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Abstract

Background: Understanding longitudinal variability of the microbiome in ill patients is critical to moving microbiome-
based measurements and therapeutics into clinical practice. However, the vast majority of data regarding microbiome
stability are derived from healthy subjects. Herein, we sought to determine intra-patient temporal microbiota variability,
the factors driving such variability, and its clinical impact in an extensive longitudinal cohort of hospitalized cancer
patients during chemotherapy.

Methods: The stool (n = 365) and oral (n = 483) samples of 59 patients with acute myeloid leukemia (AML) undergoing
induction chemotherapy (IC) were sampled from initiation of chemotherapy until neutrophil recovery. Microbiome
characterization was performed via analysis of 16S rRNA gene sequencing. Temporal variability was determined using
coefficients of variation (CV) of the Shannon diversity index (SDI) and unweighted and weighted UniFrac distances per
patient, per site. Measurements of intra-patient temporal variability and patient stability categories were analyzed for
their correlations with genera abundances. Groups of patients were analyzed to determine if patients with adverse
outcomes had significantly different levels of microbiome temporal variability. Potential clinical drivers of microbiome
temporal instability were determined using multivariable regression analyses.

Results: Our cohort evidenced a high degree of intra-patient temporal instability of stool and oral microbial diversity
based on SDI CV. We identified statistically significant differences in the relative abundance of multiple taxa amongst
individuals with different levels of microbiota temporal stability. Increased intra-patient temporal variability of the oral
SDI was correlated with increased risk of infection during IC (P = 0.02), and higher stool SDI CVs were correlated with
increased risk of infection 90 days post-IC (P = 0.04). Total days on antibiotics was significantly associated with increased
temporal variability of both oral microbial diversity (P = 0.03) and community structure (P = 0.002).

Conclusions: These data quantify the longitudinal variability of the oral and gut microbiota in AML patients, show that
increased variability was correlated with adverse clinical outcomes, and offer the possibility of using stabilizing taxa as a
method of focused microbiome repletion. Furthermore, these results support the importance of longitudinal
microbiome sampling and analyses, rather than one time measurements, in research and future clinical practice.
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Background
There is an increasing appreciation for the role the hu-
man microbiome plays in many aspects of human physi-
ology, health, and disease. Several studies of healthy
human cohorts have found that although each person
has a relatively distinct gastrointestinal microbiome sig-
nature, a healthy individual’s microbiome remains rela-
tively stable over time [1–4]. Although several factors,
such as diet, drive normal levels of day-to-day micro-
biota variability, it appears that a steady-state equilib-
rium both ecologically and functionally is required for
health. In contrast, acute perturbations of an individual’s
microbiome stability within a temporal context can lead
to an unhealthy status [5, 6]. Considering that one of the
principal aims of the microbiome research community is
to use the microbiome as either an indicator for morbid-
ity or to improve human health, an enhanced under-
standing of the kinetics and taxonomic characterization
of microbiome stability in acutely ill patients is of para-
mount importance [7–11].
Although several studies have been done in healthy

subjects, relatively scant data are available as to the stabil-
ity, resilience, and temporal dynamics of the gastrointes-
tinal microbiome in acutely ill patients [1, 3, 4, 12–16].
Many of the previous investigations examining temporal
variability of the microbiome using healthy partici-
pants have been limited by small numbers of volun-
teers [4, 12, 13], short periods of longitudinal sampling
[2, 3, 16], or by being focused on only one site of collec-
tion [1, 4, 14, 17]. On the other hand, the limited number
of temporal variability studies among ill patients have
typically been in cohorts with chronic ailments such as
atopic dermatitis or colitis [18–20]. A study of stool sam-
ples from 14 patients under intensive care described
rapid shifts in microbiome composition to ultra-low di-
versity communities comprised of four or less taxa as a
result of aggressive antibiotic treatment and other inten-
sive care medication stresses, such as opioids [11]. Simi-
lar dramatic changes in the microbiome were also
observed in patients undergoing hematopoietic stem cell
transplant, where increased microbial chaos early after
transplant is thought to be a potential risk factor for sub-
sequent graft versus host disease [21, 22]. However,
quantitative measurements of longitudinal microbial
variability among ill patients and an analysis of factors
affecting microbiome temporal stability are lacking
[21, 23–25]. Moreover, despite many reports associat-
ing low microbial diversity with different illnesses,
most studies associate only one-time microbiome mea-
surements with subsequent clinical outcomes, which
could be potentially problematic in settings of significant
temporal variability [24, 26].
Our group previously reported that a single measure-

