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Abstract

Background: In human immunodeficiency virus type 1 (HIV-1) infection, transmitted viruses generally use the CCR5
chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in
coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic
approaches can be used to test for the presence of CXCR4-using viral variants in an individual’s viral population that
would result in resistance to treatment with CCR5-antagonists. While genotyping approaches for coreceptor-
tropism prediction in subtype B are well established and verified, they are less so for subtype C.

Methods: Here, using a dataset comprising V3 loop sequences from 349 CCR5-using and 56 CXCR4-using HIV-1
subtype C viruses we perform a comparative analysis of the predictive ability of 11 genotypic algorithms in their
prediction of coreceptor tropism in subtype C. We calculate the sensitivity and specificity of each of the
approaches as well as determining their overall accuracy. By separating the CXCR4-using viruses into CXCR4-
exclusive (25 sequences) and dual-tropic (31 sequences) we evaluate the effect of the possible conflicting signal
from dual-tropic viruses on the ability of a of the approaches to correctly predict coreceptor phenotype.

Results: We determined that geno2pheno with a false positive rate of 5% is the best approach for predicting
CXCR4-usage in subtype C sequences with an accuracy of 94% (89% sensitivity and 99% specificity). Contrary to
what has been reported for subtype B, the optimal approaches for prediction of CXCR4-usage in sequence from
viruses that use CXCR4 exclusively, also perform best at predicting CXCR4-use in dual-tropic viral variants.

Conclusions: The accuracy of genotyping approaches at correctly predicting the coreceptor usage of V3 sequences
from subtype C viruses is very high. We suggest that genotyping approaches can be used to test for coreceptor
tropism in HIV-1 group M subtype C with a high degree of confidence that they will identify CXCR4-usage in both
CXCR4-exclusive and dual tropic variants.
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Background
To enable cell entry by HIV, the gp120 glycoprotein,
present in a trimeric arrangement on the surface of a
HIV virion, must first bind to a CD4 receptor on the tar-
get cell [1-3]. This binding induces a conformational
change in the gp120/gp41 trimer complex [4,5] thereby
enabling binding of a chemokine receptor, either CCR5
or CXCR4 [6]. CCR5-tropic viruses are associated with

primary transmission and can persist throughout infec-
tion [6]. In as many as 50% of HIV-1 subtype B infec-
tions, a switch to CXCR4-usage has been observed and
this switch is generally regarded as an indicator of dis-
ease progression [7-10]. Early studies of HIV-1 subtype
C suggested that a switch to CXCR4-usage was less
common in subtype C compared to subtype B [11,12],
however more recent studies have suggested that be-
tween 30-50% of subtype C infected individuals exhibit
a change to CXCR4-usage during disease progression
[13-18].
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Dual-tropic viruses (R5X4) capable of using either
CCR5 or CXCR4 for host cell entry have been described
[19] as have dual-tropic viruses that, while capable of
using either receptor for cell entry, exhibit preferential
use of either CCR5 (dual-R) or CXCR4 (dual-X) [20,21].
Detecting the presence of dual-tropic viruses in an indi-
vidual’s viral population is difficult however, as a mixed
population of R5 and X4 viruses will be identified as
dual in a population-based phenotyping assay.
Determining the coreceptor usage profile of an indivi-

dual’s viral population has been used as an indicator of
disease progression and in more recent years as an ap-
proach for detecting resistance to CCR5 antagonists
such as maraviroc [22-24]. Phenotypic assays, such as
Monogram Bioscience’s Trofile™ assay [25], are the most
effective means of elucidating the coreceptor tropism of
a viral population. These approaches, however, are ex-
pensive, laborious and unavailable for routine use in all
laboratories [26,27]. Thus, genotyping approaches have
been suggested to be a viable alternative for routine cor-
eceptor tropism testing [28]. While many amino acid
positions throughout gp120 have been suggested to in-
fluence coreceptor affinity and tropism [29-35], the V3
loop appears to be the strongest determinant of corecep-
tor tropism with amino acid mutations affecting V3 net
charge, charge at positions 11, 24 and 25 and glycan
binding patterns all implicated in causing a switch from
CCR5- to CXCR4-usage [36-41].
Early genotypic algorithms predicted the coreceptor

