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1 Introduction

Besides determining the precise nature of the recently discovered Higgs-like boson, the

scientific plans of the Large Hadron Collider (LHC) include further tests of complex dy-

namics of the Standard Model and searches of physics beyond the Standard Model [1]. Such

a scientific program requires also theoretical control over background and signal processes

occuring at the collisions. A substantial part of the necessary calculations involves the ap-

plication of Quantum Chromodynamics (QCD). It enables calculations for LHC physics via

various factorization theorems, allowing for the decomposition of a given process into a part

characterizing the colliding hadrons, called the parton densities, and a so-called hard part

characterizing the parton parton scattering and production process. The predictive power

of QCD largely relies on the fact that this hard part can be calculated within perturbation

theory. Regarding the factorization theorems, we will focus on high-energy factorization [2]
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here, which applies when the energy scale involved in the scattering process is high and

larger then any other scale in the process. For recent applications see [3–9]. This approach

is particularly interesting as far as LHC physics is concerned since the energy is indeed

the largest available scale and therefore this approach should provide the optimal method

to calculate cross sections for various processes. Furthermore, high-energy factorization

already at lowest perturbatively defined order provides kinematical effects in hard matrix

elements which are relegated in other approaches to corrections of higher orders. The evo-

lution equations of high energy factorization providing transversal momentum dependent

parton densities sum up logarithms of energy accompanied by a coupling constant [10–

13]. Because of the dependence on the parton’s transversal momentum, parton densities of

high-energy factorization have to be convoluted with the hard process which is calculated

with the initiating gluons being off-shell.

Several frameworks exist to calculate gauge invariant matrix elements for partonic

processes initiated by off-shell gluons [14–17]. In order for such a framework to be widely

used, a practical numerical tool would be desirable, like the ones that already exist for the

calculation of tree-level on-shell scattering amplitudes, e.g. [18–22]. They operate on the

amplitude level and use helicity methods, and thus are very efficient and universal, and

can deal with essentially an arbitrary number of external gluons. The present study is a

generalization of [23], and provides the proof of concept for the application of the helicity

method to high-energy factorization with two initial state gluons being off-shell. It includes

an implementation of this method in a form of a numerical tool. In particular we develop

a new prescription for calculating gauge invariant high-energy factorizable amplitudes for

any tree-level process with two gluons in the initial state being off-shell. Our results turn

out to be in agreement with results obtained using Lipatov’s action.

In short, our prescription is established as follows. It is known [24] that the usual

Feynman graphs contributing to an amplitude in an on-shell calculation are in general not

sufficient to obtain gauge invariant results if any of the external legs are off-shell. Thus

the off-shell process needs to be embedded into a larger on-shell process, from which a

gauge invariant off-shell amplitude needs to be disentangled. The first crucial point of our

approach is that we manage to have exactly the kinematics of high-energy factorization

for the off-shell process, and at the same time have exact on-shellness for the embedding,

through the application of complex momenta [25] for the on-shell “external” partons of the

embedding. The second crucial point is that we have a well-defined prescription how to

decouple the unneeded on-shell partons.

The paper is organized as follows. In the section 2 we introduce the kinematics of

high-energy factorization and introduce our prescription which provides gauge invariant

amplitudes for any tree-level process with off-shell initial-state gluons. In section 3 we

provide the derivation of our prescription using the spinor helicity formalism and analytic

continuation of the amplitude to a region where the momenta of the auxiliary partons are

complex. Furthermore, we show that the obtained amplitudes obey the correct collinear

limit when the initial-state gluons become on-shell. In section 4 we discuss the connection

of our method with our former result [23] for g∗g → Ng. In section 5 we show that

our prescription reproduces the results obtained from the effective action approach, i.e.
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that the effective vertices of [15] correspond to our amplitudes with reggeized gluons. In

section 6 we present the numerical application of our framework to various LHC processes

with a simple model for the transversal-momentum dependent parton density function.

We conclude in section 7, and the appendices contain details of the spinor formalism and

explicit calculations of reggeon-gluon-gluon and reggeon-reggeon-gluon vertices.

2 Prescription

We start with stating the main result of this paper, which is a prescription to calculate scat-

tering amplitudes in quasi-multi-Regge kinematics in the high-energy limit, i.e. scattering

amplitudes with off-shell initial-state gluons, and with no kinematical restrictions on the

final-state particles other than momentum conservation and on-shellness. The derivation

will be given in the next section.

