A(t, ξ) = ξ

(

0 1
a2(t) 0

)

,

ξ ∈ R, both the hypotheses (18) and (19) are trivially satisfied. Indeed, λ1(t, ξ) = −|a(t, ξ)|
and λ2(t, ξ) = |a(t)ξ |. This implies (18) because ψ(t, ξ) ≡ 0 and (19) becomes

|2a(t)a′(t)| ≤ C(4a2(t) + 4|a(t)a′(t)|,
which is trivially true.

Some results on theC∞ well-posedness for 2×2 hyperbolic systems with analytic coeffi-
cients have been obtained in [8]. Although not directly comparable, both types of conditions
have their advantages from different points of view (for instance the formulation for any
matrix size in our case).

4 Proof of the main theorem

The proof of Theorem 3.3 is partly based on the analogous result for scalar equations in [13]
to which we will refer for the complete details of some steps of the proof. This is due to the
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reduction to block Sylvester form explained in the previous section which allows to define
the block diagonal m2 × m2-symmetriser

Q =

⎛

⎜

⎜

⎜

⎝

Q 0 · · · 0
0 Q · · · 0
...

...
...

...

0 · · · · · · Q

⎞

⎟

⎟

⎟

⎠

,

where Q is the symmetriser of thematrix A0 = 〈ξ 〉−1A. Since the reduction to blockSylvester
form transforms the original system

Dtu − A(t, Dx )u = 0

into the system

DtU − A(t, Dx )U + L(t, Dx )U = 0,

withA in the block Sylvester form, our proof will need to take care of the lower-order terms
in L which do not enter intoA. This will be done by using the Levi conditions introduced in
[13] and in particular by referring to Remark 4.8 in [13].

We begin by recalling some technical lemmas which have been proved in [13] which will
be useful for our analysis of systems as well.

Lemma 4.1 Let Q(t, ξ) be the symmetriser of the weakly hyperbolic matrix A(t, ξ) defined
above. Then, there exist two positive constants c1 and c2 such that

c1 det Q(t, ξ)|V |2 ≤ 〈Q(t, ξ)V, V 〉 ≤ c2|V |2
holds for all t ∈ [0, T ], ξ ∈ R

n and V ∈ C
m.

Lemma 4.2 Let Q(t, ξ) be the symmetriser of the matrix A(t, ξ). Let
(t, ξ) = det Q(t, ξ),
˜
(t, ξ) = 
(t, ξ) + (∂t
(t, ξ))2/
(t, ξ), ψ(t, ξ) the check function of Q(t, ξ). Let I be a
closed interval of R. Then,

√


(t, ξ)

˜
(t, ξ)

〈∂t Q(t, ξ)V, V 〉
〈Q(t, ξ)V, V 〉 ∈ L∞(I × R

n × C
m \ 0) (21)

if and only if

ψ(t, ξ)

˜
(t, ξ)
∈ L∞(I × R

n). (22)

Remark 4.3 It is clear that Lemma 4.1 and Lemma 4.2 are valid also for the block diagonal
matrix A and the corresponding symmetriser Q as defined at the beginning of this section.

Lemma 4.4 Let 
(t, ξ) be the determinant of Q(t, ξ) defined as above. Suppose that

(t, ξ) �≡ 0. Then,

(i) there exists X ⊂ S
n−1 such that 
(t, ξ) �≡ 0 in (δ, T ′ + δ) for any ξ ∈ X and the set

S
n−1 \ X is negligible with respect to the Hausdorff (n − 1)-measure;

(ii) for any [0, T ] ⊂ (δ, T ′ +δ) there exist c1, c2 > 0 and p, q ∈ N0 such that for any ξ ∈ X
and any ε ∈ (0, e−1] there exists Aξ,ε ⊂ [a, b] such that:
– Aξ,ε is a union of at most p disjoint intervals,
– meas(Aξ,ε) ≤ ε,
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– mint∈[0,T ]\Aξ,ε 
(t, ξ) ≥ c1ε2q‖
(·, ξ)‖L∞([0,T ]),
–

∫

t∈[0,T ]\Aξ,ε

|∂t
(t, ξ)|

(t, ξ)

dt ≤ c2 log
1

ε
.