tropism of HIV-1V3 sequences using the properties of
the amino acids at positions 11 and 25 while later algo-
rithms account for various properties of the entire V3
loop [39,40,42-45]. With the exception of C-PSSM [43]
and the Raymond combined 11/25 and net charge rules
[46], all of these approaches have been optimised for
coreceptor tropism prediction in subtype B and show
varying levels of sensitivity at predicting CXCR4-usage
in subtype B [47].
Despite HIV-1 subtype C accounting for almost 60%

of worldwide HIV infections [48], the genetic determi-
nants of the switch in coreceptor use are less-well
understood than in subtype B. Conflicting reports have
been published with some suggesting that these determi-
nants are the same for subtype C as subtype B [46],
while others have presented evidence to the contrary
[43]. Jensen and colleagues developed the only subtype
C specific genotyping tool with a reported sensitivity of
75% [43] while others evaluated the ability of this and
other algorithms trained on subtype B data at correctly
predicting CXCR4-use in subtype C sequence data [46].
They found that the most appropriate approach for pre-
dicting CXCR4-usage in subtype C were C-PSSM and
their combined 11/25 and net charge rule [46]. When
specificity was considered, however, Raymond and

colleagues approach was significantly better than C-
PSSM (96.4% versus 81.8%). The dataset used in this
study, however, did not represent the entire spectrum of
HIV-1 subtype C diversity in that it had a limited num-
ber of phenotyped sequences (55 R5 and 15 X4
sequences) collected from only two countries (Malawi
and France).
In this study we have collated a large dataset consist-

ing of all obtainable subtype C sequences with experi-
mentally verified coreceptor tropism and used this to
evaluate the performance of various genotyping tools at
accurately predicting CXCR4-usage in HIV-1 subtype C.
Further, we determine the effect of sequences from dual-
tropic viruses on the sensitivity of genotyping methods.

Results and discussion
In total 731 HIV-1 group M subtype C V3 sequences
with experimentally verified coreceptor tropism were
retrieved. Only one representative sequence for each in-
dividual was retained reducing the total number of
sequences to 405. The final analysis dataset (available on
request) contained sequences from 349 CCR5-using and
56 CXCR4-using viruses. Sequences from CXCR4-using
viruses were further separated into R5X4 (dual-tropic)
and CXCR4-exclusive viruses with 31 and 25 sequences,
respectively, comprising these datasets.
The coreceptor usage of every sequence in each of the

datasets was predicted using all of the genotyping
approaches. 23 of the sequences tested contained at least
one ambiguous nucleotide position. Geno2pheno is the
only one of the tools tested that is capable of accounting
for ambiguous positions in its genotypic predictions
[44]. To assess all of the other approaches, we translated
the nucleotide sequences into all the possible combina-
tions of amino acid sequences and if one or more of
these translated sequences was predicted as CXCR4-
using, the genotyping call for the original sequence was
taken as X4. For each of the 23 sequences, all possible
translations of the sequence had the same coreceptor
tropism prediction for each method. Thus, in this data,
ambiguous positions did not affect the genotypic predic-
tions. However, in many cases the presence of ambigu-
ous nucleotide calls, particularly within the codons
encoding for amino acid positions 11, 24 and 25, would
substantially reduce the ability of approaches to correctly
predict coreceptor usage [44]. Thus, the ability to ac-
count for ambiguous nucleotide positions in geno2pheno
gives it a distinct advantage over all of the other
approaches tested here.
The sensitivity of each of the tested approaches at pre-

dicting X4 viruses in the CXCR4-using dataset (dual
tropic and CXCR4-exclusive combined) varied widely
from 40-97% (Table 1 and Figure 1). The method by
Raymond and colleagues performed best with 97%
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sensitivity while Geno2pheno (FPR20) and C-PSSM
exhibited high sensitivities greater than 90%. Two var-
iants of the wetcat package, C4.5 and C4.5 with p8-p12,
performed most poorly with sensitivities of 40%,

consistent with previous observations on both subtype B
and non-B subtypes [46,47,49].
While predicting CXCR4-usage with high accuracy is