ment of baseline stool microbial diversity was associated

with infectious risk for 34 patients during induction
chemotherapy (IC) for acute myelogenous leukemia
(AML) [25]. Similar to other studies of ill patients, we
observed instances of rapid and profound shifts in the
microbiota in our AML cohort [11, 21, 22]. Thus,
herein, we sought to quantify the overall intra-patient
temporal variability of the oral and stool microbiome of
this cohort expanded to 59 patients. In addition, we
sought to determine the consequences of microbiome
temporal instability on patient outcomes and clinical fac-
tors driving intra-patient temporal variability of the
microbiome during IC. We chose to study such patients
because of the opportunity to characterize the micro-
biome prior to receipt of chemotherapy and intense anti-
biotic exposure (i.e., prior to severe perturbations) and
the capacity to obtain dense longitudinal sampling over
the course of intensive treatment due to the extended
inpatient nature of IC. Moreover, AML patients are at
high risk for infection during IC and such infections
are generally derived from the commensal microflora
[21, 23]. We hypothesized that higher microbiome
intra-patient temporal variability, driven by prolonged
antibiotic exposure, would be associated with poorer
clinical outcomes.

Methods
Patient recruitment and specimen collection
Study subjects included 59 newly diagnosed adult AML
patients undergoing IC at MD Anderson Cancer Center
(MDACC) in Houston, TX from September 2013 to
October 2014. AML patients initiating inpatient IC at
MDACC were approached for study inclusion unless
they had systemic infection. AML patients receiving IC
at MDACC are routinely prescribed a prophylactic
fluoroquinolone or cephalosporin prior to the initiation
of therapy. In this study, 100% of patients received rou-
tine prophylaxis, with 64% of baseline stool, and 55% of
baseline oral samples taken after the patient had already
started prophylactics. AML patients over 50 years receiv-
ing IC are treated in a laminar-air flow isolation until
neutrophil counts recover to >500 cells/μL or until day
28. Patients aged under 50 years are admitted for the
duration of the chemotherapy (approximately 4–5 days)
and then followed as an outpatient with clinic visits
three times a week until neutrophil recovery or 28 days.
Buccal and fecal specimens were collected from each

patient at baseline, continued approximately every 96 h
as available, and stopped upon neutrophil recovery.
Baseline samples were considered up to 8 days before
and 24 h following IC initiation. As per availability of
samples, 55 (93%) of the patients had oral samples col-
lected before or at the same time as the initiation of
chemotherapy, while 35 (59%) of the patients had stool
samples collected before or at the same time as the
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initiation of chemotherapy. The buccal mucosa of each
individual was swabbed three times on each side using a
Catch-All™ Sample Collection Swab (Epicentre). Patient
stool samples were either collected in a stool hat or
using a BBL™ CultureSwab® (BD Diagnostics). All sam-
ples were placed in sterile 2-mL cryovials and stored im-
mediately at −80 °C until further processing.

16S rRNA sequencing and data processing
Bacterial genomic DNA was extracted from buccal and
stool specimens using the MO BIO PowerSoil DNA
Isolation Kit (MO BIO Laboratories). The 16S rRNA V4
region was PCR amplified and sequenced on the Illumina
MiSeq platform using a 2 × 250-bp paired-end protocol
adapted from the Human Microbiome Project (HMP)
methods [16, 27]. All samples from the same patient and
site were processed and sequenced together to minimize
batching issues. Amplification primers contained adapters
for MiSeq sequencing and single-index barcodes resulting
in PCR products that were pooled and sequenced directly.
Read pairs were de-multiplexed based on barcodes
and merged using USEARCH v7.0.100. 16S rRNA
gene sequences were allocated to specific operational
taxonomic units using a UPARSE pipeline and aligned
to the V4 region within the SILVA SSURef_NR99_119
database [28]. Analysis of microbiome communities
was performed in R (R Core Team 2015, version 3.2.2,
http://www.R-project.org), using phyloseq [29] to calculate
α- and β-diversity metrics. The Shannon Diversity Index
(SDI) was used for α-diversity calculations, and weighted
and unweighted UniFrac for β-diversity distances [30].
The 16S V3–V4 region HMP sequencing reads were ob-
tained from http://hmpdacc.org/HMQCP, trimmed to
match the region amplified by this study, and processed
identically to AML patient samples.