To prove the C∞ well-posedness of the Cauchy problem (1) in the reduced form (14), we
first apply the Fourier transform in x and work on the equivalent system

DtV − A(t, ξ)V + L(t, ξ)V = 0,

Vt=0 = {D j−1
t 〈ξ 〉m− j ĝ(ξ)} j=1,2,...,m,

(23)

where V = Fx→ξU (t, ·)(ξ). We then consider the energy

E(t, ξ) =
{

|V (t, ξ)|2 for t ∈ Aξ /|ξ |, ε and ξ/|ξ | ∈ X,

〈Q(t, ξ)V (t, ξ), V (t, ξ)〉 for t ∈ [a, b] \ Aξ/|ξ |,ε and ξ/|ξ | ∈ X,

defined for t ∈ [0, T ], ξ ∈ R
n with ξ/|ξ | ∈ X , and ε ∈ (0, e−1]. Note that 
(t, ξ) > 0

when t ∈ [0, T ] \ Aξ/|ξ |,ε and ξ/|ξ | ∈ X , and, thanks to Lemma 4.4, [0, T ] \ Aξ/|ξ |,ε is a
finite union of at most p closed intervals [ci , di ]. Moreover, the set Aξ/|ξ |,ε is a finite union
of open intervals whose total length does not exceed ε.

We now define a Kovalevskian energy on Aξ/|ξ |,ε and a hyperbolic energy on the com-
plement.

4.1 The Kovalevskian energy

Let t ∈ [t ′, t ′′ ] ⊆ Aξ/|ξ |,ε and ξ/|ξ | ∈ X . Hence

∂t E(t, ξ) = 2Re〈V (t, ξ), ∂t V (t, ξ)〉
= 2Re〈V (t, ξ), i〈ξ 〉A(t, ξ)V (t, ξ) + iL(t, ξ)V (t, ξ)〉 ≤ 2(cA〈ξ 〉 + cL)E(t, ξ).

By Gronwall’s Lemma on [t ′, t ′′ ], we get
|V (t, ξ)| ≤ e(cA〈ξ〉+cL)(t−t ′)|V (t ′, ξ)| ≤ c ec〈ξ〉(t−t ′)|V (t ′, ξ)|. (24)

4.2 The hyperbolic energy

Let us work on any subinterval [ci , di ] of [0, T ] \ Aξ/|ξ |,ε. Assuming ξ/|ξ | ∈ X , we have
that 
(t, ξ) > 0 on [ci , di ]. By definition of the symmetriser, we have that

∂t E(t, ξ) = 〈∂tQ(t, ξ)V (t, ξ), V (t, ξ)〉
+ 〈Q(t, ξ)∂t V (t, ξ), V (t, ξ)〉 + 〈Q(t, ξ)V (t, ξ), ∂t V (t, ξ)〉
= 〈∂tQ(t, ξ)V (t, ξ), V (t, ξ)〉

〈Q(t, ξ)V, V 〉 E(t, ξ) + 〈Q(t, ξ)(i〈ξ 〉A(t, ξ)

+ iL(t, ξ))V (t, ξ), V (t, ξ)〉
+ 〈Q(t, ξ)V (t, ξ), (i〈ξ 〉A(t, ξ) + iL(t, ξ))V (t, ξ)〉
= 〈∂tQ(t, ξ)V (t, ξ), V (t, ξ)〉

〈Q(t, ξ)V, V 〉 E(t, ξ) + i〈(Q(t, ξ)L(t, ξ)

− L∗(t, ξ)Q(t, ξ))V (t, ξ), V (t, ξ)〉.
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Now, by Lemma 4.1 and 4.2, the hypothesis (18) implies that the quantity

〈∂tQ(t, ξ)V (t, ξ), V (t, ξ)〉
〈Q(t, ξ)V, V 〉

is bounded by
√

˜
(t, ξ)


(t, ξ)
.

Hence, by definition of ˜
 we conclude that

∂t E(t, ξ)

≤ C

√

˜
(t, ξ)


(t, ξ)
E(t, ξ) + |〈(Q(t, ξ)L(t, ξ) − L∗(t, ξ)Q(t, ξ))V (t, ξ), V (t, ξ)〉|

≤ C

(

1 + |∂t
(t, ξ)|

(t, ξ)

)

E(t, ξ) + |〈(Q(t, ξ)L(t, ξ) − L∗(t, ξ)Q(t, ξ))V (t, ξ), V (t, ξ)〉|.
(25)

We now have to deal with the lower-order terms. By arguing as in Remark 4.8 in [13] we can
estimate

|〈(Q(t, ξ)L(t, ξ) − L∗(t, ξ)Q(t, ξ))V (t, ξ), V (t, ξ)〉| ≤ c‖L‖|V |2 + c‖L∗‖|V |2.
The hypothesis (19) combined with Proposition 3.2 implies that both ‖L‖ and ‖L∗‖ are
bounded by


(t, ξ) + |∂t
(t, ξ)|.
Hence, by applying Lemma 4.1 we arrive at the estimate

|〈(Q(t, ξ)L(t, ξ) − L∗(t, ξ)Q(t, ξ))V (t, ξ), V (t, ξ)〉|
≤ C ′

(


(t, ξ) + |∂t
(t, ξ)|

(t, ξ)