The exact definition of the scattering amplitudes we deal with requires the introduction

of two momenta ℓ1, ℓ2 such that

ℓ1 ·ℓ1 = ℓ2 ·ℓ2 = 0 , ℓ1 ·ℓ2 = 2E2 , E > 0 . (2.1)

The high-energy limit is enforced by demanding that the momenta of the off-shell initial-

state gluons are given by

k
µ
1 = x1ℓ

µ
1 + k

µ
1⊥ , k

µ
2 = x2ℓ

µ
2 + k

µ
2⊥ (2.2)

for x1, x2 ∈ [0, 1] and

ℓ1 ·k1⊥ = ℓ2 ·k1⊥ = ℓ1 ·k2⊥ = ℓ2 ·k2⊥ = 0 . (2.3)

The expressions for the off-shell momenta are restricted in the sense that for kµ1 a component

proportional to ℓ
µ
2 is missing, and for kµ2 a component proportional to ℓ

µ
1 is missing. This

is the high-energy limit, or high-energy approximation. In our derivation, however, it will

not be the result of an approximation. The kinematics of eq. (2.2) is set from the start.

The prescription to calculate the scattering amplitude for the process

g∗(k1)g
∗(k2) → X(k1 + k2 = p1 + p2 + . . .+ pn)

with n particles in the final state is to embed the process into a quark-scattering process,

and apply eikonal Feynman rules to the quark lines. More precisely:

1. Consider the process qA qB → qA qB X, where qA, qB are

distinguishable massless quarks not occurring in X, and with

momentum flow as if the momenta pA, pB of the initial-state

quarks and pA ′ , pB ′ of the final-state quarks are given by

p
µ
A = k

µ
1 , p

µ
B = k

µ
2 , p

µ
A ′ = p

µ
B ′ = 0 .

pA pA ′

pB pB ′

1

2

n

.

.

.
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2. Associate the number 1 instead of spinors with the end points of the A-quark line,

interpret every vertex on the A-quark line as gsT
a
ij ℓ

µ
1 instead of −igsT

a
ij γ

µ,

interpret every propagator on the A-quark line as δij/ℓ1 ·p instead of iδij/p/.

3. Associate the number 1 instead of spinors with the end points of the B-quark line,

interpret every vertex on the B-quark line as gsT
a
ij ℓ

µ
2 instead of −igsT

a
ij γ

µ,

interpret every propagator on the B-quark line as δij/ℓ2 ·p instead of iδij/p/.

4. Multiply the amplitude with

F =
i x1

√

−2k21⊥

gs
×

i x2

√

−2k22⊥

gs
. (2.4)

For the rest, normal Feynman rules apply. The coupling constant in the denominators

of (2.4) are obviously necessary because the quark-scattering process carries a higher power

of the coupling constant. The factor includes
√
2×

√
2 to correct for the difference in color

representation between the quarks and gluons, and a factor ix1

√

−k21×ix2

√

−k22 is necessary

to obtain the correct collinear limit.

3 Derivation

The prescription involves embedding the process with the off-shell initial-state gluons into

the quark-scattering process qA qB → qA qB X, with eikonal Feynman rules for the quark-

lines, and deformed kinematics. The starting point of the derivation will be the scattering

amplitude for the on-shell process, with normal quark lines

A(qA qB → qA qB X) . (3.1)

This is a well-defined gauge invariant function of the external momenta, helicities and

colors. The key-point of our derivation is that we will not apply any approximations

througout, and will manifestly keep gauge invariance throughout. The high-energy limit of

eq. (2.2) will be set from the start. We do need, however, to extrapolate the amplitude (3.1)

beyond its physical interpretation. More explicitly, we will use the fact that in order to

guarantee gauge invariance of (3.1) the external momenta need to be on-shell and need to

satisfy momentum conservation, but are not required to be real (cf. [25]).

3.1 Gauge invariant helicity amplitudes

Rather than putting everything in an appendix, we state some essential points regarding

the formalism here. Consider the following decomposition of four-momenta [26]. Given

two light-like momenta ℓ1, ℓ2 such that ℓ1 ·ℓ2 6= 0, we define

ℓ
µ
3 =

1

2
〈ℓ2|γµ |ℓ1] , ℓ

µ
4 =

1

2
〈ℓ1|γµ |ℓ2] . (3.2)

The exact definition of the spinors in the expressions above are given in appendix A. We

have

ℓ1 ·ℓ1 = ℓ2 ·ℓ2 = ℓ3 ·ℓ3 = ℓ4 ·ℓ4 = ℓ1 ·ℓ3 = ℓ1 ·ℓ4 = ℓ2 ·ℓ3 = ℓ2 ·ℓ4 = 0 , (3.3)
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pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

+ +

pA pA ′

pB pB ′

k1

k2

=

pA pA ′

pB pB ′

+ · · ·

Figure 1. A few terms in the classification of the graphs contributing to qA qB → qA qB X w.r.t.

the gluons attached to the quark lines.