Microbiome community and statistical analyses
Intra-patient temporal variability of microbial diversity
was defined as the coefficient of variation (CV) of a
longitudinal collection of α-diversity values, and was
calculated for each patient’s set of oral and stool sam-
ples. Higher values were indicative of more variable
microbial diversity. Temporal variability in community
composition, or β-diversity, of each patient was deter-
mined for the oral and stool by calculating the CV of
the weighted and unweighted UniFrac distances of
longitudinal samples collected from each individual
per site. Again, higher values were indicative of more
variable communities. Pairwise differences in temporal
variability across body sites were made using Mann–
Whitney U test, whereas pairwise differences among
infection or response groups was performed using
Student’s t-test with Welch’s correction. Linear correla-
tions between CVs at different body sites were determined

using Pearson’s r and P values generated in GraphPad
Prism 6.
Heatmaps analyzing genera abundance over time

among patients with increasing temporal variability
were generated with the publically available pheatmap
R package version 1.0.8. (http://CRAN.R-project.org/
package=pheatmap), and include correlation metrics
calculated with R’s cor and cor.test stats package func-
tions. P values were corrected for multiple comparisons
using the Benjamini and Hochberg method.
For each body habitat the population was divided into

quartiles based on CV of the weighted UniFrac distance
values or SDI where the first quartile was defined as
stable, second and third as average, and fourth as vari-
able as previously described [15]. To determine signifi-
cant differences in genera abundance between stable,
average, and variable individuals, we tested for differ-
ences between groups using non-parametric Kruskal–
Wallis analysis of variance in R for genera across indi-
viduals, then corrected for the false discovery rate using
the Benjamini and Hochberg method.
Multivariable regression analyses were performed

using base R (R Core Team 2015, version 3.2.2, http://
www.R-project.org ) and included age, antibiotic type,
chemotherapy regimen, and exposure to antibiotics as
covariates. Antibiotic types were subdivided into three
major broad spectrum β-lactam antibiotics received by
this cohort, namely, cefepime, carbapenems (primarily
meropenem), and piperacillin-tazobactam. Chemotherapy
regimens were subdivided into fludarabine-containing reg-
imens, high intensity non-fludarabine-containing regi-
mens, hypomethylators, or other. Fludarabine-containing
regimens included fludarabine in combination with
idarubicin and cytarabine [31], or fludarabine/idarubicin/
cytarabine with G-CSF (FLAG-Ida). High intensity non-
fludarabine-containing regimens were purine analog of
clofarabine or cladrabine in combination with idarubicin
and cytarabine. Hypomethylator-based combinations in-
cluded decitabine and azacytidine [32].

Clinical definitions
Infections were defined as microbiologically defined in-
fections (MDIs) or clinically defined infections as de-
scribed previously [25]. Subsequent infectious episodes
were defined as MDIs that occurred within 90 days of
cessation of longitudinal sampling. Complete remission
(CR) of AML was assessed using standard definitions [33].

Results
AML patients undergoing IC exhibit temporal instability
of the stool and oral microbiome diversity
In order to understand the intra-patient temporal vari-
ability of the microbiome among hospitalized patients
with AML, we performed sequencing of the V4 region
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of the 16S rRNA gene via the MiSeq platform (Illumina)
using the 2 × 250-bp protocol [34] on a total of 901 lon-
gitudinal samples collected twice weekly from initiation
of chemotherapy until neutrophil recovery for 59 AML
patients undergoing IC. Of the samples, 848 (84%, n = 365
stool and 483 oral) passed sequencing quality control
measures for further analyses. For these samples, we ob-
tained a total of 24,271,698 reads, for an average of 28,622
reads per sample. Patient demographics and clinical meta-
data can be found in Table 1.
Currently, the majority of 16 s rRNA microbiome-based

data are summarized using either numerical or index-
based measurements of species richness and/or evenness
within a habitat (i.e., α-diversity) or characterization of
differences in microbial community composition by meas-
uring the distance or dissimilarity between samples (i.e.,
β-diversity). We first sought to determine intra-patient
temporal variability of α-diversity by calculating the CV of
the SDI for both the oral and the stool samples for each
patient. The coefficient of variation is defined as the ratio
of the standard deviation to the mean; thus, a low CV
would mean an individual had relatively stable species di-
versity over time whereas a high CV would reflect more
variation. We found considerable heterogeneity in the
temporal stability values of both stool (mean SDI CV
0.48 ± 0.25) and oral (mean SDI CV 0.42 ± 0.26) samples
among AML patients during IC (Fig. 1a). There was no
statistically significant difference in CV values between the
two sites (P = 0.16). This finding is in contrast to previous
studies performed in healthy individuals where the micro-
biota of oral samples have been shown to be less variable
compared to stool [2, 15]. The intra-patient temporal vari-
ability of other α-diversity metrics, specifically the Chao-1
diversity index and Simpson’s diversity index, were also
analyzed for the oral (mean Chao CV 0.39 ± 0.18, mean
Simpson CV 0.33 ± 0.24) and stool samples (mean Chao
CV 0.48 ± 0.22, mean Simpson CV 0.37 ± 0.27) of the
AML cohort (Additional file 1: Figure S1a, b). Assessment
of the temporal variability of α-diversity also revealed that
the SDI CV of oral and stool samples from the same
patients were statistically moderately correlated (P = 0.01,
r = 0.33; Fig. 1b). The relationship between the two sites
leads to the postulation that factors influencing temporal
variability of microbial diversity in treated cancer patients
may be acting on both sites concurrently. Conversely, it
has been reported that the variability of one body site was
not associated with the variability of other body habitats
in healthy cohorts [15].