)

E(t, ξ)

≤ C ′
(

1 + |∂t
(t, ξ)|

(t, ξ)

)

E(t, ξ). (26)

Finally, by combining (25) and (26) we obtain the final energy estimate

∂t E(t, ξ) ≤ c′
(

1 + |∂t
(t, ξ)|

(t, ξ)

)

E(t, ξ). (27)

4.3 Completion of the proof

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3 We begin by observing that, by the finite speed of propagation for
hyperbolic equations, we can always assume that the Cauchy data in (1) are compactly
supported. We refer to the Kovalevskian energy and the hyperbolic energy introduced above.
We note that in the energies under considerationwe can assume |ξ | ≥ 1 since the continuity of
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V (t, ξ) in ξ implies that both energies are bounded for |ξ | ≤ 1. Let us consider the hyperbolic
energy on the interval [ci , di ]. By Gronwall’s Lemma on [ci , di ], we get the inequality

E(t, ξ) ≤ ec(di−ci ) exp

(

c
∫ t

ci

|∂s
(s, ξ)|

(s, ξ)

ds

)

E(ci , ξ). (28)

By Lemma 4.4, (ii), we have


(t, ξ) ≥ min
s∈[a,b]\Aξ,ε


(s, ξ) ≥ c1ε
2q‖
(·, ξ)‖L∞([a,b]),

for all t ∈ [ci , di ]. Hence, applying Lemma 4.1 to (28) we have that there exists a constant
C > 0 such that

|V (t, ξ)|2 ≤ C
1

ε2q‖
(·, ξ)‖L∞([a,b])
exp

(∫ t

ci

|∂s
(s, ξ)|

(s, ξ)

ds

)

|V (ci , ξ)|2,

≤ C
1

ε2q‖
(·, ξ)‖L∞([a,b])
eC log(1/ε)|V (ci , ξ)|2, (29)

for all t ∈ [ci , di ] and for |ξ | ≥ 1. Note that in the estimate above we have used Lemma
4.4, (ii), in the last step. Since the number of the closed interval [ci , di ] does not exceed p, a
combination of the Kovalevskian energy (24) with the hyperbolic energy (29) leads to

|V (b, ξ)| ≤ C
1

ε pq‖
(·, ξ)‖p/2
L∞([a,b])

eC(log(1/ε)+ε|ξ |)|V (a, ξ)|,

for |ξ | ≥ 1. At this point setting ε = e−1〈ξ 〉−1 we have that there exist constants C ′ > 0 and
κ ∈ N0 such that

|V (b, ξ)| ≤ C ′〈ξ 〉pq+κ |V (a, ξ)|, (30)

for |ξ | ≥ 1. This proves the C∞ well-posedness of the Cauchy problem (1). Similarly, (30)
implies the well-posedness of (1) in D′(Rn). 
�
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bronshtein, M.D.: The Cauchy problem for hyperbolic operators with characteristics of variable multi-
plicity. (Russian). Trudy Moskov. Mat. Obshch. 41, 83–99 (1980)

2. Bronshtein, M.D.: The Cauchy problem for hyperbolic operators with characteristics of variable multi-
plicity. (Russian). Trans. Moscow Math. Soc 1, 87–103 (1982)

3. Colombini, F., Kinoshita, T.: On the Gevrey well posedness of the Cauchy problem for weakly hyperbolic
equations of higher order. J. Differ. Equ. 186, 394–419 (2001)

4. Colombini, F., Kinoshita, T.: On the Gevrey wellposedness of the Cauchy problem for weakly hyperbolic
equations of 4th order. Hokkaido Math. J. 31, 39–60 (2002)

5. Colombini, F., Spagnolo, S.: An example of a weakly hyperbolic Cauchy problem not well posed in C∞.
Acta Math. 148, 243–253 (1982)

6. D’Ancona, P.,Kinoshita, T.:On thewellposedness of theCauchy problem forweakly hyperbolic equations
of higher order. Math. Nachr. 278, 1147–1162 (2005)

123

http://creativecommons.org/licenses/by/4.0/


C. Garetto, M. Ruzhansky

7. D’Ancona, P., Kinoshita, T., Spagnolo, S.: Weakly hyperbolic systems with Hölder continuous coeffi-
cients. J. Differ. Equ. 203(1), 6481 (2004)

8. D’Ancona, P., Kinoshita, T., Spagnolo, S.: On the 2 by 2 weakly hyperbolic systems. Osaka J. Math.
45(4), 921939 (2008)