important, the ability to correctly identify R5 variants as
CCR5-using is equally as important in reducing the
amount of false positives that would result in incorrect
clinical interpretations. Thus, we also calculated the spe-
cificity (proportion of CCR5-tropic viruses correctly pre-
dicted as R5) of each approach. All approaches
performed well with three having 100% specificity, eight
having specificity greater than 90% and geno2pheno
(FPR20) and Raymond exhibiting lower specificity of
86% and 76% respectively (Table 1 and Figure 1). These
high specificity values are consistent with previous
observations in both HIV-1 subtype B and non-B sub-
types that all approaches, in general, are better at cor-
rectly predicting CCR5-usage than CXCR4-usage
[22,43,46,47,49].
Raymond and colleagues had previously evaluated nine

of the 13 approaches studied here using a smaller, geo-
graphically limited subtype C dataset comprising 55 R5
and 15 X4 viral sequences sampled from Malawi and
France [46]. They reported that the optimal approach
for subtype C genotyping was a combination of the 11/
25 and net charge rules with sensitivity and specificity
for CXCR4-usage prediction in subtype C of 93.3%
and 96.4% respectively. Using the larger and more

Table 1 Performance of genotyping approaches at
predicting CXCR4-usage in viral sequences from
individuals infected with HIV-1 group M subtype C

Method CXCR4-using sensitivity (%) Specificity

PSSM_sinsi 76 100

PSSM_X4R5 75 97

C-PSSM 90 92

Geno2Pheno_FPR5 89 99

Geno2Pheno_FPR10 89 94

Geno2Pheno_FPR20 91 86

WetCat_C4.5 40 99

WetCat_C4.5 pos. 8&12 40 100

WetCat_PART 55 100

WetCat_SVM 63 99

11/24/25 68 97

11/25 60 99

Raymond 97 76

Sensitivity corresponds to the ability of the approach to predict CXCR4-use,
while specificity corresponds to the ability to correctly predict CCR5-use.

Figure 1 Performance of each of the genotyping algorithms in predicting CXCR4-usage. Sensitivity for both the CXCR4-using and CXCR4-
exclusive datasets was calculated as the number of viral sequences predicted as CXCR4-using divided by the total number of CXCR4-using or
CXCR4-exclusive sequences tested. Specificity corresponds to the number of CCR5-using viruses predicted as R5 divided by the total number of
CCR5-using viral sequences evaluated.
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geographically diverse dataset studied here, we esti-
mate sensitivity of 97% and a specificity of 76% for
this approach. Compared to the other approaches
tested, however, Raymond’s method is not the opti-
mal approach. While it does show the highest sensitiv-
ity, it also has the lowest specificity of all the
approaches tested (Table 1). For the other approaches
we find that sensitivity increases by as much as 22% for
five of the approaches relative to the Raymond study,
while the sensitivity of PSSMsinsi, PSSMX4R5 and C-
PSSM drops by 4%, 5% and 3% respectively. We suggest
that the weaker performance on our comprehensive
subtype C dataset of the combined 11/25 and net charge
rule proposed by Raymond and colleagues is most likely
an artifact of the limited sample size/diversity in their
dataset that is not present in the larger dataset studied
here. In describing C-PSSM, Jensen and colleagues used
a dataset consisting 228 R5 sequences and 51 X4
sequences (from 200 and 20 subjects respectively) [43]
and reported a sensitivity of 75%, substantially less than
the 90% sensitivity reported here, with comparable spe-
cificities of 94% and 92%.
While some methods are extremely sensitive at cor-

rectly predicting CXCR4-use, the optimum approach for
clinical implementation also needs to be highly specific
in correctly identifying viruses that do not use CXCR4.
Thus, we have calculated an accuracy score for each of
the approaches tested that takes into account an
approach’s sensitivity and specificity (Table 2). For the
CXCR4-using dataset, we find that three of the 13
approaches tested have an accuracy of 90% or greater at

predicting coreceptor usage in HIV-1 group M subtype
C viral sequences with geno2pheno (FPR5) being the
most accurate of all approaches tested with an accuracy
of 94% (89% sensitivity and 99% specificity, Table 2).
Two variants of the wetcat package, C4.5 and C4.5 with
p8-p12, both perform poorest with accuracy scores of
70% (Table 2).
Dual-tropic viruses are a unique class of viruses in that