High intra-patient temporal variability of oral and stool
microbiome among AML patients is associated with
increased pathogenic-associated genera abundance
Next we sought to determine the temporal variability in
microbiome community structure and membership as

represented by quantitative and qualitative measure-
ments of β-diversity using weighted and unweighted
UniFrac distance measurements, respectively. Here, we

Table 1 Clinical features of 59 AML patients

Characteristic Number (%)

Demographics

Median age in years a 55 (49–68)

Male 31 (52.5)

Female 28 (47.5)

Median days on study 28 (25–35)

Median number of oral samples 8 (6–9)

Median number of stool samples 6 (4–8)

Chemotherapy

Hypomethylatorsb 14 (23.7)

Non-fludarabine high intensityc 19 (32.2)

Fludarabine-containingd 19 (32.2)

Othere 7 (11.8)

Chemotherapeutic response

Complete remission after IC 20 (33.8)

Overall response ratef 43 (72.8)

Infectionsg

Microbiologically documented infection 15 (25.4)

Clinically documented infection 14 (23.7)

No infection 30 (50.8)

Antimicrobial administration

Received treatment antibioticsh 53 (89.8)

Carbapenem >72 h 39 (66.1)

Piperacillin/tazobactam >72 h 14 (23.7)

Cefepime >72 h 26 (44.1)

Received prophylactic antibiotics 59 (100)

Median number of antibiotics administered 6 (4–7)

Median number of days exposed to all antibioticsi 28 (24–35)

Median number of days exposed to treatment antibiotics 16 (9–24)

Median number of days exposed to prophylactic antibiotics 16 (8–28)
a All median values in this table have the interquartile range in parentheses
b These chemotherapies included: 1) vasoroxin in combination with
decitabine; 2) decitabine alone; 3) azacytidine in combination with pracinostat;
4) azacytidine in combination with quidartinib; and 5) SGI-110
c These chemotherapies included: 1) CIA, 2) CLIA, 3) or CIA + sorafanib
d These chemotherapies included: 1) FLAG-Ida or 2) FIA regimens
eOther chemotherapies included:1) omacetaxine in combination with low-dose
cytarabine or 2) Clad + LDAC
f Includes CR (morphologic complete remission), CRi (morphologic complete
remission with incomplete bloodcount recovery), and CRp (morphologic
complete remission with incomplete platelet recovery)
g Specific information on microbiologically and clinically documented
infections can be found in the “Methods”
h Refers to any antibiotic/antimicrobial-based therapy given for suspected or
proven infection, that is, not included as prophylaxis (cephalosporins or
fluoroquinilones). Denoted are the three most common broad spectrum
antibiotics given in the study. Note that numbers of individual antibiotics add
up to >100% because some patients received more than one of the listed
antimicrobials during IC
i Includes prophylactic antibiotics
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considered the CV of each patient’s samples per site in
order to characterize the dispersion of β-diversity
metrics. The mean CVs of weighted and unweighted
UniFrac distances for the cohort were 0.24 ± 0.1 and
0.16 ± 0.04 for the oral samples and 0.32 ± 0.2 and
0.20 ± 0.08 for stool samples, respectively (Fig. 1c).
Contrary to SDI CVs, the temporal variability of the
weighted UniFrac distances between the oral and stool of
patients was not significantly correlated (P = 0.10;
Additional file 1: Figure S1d). Reports in healthy persons
have observed associations between diversity and tem-
poral stability, such as individuals with a more diverse
microbiome are likely to have a more stable microbiome
over time [4, 14, 15]. However, we did not find any statis-
tically significant correlations between either the baseline
or median SDI values of patients and their temporal vari-
ability as measured by the CV of the weighted UniFrac
distances of their samples, suggesting microbiome struc-
tural variability does not appear to be affected by α-
diversity in treated AML patients (Additional file 1:
Figure S2).
It is well known that patients in the hospital are at risk