9. D’Ancona, P., Spagnolo, S.: Quasi-symmetrization of hyperbolic systems and propagation of the analytic
regularity. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(1), 169–185 (1997)

10. Garetto, C.: On hyperbolic equations and systems with non-regular time dependent coefficients. J. Differ.
Equ. 259(11), 5846–5874 (2015)

11. Garetto, C., Ruzhansky, M.: On the well-posedness of weakly hyperbolic equations with time-dependent
coefficients. J. Differ. Equ. 253(5), 1317–1340 (2012)

12. Garetto, C., Ruzhansky, M.: Weakly hyperbolic equations with non-analytic coefficients and lower order
terms. Math. Ann. 357(2), 401–440 (2013)

13. Garetto, C., Ruzhansky, M.: A note on weakly hyperbolic equations with analytic principal part. J. Math.
Anal. Appl. 412(1), 1–14 (2014)

14. Garetto, C., Ruzhansky, M.: Hyperbolic second order equations with non-regular time dependent coeffi-
cients. Arch. Ration. Mech. Anal. 217, 113–154 (2015)

15. Gramchev, T., Ruzhansky, M.: Cauchy problem for some 2×2 hyperbolic systems of pseudo-differential
equationswith nondiagonalisable principal part. Studies in phase space analysiswith applications to PDEs.
Progress in Nonlinear Differential Equations Applications, vol. 84, pp. 129–145. Birkhäuser/Springer,
New York (2013)

16. Ivrii, V.: Partial differential equations IV. Encyclopedia of mathematics science 20. In: Egorov, Y., Shubin,
M. (eds.) Linear Hyperbolic Equations, pp. 149–235. Springer, Berlin (1993)

17. Jannelli, E.: The hyperbolic symmetrizer: theory and applications. Advances in Phase Space Analysis of
Partial Differential Equations, vol. 78, pp. 113–139. Birkhäuser (2009)

18. Jannelli, E., Taglialatela, G.: Homogeneous weakly hyperbolic equations with time dependent analytic
coefficients. J. Differ. Equ. 251, 995–1029 (2011)

19. Kajitani, K.: Local solutions of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes.
Hokkaido Math. J. 12(3 part 2), 434–460 (1983)

20. Kajitani, K., Yuzawa, Y.: The Cauchy problem for hyperbolic systemswith Hölder continuous coefficients
with respect to the time variable. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 465–482 (2006)

21. Kamotski, I., Ruzhansky, M.: Regularity properties, representation of solutions and spectral asymptotics
of systems with multiplicities. Commun. Partial Differ. Equ. 32, 1–35 (2007)

22. Kinoshita, T., Spagnolo, S.: Hyperbolic equations with non-analytic coefficients. Math. Ann. 336, 551–
569 (2006)

23. Nishitani, T.: Cauchy problem for noneffectively hyperbolic operators. MSJ Memoirs, 30. Mathematical
Society of Japan, Tokyo, (2013)

24. Nishitani, T.: Hyperbolic systems with analytic coefficients. Well-posedness of the Cauchy problem.
Lecture Notes in Mathematics, 2097. Springer, Cham, (2014)

25. Nishitani, T.: On the Cauchy problem for hyperbolic operators with double characteristics, a transition
case. Fourier analysis, Trends Mathematics, pp. 311–334. Birkhuser/Springer, Cham, (2014)

26. Ruzhansky, M., Tokmagambetov, N.: Very weak solutions of wave equation for Landau Hamiltonian with
irregular electromagnetic field. Lett. Math. Phys. (2016). doi:10.1007/s11005-016-0919-6

27. Ruzhansky, M., Wirth, J.: Dispersive estimates for hyperbolic systems with time-dependent coefficients.
J. Differ. Equ. 251, 941–969 (2011)

28. Ruzhansky, M., Wirth, J.: Asymptotic behaviour of solutions to hyperbolic equations and systems.
Variable Lebesgue spaces and hyperbolic systems, Adv. Courses Math. CRM Barcelona, pp. 91–169,
Birkhäuser/Springer, Basel (2014)

29. Yuzawa, Y.: The Cauchy problem for hyperbolic systemswith Hölder continuous coefficients with respect
to time. J. Differ. Equ. 219(2), 363–374 (2005)

123

http://dx.doi.org/10.1007/s11005-016-0919-6

	On Cinfty well-posedness of hyperbolic systems with multiplicities
	Abstract
	1 Introduction
	2 Preliminary results
	2.1 Ultradistributional well-posedness
	2.2 Systems in Sylvester form

	3 Main result
	3.1 Example: the case m=2

	4 Proof of the main theorem
	4.1 The Kovalevskian energy
	4.2 The hyperbolic energy
	4.3 Completion of the proof

	References




