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We determine the continuous dependence of solution on the parameters in a Dirichlet-type initial-
boundary value problem for the pseudoparabolic partial differential equation.

1. Introduction

We consider the following initial-boundary value problem:

ut − αΔut − βΔu = f(u), x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.3)

where α and β are positive constants, Ω ⊂ R
n is a bounded domain with sufficiently smooth

boundary ∂Ω, and f(u) is a given nonlinear function which satisfies

0 ≥ F(u) ≥ f(u) · u, (1.4)
∣
∣f(u)

∣
∣ ≤ c1

(

1 + |u|p), (1.5)

where F(u) =
∫u

0 f(s)ds, c1 is a positive constant, and p ≤ n/(n − 2).
Equation (1.1) is an example of a general class of equations of Sobolev type, sometimes

referred to as Sobolev-Galpern type.
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2 Boundary Value Problems

Amixed-boundary value problem for the one-dimensional case of (1.1) appears in the
study of nonsteady flow of second-order fluids [1] where u represents the velocity of the
fluid.

Equation (1.1) can be assumed as a model for the heat conduction involving a
thermodynamic temperature θ = u − αΔu and a conductive temperature u; see [2].

Equations of the form (1.1) have been called pseudoparabolic by Showalter and Ting
[3], becausewell posed initial-boundary value problems for parabolic equations are alsowell-
posed for (1.1). Moreover, in certain cases, the solution of a parabolic initial-boundary value
problem can be obtained as a limit of solutions to the corresponding problem for (1.1) when
α goes to zero; see [4].

In [5], Karch proved well-posedness for a Cauchy problem for the pseudoparabolic
(1.1).

2. A Priori Estimates

In this section, we obtain a priori estimates for the problem (1.1)–(1.3).

Lemma 2.1. Let u0 ∈ H1
0(Ω). Under assumption (1.4), if u is a solution of the problem (1.1)–(1.3)

then one has the following estimate:

‖∇u‖2 ≤ D1, (A)
∫ t

0
‖∇us‖2ds ≤ D2, (B)

where D1 > 0 and D2 > 0 depend on the initial data and parameters of (1.1).

Proof. We multiply (1.1) by ut and integrate over Ω. We get

d

dt
[E(t)] + α‖∇ut‖2 + ‖ut‖2 = 0, (2.1)

where E(t) = (β/2)‖∇u‖2 − ∫

Ω F(u)dx. We integrate (2.1) on the interval (0, t), and from (1.4)
we get

β

2
‖∇u‖2 + α

∫ t

0
‖∇us‖2ds ≤ E(0). (2.2)

Hence (A) and (B) follow from (2.2).
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3. Continuous Dependence on the Coefficient α

In this section we prove that the solution of the problem (1.1)–(1.3) depends continuously on
the coefficient α inH1(Ω) norm.

We now assume that u and v are the solutions of the following problems, respectively:

ut − α1Δut − βΔu = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

vt − α2Δvt − βΔv = f(v), x ∈ Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(3.1)

Let w = u − v, α = α1 − α2. Then w is a solution of the problem

wt − α1Δwt − αΔvt − βΔw = f(u) − f(v), x ∈ Ω, t > 0, (3.2)

w(x, 0) = 0, x ∈ Ω, (3.3)

w(x, t) = 0, x ∈ ∂Ω, t > 0. (3.4)

The following theorem establishes continuous dependence of the solution of (1.1)–(1.3) on
the coefficient α inH1(Ω) norm.

Theorem 3.1. Assume that

∣
∣f(u) − f(v)

∣
∣ ≤ K

(

1 + |u|p−1 + |v|p−1
)

|u − v|, (3.5)

where 1 < p ≤ n/(n−2) if n > 2, p ∈ [1,∞) if n = 2. Letw be the solution of the problem (3.2)–(3.4).
Then w satisfies the estimate

‖w‖2 + α1‖∇w‖2 ≤ D(α1 − α2)2eM1t. (3.6)

Here K, D, and M1 are positive constants.