they can enter host cells using either CCR5 or CXCR4
chemokine receptors, however, some dual-tropic viruses
can exhibit preferential use of one of these [19-21]. From
a clinical perspective, it is imperative that genotyping
approaches correctly identify the CXCR4-using capabil-
ities of dual-tropic viruses. Genotyping algorithms have
been shown to vary widely in their predictive ability of
CXCR4-usage in subtype B dual-tropic viruses [50]. In
general, approaches were observed to underestimate the
frequency of CXCR4-usage in dual tropic viruses [50].
Thus, we sought to investigate the effect of dual-tropic
viruses on the accuracy of each of the genotyping
approaches tested. The CXCR4-using viruses were sepa-
rated into CXCR4-exclusive and dual-tropic viral
sequences and the accuracy of each of the approaches at
correctly predicting coreceptor tropism was calculated
(Table 2). When dual-tropic sequences are excluded, the
accuracy of three of the approaches increases minimally,
with four methods showing no change in accuracy and
six showing a slight decrease of 1% in accuracy (Table 2).
Similarly, when the dual-tropic viruses were studied sep-
arately there was minimal effect on the accuracy of each
of the approaches (Table 2). There was significant vari-
ability in the ability of the approaches to accurately pre-
dict CXCR4-usage in dual-tropic viruses, ranging from
40% (wetcat C4.5 with p8-p12) to 94% (Geno2pheno
FPR20) of sequences from dual-tropic viruses predicted
as CXCR4-using (Figure 2). It appears that, in subtype C
at least, the ability of approaches to predict CXCR4-
usage in dual tropic viruses directly correlates with their
ability to predict CXCR4-usage in CXCR4-exclusive
viruses. Such an observation does not appear to hold
true in subtype B, however, where some methods with
high sensitivity for prediction of CXCR4 viruses in sub-
type B [47], show low accuracy for the prediction of
CXCR4-usage in subtype B dual-tropic viral sequences
[50]. Geno2pheno, however, does show high accuracy
(90%) for the prediction of CXCR4-usage in subtype B
dual-tropic viruses [50].

Conclusion
Using a comprehensive, geographically diverse dataset,
we find that geno2pheno (FPR5) is the most accurate ap-
proach for the prediction of coreceptor tropism in HIV-
1 subtype C viral sequences. Coupled with it’s high ac-
curacy, the ability of geno2pheno to account for

Table 2 Accuracy of genotyping approaches at correctly
predicting coreceptor tropism

Method CXCR4-using
accuracy

CXCR4-exclusive
accuracy

R5X4
accuracy

PSSM_sinsi 88 88 88

PSSM_X4R5 86 87 86

C-PSSM 91 90 91

Geno2Pheno_FPR5 94 93 94

Geno2Pheno_FPR10 92 91 92

Geno2Pheno_FPR20 88 87 90

WetCat_C4.5 70 70 70

WetCat_C4.5 pos. 8&12 70 70 70

WetCat_PART 77 76 79

WetCat_SVM 81 82 81

11/24/25 81 81 82

11/25 79 76 82

Raymond 86 88 85

Accuracy scores are presented for a combined dataset containing CXCR4-using
viruses (both CXCR4-exclusive and dual-tropic viruses) as well as separately for
the CXCR4-exclusive and dual-tropic viral sequences.
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ambiguous nucleotide calls in V3 sequences gives it a
distinct advantage over all other approaches for corecep-
tor genotyping of sequence data generated from
population-based sequencing. We also report that in
HIV-1 group M subtype C, sequences from dual-tropic
viruses have minimal effect on accuracy calculations and
the optimal approaches for prediction of CXCR4-usage
in sequence from viruses that use CXCR4 exclusively
also perform best at predicting CXCR4-use in dual-
tropic viral variants. Based on this work we suggest that
viral genotyping of envelope sequences from subtype C
infected individuals is feasible with the correct approach
and can be undertaken with a high degree of confidence
that CXCR4-usage will be accurately identified in both
CXCR4-exclusive and dual tropic variants.

Methods
Study data
A dataset consisting of 731 HIV-1 subtype C V3 nucleo-
tide sequences with phenotypically determined corecep-
tor tropism was sourced. The majority of sequences
were retrieved from the HIV LANL Sequence Database
(hiv.lanl.gov), with the remainder originating from pub-
lished literature [43,46]. Multiple sequence alignments
were produced manually using MacClade 4.08 [51]. To
avoid potential bias in results, multiple samples from the
same individuals were excluded with a single representa-
tive sequence randomly selected for these individuals.