for colonization and intestinal domination by pathogenic
bacteria and that a diverse microbiome provides
colonization resistance against many such organisms
[7, 11, 21]. Thus, to begin to investigate factors that
might influence temporal instability in our cohort, we
sought to test the hypothesis that temporal instability
was influenced by increasing relative abundance of
pathogenic-associated genera, such as Enterococcus and
Staphylococcus. In order to visualize this relationship, we
ranked patients and their samples by CV of weighted
UniFrac from smallest to greatest (low variability to high
variability of microbial community structure), and corre-
lated this with the relative abundance of specific genera
(Fig. 2). Consistent with our hypothesis, high weighted
UniFrac CV values were moderately positively correlated
with the relative abundance of pathogenic genera such as
Staphylococcus (P < 0.001, r = 0.3), Streptococcus (P = 0.02,
r = 0.2), and Stenotrophomonas (P = 0.01, r = 0.2) in the
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Fig. 1 Intra-patient temporal variability in oral and stool microbiomes
of hospitalized AML patients undergoing IC. a The oral and stool
microbial α-diversity intra-patient temporal variability. Each point
represents the coefficient of variation (CV) of the Shannon diversity
index (SDI) for samples derived from each patient. b The correlation
between the CV of the SDI values originating from oral and stool
samples from the same patient. The Pearson’s correlation (r) value
and P value from correlation analyses also are indicated. c The oral
and stool microbial β-diversity intra-patient temporal variability using
either the CV of the weighted or unweighted UniFrac distances for
samples derived from each patient. In panels a and c, the bars
represent mean ± standard deviation, and P values comparing the
different body sites were calculated using a Mann–Whitney U-test
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oral samples. Similarly, instability of community structure
was statistically positively correlated with the abundance
of Staphylococcus (P < 0.001, r = 0.2) and Streptococcus
(P < 0.001, r = 0.2) in the stool samples. The same gen-
era were correlated with temporal instability of micro-
bial α-diversity (SDI CV) in oral and stool samples as
well (Fig. 3). Also of note, the abundance of non-
pathogenic organisms in the stool, such as Akkermansia,
were associated with increased temporal stability of both
the microbiome community structure and diversity
(both stool weighted UniFrac CV and SDI CV P < 0.001,
r = −0.2). Thus, our data imply that patients with a rela-
tively high relative abundance of commensal organisms,
like Akkermansia, maintain a more stable microbiome
over the course of their hospitalization whereas higher

relative abundances of pathogenic-associated bacteria,
like Staphylococcus and Streptococcus, are associated with
temporal instability of both the oral and gastrointestinal
microbiome.

Stabilizing and destabilizing taxa can be inferred by
categorizing AML patients into stable, average, or
variable microbiomes during IC
We next sought to determine if we could infer stabiliz-
ing or destabilizing taxa by looking at significant differ-
ences in the relative abundance of taxa between patients
with stable, average, or variable microbiomes based on
their intra-patient microbial temporal stability. Patients
were defined as stable, average, or variable according to
their weighted UniFrac CV and SDI CV by dividing the

Fig. 2 Temporal instability of microbiome community structure correlates with increasing abundance of pathogenic-associated genera over time.
Heatmap of all samples and untransformed relative abundance values of indicated bacterial taxa colored white to red as denoted in the figure.
Samples from each patient are clustered together and arranged by timepoint (i.e., consecutive samples) from left to right. Additionally, clusters of
patient samples are organized in accordance with temporal variability as determined by the coefficient of variation of the weighted UniFrac
distance (cv_w.unifrac) with increasing variability from left to right. Taxa are organized from top to bottom by highest positive correlation of
relative abundance of genera with CV of the weighted UniFrac distance, to negative correlation as determined by Pearson’s correlation (r) values
depicted in the colored inlaid figure legend. A P value for the correlation’s significance (Corr.SigLvl) was derived from the test statistic based on
Pearson’s product moment correlation coefficient, corrected for multiple comparisons with the Benjamini and Hochberg method, and displayed
on the plot
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population into quartiles with the bottom quartile
(lowest CVs) being considered stable, and the top quar-
tile (highest CVs) being considered variable. Figure 4
denotes all genera that had statistically significant abun-
dance differences between stability categories defined by
both SDI and weighted UniFrac CVs at the same body
site. Pathogenic associated genera such as Streptococcus
and Staphylococcus were more abundant in both oral
and stool samples of individuals that were categorized as
temporally variable in both the α- and β-diversity (Fig. 4).
Confirming the analyses performed in Fig. 2, Akkermen-
sia and Subdilogranulum were more abundant in the
stool of stable individuals, alluding to a possible stabiliz-
ing effect of these genera. Additionally, Pseudobutyrivi-
brio was also found in greater abundance in the stool
of individuals with a stable microbiome, signifying its
potential importance in microbiome integrity as well.
Other results for relative abundance differences in spe-
cific genera (those >1% abundance) between patient
stability categories can be found in Additional file 1:
Figure S3.