Proof. We multiply (3.2) by w and integrate over Ω. We get

1
2
d

dt

[

‖w‖2 + α1‖∇w‖2
]

+ α

∫

Ω
∇vt∇wdx + β‖∇w‖2 =

∫

Ω

(

f(u) − f(v)
)

wdx. (3.7)
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Using the Cauchy-Schwarz inequality and (3.5), we get

d

dt

[
1
2
‖w‖2 + α1

2
‖∇w‖2

]

+ β‖∇w‖2

≤ |α|‖∇vt‖‖∇w‖ +K

∫

Ω

(

1 + |u|p−1 + |v|p−1
)

|w|2dx.
(3.8)

Making use of Holder’s inequality, we estimate the second term at the right-hand side of (3.8)
as follows

K

∫

Ω

(

1 + |u|p−1 + |v|p−1
)

|w|2dx ≤ K‖w‖2 +K1

(

‖u‖p−1(p−1)n + ‖v‖p−1(p−1)n

)

‖w‖2n/(n−2)‖w‖. (3.9)

Inequality ‖w‖2n/(n−2) ≤ K2‖∇w‖ is valid for all w ∈ H1
0(Ω). Using the Sobolev inequality

and (A), we obtain the estimate

‖u‖p−1(p−1)n + ‖v‖p−1(p−1)n ≤ d1

(

‖∇u‖p−1 + ‖∇v‖p−1
)

≤ K3. (3.10)

Therefore using Poincare’s inequality from (3.9) and (3.10), we get

K

∫

Ω

(

1 + |u|p−1 + |v|p−1
)

|w|wdx ≤ K4‖∇w‖2, (3.11)

where d1 and Ki (i = 1, 2, 3, 4) are positive constants. By using (3.11) in (3.8) we get

d

dt

[
1
2
‖w‖2 + α1

2
‖∇w‖2

]

+ β‖∇w‖2 ≤ |α|‖∇vt‖‖∇w‖ +K4‖∇w‖2. (3.12)

Using arithmetic-geometric mean inequality, we have

d

dt
E1(t) ≤ |α|2

2
‖∇vt‖2 +M1E1(t), (3.13)

where E1(t) = (1/2)‖w‖2 + (α1/2)‖∇w‖2 and M1 = max{(2/α1) (K4 + 1/2), 1}. Solving the
first-order differential inequality (3.13) and from (B), we obtain

E1(t) ≤ D2

2
|α|2eM1t. (3.14)

The last estimate implies the desired inequality.
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4. Continuous Dependence on the Coefficient β

In this section we prove that the solution of the problem (1.1)–(1.3) depends continuously on
the coefficient β inH1(Ω) norm.

We now assume that u and v are the solutions of the following problems, respectively:

ut − αΔut − β1Δu = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

vt − αΔvt − β2Δv = f(v), x ∈ Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(4.1)

Let w = u − v, β = β1 − β2. Then w is a solution of the problem

wt − αΔwt − β1Δw − βΔv = f(u) − f(v), x ∈ Ω, t > 0, (4.2)

w(x, 0) = 0, x ∈ Ω, (4.3)

w(x, t) = 0, x ∈ ∂Ω, t > 0. (4.4)

The main result of this section is the following theorem.

Theorem 4.1. Assume that (3.5) holds. Let w be the solution of the problem (4.2)–(4.4). Then w
satisfies the estimate

‖w‖2 + α‖∇w‖2 ≤ D1
(

β1 − β2
)2
eM2t, (4.5)

whereM2 is constant.

Proof. We multiply (4.2) by w and integrate over Ω. We get

1
2
d

dt

[

‖w‖2 + α‖∇w‖2
]

+ β

∫

Ω
∇v∇wdx + β1‖∇w‖2 =

∫

Ω

(

f(u) − f(v)
)

wdx. (4.6)

By using Cauchy-Schwarz inequality and (3.5) in (4.6)we get

d

dt

[
1
2
‖w‖2 + α

2
‖∇w‖2

]

+ β1‖∇w‖2

≤ ∣
∣β
∣
∣‖∇v‖‖∇w‖ +K

∫

Ω

(

1 + |u|p−1 + |v|p−1
)

|w|2dx,
(4.7)
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and by using (3.11) in (4.7) we obtain

d

dt

[
1
2
‖w‖2 + α

2
‖∇w‖2

]

+ β1‖∇w‖2 ≤ ∣
∣β
∣
∣‖∇v‖‖∇w‖ +K4‖∇w‖2. (4.8)

Using arithmetic-geometric mean inequality, we have

d

dt
E2(t) ≤

∣
∣β
∣
∣
2

2
‖∇v‖2 +M2E2(t), (4.9)

where E2(t) = (1/2)‖w‖2 + (α/2)‖∇w‖2 and M2 = max{(2/α)(K4 + 1/2), 1}. Solving the
first-order differential inequality (4.9) and from (A), we obtain

E2(t) ≤ D1

2
∣
∣β
∣
∣
2
eM2t. (4.10)

Hence the proof is completed.
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