Genotypic algorithms
The coreceptor tropism of each V3 sequence was pre-
dicted using a number of genotyping methods. These
comprised PSSMX4R5 and PSSMSINSI [42] as well as the
subtype C PSSM tool [43], geno2pheno [44] and four
variants (C4.5, C4.5 with p8-p12, PART and SVM) of the
wetcat package [45]. Tropism was also predicted using
the 11/25 [39] and 11/24/25 [40] rules (software imple-
mentation available from the corresponding author on
request). Raymond and colleagues recently proposed a
combination of the 11/25 and charge rules for prediction
of CXCR4-use in subtype C sequences [46]. One of the
following criteria is required for predicting CXCR4 core-
ceptor usage: (1) 11 R/K and/or 25K, (2) 25R and a net
charge of ≥+5, or (3) a net charge of ≥+6 [46]. For gen-
o2pheno, three different false positive rates (5%, 10%
and 20%) were used to determine the optimal para-
meters for the accurate prediction of CXCR4-usage in
subtype C viral sequences. Each of the geno2pheno false
positive rates used is described as an individual approach
throughout the paper for clarity purposes. Sequences
duplicated by each of the PSSM tools (as a result of
more than one optimal alignment to the reference se-
quence) were only considered for further analysis when
genotypic predictions made by the matrix were the same
for all alignment variations. The presence of ambiguous
nucleotide calls in a sequence can affect the accuracy of
genotyping approaches [44]. Thus, if a tested genotyping

Figure 2 Ability of each approach at predicting CXCR4-usage in dual-tropic viral sequences. The percentage of dual-tropic sequences
predicted as CCR5-using and CXCR4-using is shown with dark and light shaded areas of each bar corresponding to the percentage of sequences
predicted as CCR5-using and CXCR4-using respectively.
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approach was not designed to account for ambiguous
nucleotide positions, all possible combinations of amino
acid sequences were output and a worst-case scenario
approach was employed whereby if one of these trans-
lated sequences was predicted as CXCR4-using, the
genotyping call for the original sequence was taken as
X4.
Viral sequences were separated into three distinct cat-

egories (R5, X4 and R5X4) based upon their experimen-
tally verified viral phenotype. Dual-tropic and CXCR4-
tropic viruses were studied both separately and together
(as CXCR4-using) in order to determine the affect of the
conflicting signal of dual-tropic viruses on sensitivity
estimates. The sensitivity of each approach for CXCR4
prediction was calculated as the number of predicted X4
viruses in the CXCR4-using dataset divided by the total
number of sequences in the CXCR4-using dataset. The
specificity of each approach for CXCR4 prediction was
calculated as the number of predicted R5 viruses in the
CCR5-using dataset divided by the total number of
sequences in the CCR5-using dataset. The same method
was used to calculate the sensitivity and specificity of
each genotyping method on the CXCR4-exclusive and
dual-tropic datasets.
Further, an overall accuracy score for each of the

approaches used was calculated using:

TP þ TN
TP þ TN þ FP þ FN

where, for the CXCR4-using dataset, TP corresponds to
the number of CXCR4-using sequences predicted as
CXCR4-using, TN the number of R5 sequences pre-
dicted as CCR5-using, FP the number of R5 sequences
predicted as CXCR4-using and FN the number of
CXCR4-using sequences predicted as CCR5-using. For
the CXCR4-exclusive dataset the TP and FN values
were calculated only for sequences phenotypically
determined to exclusively use CXCR4. For each cal-
culation we normalized the TP and FN values rela-
tive to the TN and FP values to account for the
disproportionate number of sequences representing
the positive (CXCR4-using or CXCR4-exclusive) and
negative (CCR5) datasets (see Additional file 1: Table
S1 for the uncorrected values).

Additional file

Additional file 1: Table S1. Tables detailing the uncorrected numbers
of true positives (CXCR4-usage correctly predicted in CXCR4-using
sequences), true negatives (CCR5-usage correctly predicted in CCR5-using
sequences), false positives (CXCR4-usage incorrectly predicted in CCR5-
using sequences) and false negatives (CCR5-usage incorrectly predicted
in CXCR4-using sequences) predicted by each of the approaches. Results
are shown for (A) CXCR4-using sequences, (B) CXCR4-exclusive sequences
and (C) dual-tropic sequences.
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