Intra-patient temporal instability of microbial diversity is
linked to adverse infectious outcomes during and after IC
To evaluate the clinical consequences of the observed
differences in temporal stability in our cohort, we sought
to determine if intra-patient temporal variability of the
microbiome could be linked with adverse outcomes dur-
ing and following IC. Specifically, we analyzed if the
measures of temporal variability (CVs of the SDI and
weighted and unweighted Unifrac distances) were corre-
lated with infection during IC, infection in the 90 days
post-IC neutrophil recovery, or response of the leukemia
to chemotherapy.
Although temporal variability of neither oral nor stool

community membership (unweighted UniFrac CV) and
structure (weighted UniFrac CV) was significantly
correlated with infection during IC (Additional file 1:
Figure S4), patients who had higher levels of oral vari-
ability based on α-diversity had significantly higher rates
of infection during IC (P = 0.02) (Fig. 5a, b). Conversely,
stool microbial α-diversity temporal variability levels,
but not oral, were significantly higher during IC in

Fig. 3 Temporal instability of microbial α-diversity correlates with increasing abundance of pathogenic-associated genera over time. This figure is
arranged in the same way as Fig. 2, except temporal variability is defined using coefficient of variation of the Shannon diversity index (cv_shannon)
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patients who subsequently developed an infection within
90 days post-neutrophil recovery from IC (P = 0.04;
Fig. 5c, d). None of the intra-patient microbiome tem-
poral variability outputs were significantly associated with
response of the leukemia to chemotherapy (Additional
file 1: Figure S5). Moreover, we went on to assess if those
genera found to be statistically correlated with microbial
instability (e.g., Staphylococcus, Streptococcus, and Ste-
notrophomonas) were also correlated with infection.
Indeed, individuals who contracted an infection during
IC exhibited significantly higher relative abundances of

Streptococcus (P < 0.05 for oral) and Stenotrophomonas
(P < 0.001 for oral, P < 0.05 for stool) compared to those
that did not. (Fig. 5e). These data indicate temporal vari-
ability and microbiome composition dynamics are likely
important markers for infectious risk during and after IC.

Duration of antibiotic treatment is associated with
temporal instability of the oral microbiome during IC in
AML patients
Due to the fact that temporal instability of the oral and
gastrointestinal microbiome is associated with infectious

Fig. 4 Taxonomic composition differences among different stability categories. The significant differences in relative abundances of genera
between different patient stability categories based on either the coefficient of variation (CV) of the Shannon diversity index (SDI; top two panels)
or the CV of the weighted UniFrac distances (bottom two panels). For each body habitat the population was divided into quartiles, where the first
quartile was defined as low/stable, second and third as average, and fourth as high/variable. Differences in genera abundance across categories
were determined using non-parametric Kruskal–Wallis analysis of variance, then corrected for the false discovery rate using the Benjamini and
Hochberg method. Asterisks indicate adjusted P values: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, respectively. a Taxa by patient microbiome diversity.
b Taxa by patient microbiome stability
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risk among AML patients, we sought to determine
clinical factors associated with microbiome temporal
instability. Multivariable regression analysis was per-
formed using clinical variables previously implicated

in microbiome stability, including age, antibiotic type
and duration, and chemotherapy regimen [2, 7, 35–37].
Only total days on antibiotics was statistically correlated
with temporal variability of the oral microbial diversity
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(SDI CV P = 0.031), community membership (unweighted
UniFrac CV P < 0.001), and population structure
(weighted UniFrac CV P = 0.002) measurements (Table 2;
Additional file 1: Tables S1–S3). Interestingly, none of the
clinical factors analyzed were significantly correlated with
intra-patient temporal instability of the stool microbiome
by multivariable regression analyses (Table 2; Additional
file 1: Tables S4–6). Thus, our data suggest a site-specific
effect of antimicrobials on temporal variability in the
AML cohort.

Prolonged antibiotic exposure is associated with
long-term infectious outcomes among AML patients
undergoing IC
To this point we had found that total antibiotic exposure
was significantly associated with microbiome temporal
instability in AML patients undergoing IC, and that
microbiome instability could be associated with adverse
infectious outcomes. Thus, we next sought to determine
if increased antibiotic exposure was associated with
long-term infectious outcomes in this cohort. Indeed, in-
dividuals that developed an infection in the 90 days
post-neutrophil recovery had significantly lengthier ex-
posure to treatment antibiotics (P = 0.02; Fig. 6a). When
exposure to all antibiotics, to include prophylactic anti-
microbials, was analyzed between infection and non-
infection groups post-IC, there was a trend towards
increasing infection rates among patients who had re-
ceived longer duration of antimicrobials, although it was
not statistically significant (P = 0.07; Fig. 6b).