while

ℓ3 ·ℓ4 = −ℓ1 ·ℓ2 . (3.4)

Any four-vector p can now be decomposed as

pµ =
ℓ2 ·p
ℓ1 ·ℓ2

ℓ
µ
1 +

ℓ1 ·p
ℓ1 ·ℓ2

ℓ
µ
2 −

ℓ4 ·p
ℓ1 ·ℓ2

ℓ
µ
3 −

ℓ3 ·p
ℓ1 ·ℓ2

ℓ
µ
4 . (3.5)

The first two terms are the usual terms in the Sudakov parametrization in terms of ℓ1, ℓ2,

and the last two terms form an explicit decomposition of the transversal component. If

ℓ1, ℓ2 are real, then the momenta ℓ3, ℓ4 are in general complex. The spinors in appendix A

are well-defined also for complex momenta, and we have the following identities

〈ℓ3| = 〈ℓ2|, |ℓ3] = |ℓ1]

[ℓ3| = [ℓ1|, |ℓ3〉 = |ℓ2〉
〈ℓ4| = 〈ℓ1|, |ℓ4] = |ℓ2] (3.6)

[ℓ4| = [ℓ2|, |ℓ4〉 = |ℓ1〉 .

The amplitude of the processs qA qB → qA qB X contains Feynman graphs that consist

of a quark-line of type A with a single gluon attached and a quark-line of type B with a

single gluon attached. They are represented by the first term on the r.h.s. in figure 1. The

heuristic picture is that these gluons are going to play the role of the off-shell gluons in

g∗g∗ → X. It needs to be stressed that we will not drop any of the other graphs and that

we keep the full gauge invariant sum. We demand that

p
µ
A − p

µ
A ′ = k

µ
1 = x1ℓ

µ
1 + k

µ
1⊥ , p

µ
B − p

µ
B ′ = k

µ
2 = x2ℓ

µ
2 + k

µ
2⊥ . (3.7)

We do not set pA equal to ℓ1. We are interested in obtaining a scattering amplitude for the

process g∗g∗ → X, and are not concerned about the momenta of the quarks. We only need

to make sure we have overall momentum conservation and on-shellness. At first sight, the

latter requirement seems to be in contradiction with requirements (3.7), and it would be

if we required the momenta of the quarks to be real. Choosing, however,

p
µ
A = (Λ+ x1)ℓ

µ
1 + κ31ℓ

µ
3 , p

µ
A ′ = Λℓ

µ
1 − κ41ℓ

µ
4

p
µ
B = (Λ+ x2)ℓ

µ
2 + κ42ℓ

µ
4 , p

µ
B ′ = Λℓ

µ
2 − κ32ℓ

µ
3 (3.8)

– 5 –



J
H
E
P
0
1
(
2
0
1
3
)
0
7
8

with

κ31 = −
ℓ4 ·k1⊥
ℓ1 ·ℓ2

, κ41 = −
ℓ3 ·k1⊥
ℓ1 ·ℓ2

κ32 = −
ℓ4 ·k2⊥
ℓ1 ·ℓ2

, κ42 = −
ℓ3 ·k2⊥
ℓ1 ·ℓ2

, (3.9)

both on-shellness of pA, pA ′ , pB, pB ′ and eq. (3.7) are assured to hold, for any value of Λ.

Furthermore, following the identities (3.6), we have

〈pA ′ | ∝ 〈ℓ1|, |pA] ∝ |ℓ1]

〈pB ′ | ∝ 〈ℓ2|, |pB] ∝ |ℓ2] , (3.10)

so we may simply assign the following spinors to the quarks in the amplitude without

spoiling gauge invariance:

qA(pA) → |ℓ1], qA(pA ′) → 〈ℓ1|
qB(pB) → |ℓ2], qB(pB ′) → 〈ℓ2| . (3.11)

As a result, in the graphs of the first term on the r.h.s. of figure 1, both quark-lines are

connected to gluons with eikonal vertices

〈ℓ1|γµ |ℓ1] = 2ℓ
µ
1 , 〈ℓ2|γµ |ℓ2] = 2ℓ

µ
2 . (3.12)

Other graphs contain A-quark propagators and/or B-quark propagators, and depend on Λ.

We want to stress that the constructed amplitude is gauge invariant for any value of Λ.