Discussion
There is tremendous enthusiasm for using measure-
ments and manipulation of the microbiome as a means
to improve different aspects of human health. Indeed,

multiple studies have shown that the microbiome can
significantly impact a broad variety of pathophysio-
logic processes, from carcinogenesis to autoimmunity
to serious infections [7, 9, 18, 24, 25, 38, 39]. As al-
most all of the existing datasets ascertaining longitu-
dinal variability exist in healthy controls, the limited
understanding of the variability in microbiota com-
position for sick patients impedes the capacity to
readily translate microbiome measurements into the
clinical setting. The urgent need to monitor and
understand microbiome dysbiosis during critical ill-
ness has been expressed with recent initiatives such
as the ICU Microbiome Project (http://americangut.org/
the-icu-microbiome-project-is-there-a-better-way-to-treat-
infections-than-antibiotics/), the National Microbiome Ini-
tiative (https://www.whitehouse.gov/the-press-office/2016/
05/12/fact-sheet-announcing-national-microbiome-initiative),
and the Center for Disease Control’s recent Broad
Agency Announcement for Advanced and Innovative
Solutions to Improve Public Health, which includes the
request for microbiome assessment and intervention to
address antibiotic resistance in both healthy individuals
and in healthcare settings. Herein, we contribute to
addressing this knowledge gap by analyzing the inter-
patient variability of both the oral and stool micro-
biome for 59 AML patients using >800 samples collected
over a median of 28 days, the factors driving differential
variability in this cohort, and the association of inter-
patient variability with clinical outcomes.
When considering how our cohort of leukemia patients

compares to healthy individuals, we obtained, trimmed,
and processed data from the Human Microbiome Project
(HMP) [27] to match the V4 region of the 16S rRNA gene
amplified by this study’s primers and processing protocols.
Although a direct statistical comparison is not suitable

Table 2 Multivariable regression analyses of potential clinical factors associated with the intra-patient temporal instability of the oral
and stool microbiomes of AML patients

P value

Variables Oral SDI CV Oral UUCV Oral WUCV Stool SDI CV Stool UUCV Stool WUCV

Age 0.287 0.864 0.529 0.425 0.779 0.885

Received piperacillin/tazobactam >72 h 0.475 0.208 0.175 0.507 0.215 0.973

Received cefepime >72 h 0.108 0.557 0.943 0.508 0.669 0.639

Received carbapenem >72 h 0.748 0.762 0.832 0.360 0.482 0.681

Days on all antibioticsa 0.031b 0.0001b 0.002b 0.392 0.858 0.580

Days on treatment antibiotics 0.205 0.060 0.163 0.917 0.633 0.451

Number of antibiotics received 0.089 0.380 0.874 0.357 0.724 0.167

Non-fludarabine high intensity chemotherapy 0.723 0.581 0.935 0.415 0.605 0.456

Hypomethylator-based chemotherapy 0.734 0.712 0.181 0.244 0.900 0.612
a Includes prophylactic antibiotics
b Significant P values
UUCV unweighted UniFrac coefficient of variation, WUCV weighted UniFrac coefficient of variation
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due to differences between study methodologies, our
mean SDI CV values for both oral and stool were two- to
fourfold higher than both the HMP as well as a separate
cohort of healthy subjects studied by Flores et al. [15, 16]
(HMP mean SDI CV values were 0.2 for oral and 0.09 for
stool, and mean SDI CV for stool and tongue samples for
the Flores et al. data set was approximately 0.17 and 0.1,
respectively), indicating that our cohort of treated AML
patients had high intra-patient temporal variability of α-
diversity compared to healthy subjects (Additional file 1:
Figure S1c). A high level of intra-patient temporal variabil-
ity found within our cohort is in concordance with obser-
vations of rapid fluctuations in microbiota composition
reported in previous cohorts of intensive care unit and
stem cell transplant patients [7, 11, 21].
Although the overall cohort had high levels of variabil-

ity, there was a wide range, showing that many patients
maintained a relatively stable microbiome despite the
significant stress of AML therapy and a prolonged hos-
pital stay. It has been previously demonstrated that spe-
cific enterotypes and the diversity of the microbiome
influence the potential adverse impact of antibiotics on
microbial communities [40]. In our cohort, variability
was associated with the predominance of potentially
pathogenic genera such as Staphylococcus whereas more
stable microbiomes were characterized by high levels of
commensals such as Akkermansia, Subdilogranulum,
and Pseudobutyrivibrio (Figs. 2, 3, and 5). Akkermansia
spp. have been described to be important in host meta-
bolic homeostasis, anti-inflammatory functions, such as
interleukin secretion, and promoting intestinal epithelial
integrity in murine models and human colonic cell lines
[38, 41]. Moreover, butyrate-producing commensal mi-
croorganisms, like Akkermansia and Pseudobutyrivibrio,
are important in maintaining the health of the intestinal
epithelium, which in turn provides nutrients necessary
for microbiota stability [9, 38, 42]. However, Akkerman-
sia spp. have also been recently associated with loss of

the colonic mucus layer and compromised intestinal bar-
rier function in mice with graft versus host disease [43].
More perplexing was the increased abundance of
Lactobacillus and Lactococcus in the stool of variable in-
dividuals, as these organisms have often been associated
with microbiome maintenance and mucosal integrity
[39, 44–47]. These results suggest the importance of per-
forming metagenomic shotgun sequencing in order to
determine the specific species among these complex
genera that are associated with maintenance and vari-
ability. Therefore, in combination with the aforemen-
tioned studies, our data appear to suggest that stable
microbiomes with high levels of specific commensal
microorganisms might be implicated in mechanisms
protecting patients from intestinal domination and sub-
sequent infection by pathogenic bacteria. These observa-
tions raise the question of whether fecal microbiota
transplantation or targeted species repletion of patients
with a microbiota dominated by pathogenic bacteria
could restore intestinal homeostasis [8].
Interestingly, although antibiotic exposure is often asso-

ciated with reduced stool microbial diversity [7, 35, 36],
our results show total days on antibiotics was significantly
correlated with temporal variability of the oral microbial
diversity, but not the stool. These findings are in agree-
ment with recent findings using generalized linear models
which identified antibiotic use as a significant predictor of
temporal variability of the tongue, but not the gut, in
healthy subjects [15]. Given previous literature associating
other clinical factors, such as the age and chemotherapy,
with microbiome variability and dysbiosis, it was surpris-
ing that total antibiotic exposure to all antibiotics, includ-
ing prophylaxis, was the only clinical variable tested to be
statistically correlated with any measure of temporal vari-
ability [2, 37]. This suggests the very treatment applied to
protect the patient appears to predispose the patient to re-
current infectious-related issues. Thus, greater efforts
need to be taken towards antibiotic stewardship as well as
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tailoring antimicrobial treatments within the context of
the microbiome.
Several limitations of our study bear mentioning. First,

all of our patients had a single disease and were re-
cruited from a single center, which means we do not
know how these data represent the broader array of hos-
pitalized patients. However, the relative homogeneity of
the cohort was chosen in order to facilitate comparative
analyses of the complex data generated in microbiome
studies and to be able to characterize the microbiota
prior to the patient becoming seriously ill. With this in
mind, while the majority of samples were true baselines,
a number of baseline samples, particularly fecal samples,
were taken within the 24 h after initiation of chemother-
apy due to sample availability. To our knowledge, there
are no time-wise studies showing the effects of chemo-
therapy on the microbiome as the studies published to
date comparing the microbiome before and after
chemotherapy consider a wide range of days post-
chemotherapy analyzed together [37]. Moreover, it is
also known that the impact of chemotherapy on host
factors is not typically observed until 7–10 days follow-
ing chemotherapy initiation (e.g., neutropenia, mucositis,
etc.). So, although we believe 24 h provides a reasonable
window to collect baseline samples from patients ur-
gently receiving chemotherapy, we cannot exclude the
concern that chemotherapy could affect the microbiome
within 24 h as this is currently unknown. Second, we used
16S rRNA analyses to determine microbial composition,
limiting our classification of bacteria to the genus level. A
species level analysis could be performed via shotgun
metagenomic sequencing, which would also permit func-
tional metabolomics studies that could help to elucidate
mechanistic bases for our observations. However, applying
such methodology to the very large number of samples in
our study is currently cost prohibitive. Finally, although
we had >800 microbiome measurements in our cohort,
the complexity of the clinical course of our patients meant
that we were limited in our ability to detect certain associ-
ations between clinical factors and microbiota variability.
For example, most of our patients received various dura-
tions and combinations of antimicrobial administration
that were problematic to reduce to discrete categories that
could be incorporated into multivariable regression ana-
lyses. However, clinical studies of the microbiota in the
acute care setting will face this same challenge which
mandates large sample sizes and careful collection and
analyses of both clinical and microbiome data.

Conclusions
We have provided the largest dataset to date quantifying
the longitudinal variability of the oral and stool micro-
biome in ill, hospitalized patients. We have identified
particular bacterial taxa that are positively and negatively

correlated with microbiome instability and demonstrated
that high temporal variability is associated with increased
rates of infectious outcomes. The characterization of
microbiome temporal fluctuations described herein con-
tribute to the first steps towards advancing microbiome-
based diagnostic and therapeutic interventions that can be
applicable in a wide range of ailments such as cancer, crit-
ical illness, and other immune-compromised individuals.
Our previous data revealed low baseline stool α-diversity
was associated with infectious risk during IC while de-
creases in both the oral and stool α-diversity between
baseline and last samples were associated with infection
post-IC. [25]. These previous findings, combined with the
data herein, indicate that both microbial diversity as well
as intra-patient temporal variability have infectious impli-
cations when studying acutely ill patients. Our finding of
high intra-patient variability having clinical implications in
these patients signifies that making conclusions based on
single microbiome measurements in ill patients is likely to
be problematic and suggests that statistical mechanisms
that capture both the composition and the overall trajec-
tory of a patient’s microbiota during illness will likely be
required to fully integrate microbiome measurements into
the clinical arena.
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