Now, we consider the limit

Λ → ∞ , (3.13)

and we will see that it is a well-defined limit. Considering the role of Λ in eq. (3.8), one

might interprete it as the high-energy limit. Realize, however, that Λ is a dimensionless pa-

rameter, not the energy, and that the limit is not an approximation. The actual high-energy

approximation was essentially made by requiring eq. (2.2) from the start. The limit (3.13)

should rather be seen as the final step to extract a physical amplitude, independent of

imaginary momentum components. The momentum p of an A-quark propagator can be

written as

pµ = (Λ+ xp)ℓ
µ
1 + ypℓ

µ
2 + p

µ
⊥ , (3.14)

for some numbers xp, yp and (complex) p⊥, which are independent of Λ. Since ℓ1·pA ′ = 0,

we can write

yp ℓ1 ·ℓ2 = ℓ1 ·p = ℓ1 ·(p− pA ′) = ℓ1 ·p ′ , (3.15)

where p ′ = p−pA ′ is the momentum that would be flowing in the propagator if the external

quarks had the momenta pA = k1 and pA ′ = 0. The square of the momentum is given by

p2 = 2(Λ+ xp)yp ℓ1 ·ℓ2 + p2
⊥ , (3.16)

– 6 –
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so for the propagator of an A-quark line with momentum p we find

p/

p2
=

(Λ+ xp)ℓ/1 + ypℓ/2 + p/⊥

2(Λ+ xp)yp ℓ1 ·ℓ2 + p2
⊥

Λ→∞−→ ℓ/1

2 yp ℓ1 ·ℓ2
=

ℓ/1

2 ℓ1 ·p ′
. (3.17)

Similarly, the propagator of a B-quark line with momentum p will become ℓ/2/(2 ℓ2 ·p ′),

where p ′ = p − pB ′ is the momentum that would be flowing in the propagator if the

external quarks had the momenta pB = k2 and pB ′ = 0. Any gluon attached to an A-or

B-quark line will do so via an eikonal vertex, e.g. for the A-quark line we have

〈ℓ1|γµ1 ℓ/1 γ
µ2 ℓ/1 · · · |ℓ1] = 〈ℓ1|γµ1 |ℓ1]〈ℓ1|γµ2 |ℓ1]〈ℓ1| · · · |ℓ1]

= (2ℓ
µ1

1 )(2ℓ
µ2

1 ) · · · . (3.18)

The factors (−2i) from the vertices and (i/2) from the propagators on the eikonal lines

cancel, except for one vertex on each line. This happens in each graph, and thus leads to

an overall factor 2× 2, which we remove. This concludes the derivation of the prescription

up to the last point about the extra factor.

3.2 Matching to the collinear limit

Let us denote the obtained amplitude by

A
(∞)
iAjA,iBjB

(qA qB → qA qB X) . (3.19)

The sub-scripts indicate the color degrees of freedom of the quarks. As explained earlier,

the coupling constant in the denominators is obviously necessary in eq. (2.4). We will

now show that the amplitude also has to be multiplied with the numerator. In order

to arrive at a satisfactory helicity amplitude for the process g∗g∗ → X, the obtained

amplitude needs to be matched at the collinear limit of k21⊥, k
2
2⊥ → 0 to the process gg → X

with on-shell initial-state gluons. We perform the matching at the level of the squared

amplitude, averaged over initial-state helicities for the on-shell process, and averaged over

the azimuthal angle of the transversal components of the off-shell gluon momenta for the

off-shell process [27]. The color content of the obtained amplitude is different from the

content of the on-shell process, and the matching of these requires also summation over

initial-state colors. So the factor F in eq. (2.4) should be such that

1

4

∑

a1,a2

∑

λ1,λ2

∣

∣

∣
A

a1a2

λ1λ2
(gg → X)

∣

∣

∣

2
=

∑

iA,jA,iB,jB

〈∣

∣

∣

∣

∣

lim
k2
1⊥

,k2
2⊥

→0
FA

(∞)
iAjA,iBjB

(qA qB → qA qB X)

∣

∣

∣

∣

∣

2〉

φ1,φ2

. (3.20)

The average over the azimuthal angles can be defined e.g. for k1⊥ by parameterizing it in

terms of |k1⊥| and φ1 following

k
µ
1⊥ =

|k1⊥|√
2ℓ1 ·ℓ2

(

eiφ1ℓ
µ
3 + e−iφ1ℓ

µ
4

)

, (3.21)

and performing the integral over φ1, dividing the result by 2π.
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2

3

1 2

1

3 3

2

1

3

2

1

= + +

Figure 2. An example of an off-shell current. The enumerated external lines are on-shell, the other

gluon is off-shell with momentum k = p1 + p2 + p3.

3.2.1 Color

The off-shell gluons in the process g∗g∗ → X carry color degrees of freedom in the adjoint

representation. The additional quarks in the process qA qB → qA qB X are in the funda-

mental representation. Eventually, the amplitude needs to be squared and summed over

color degrees of freedom. Abreviating Aa,b(g∗g∗ → X) just to Aa,b, where a, b are the

color indices of the off-shell gluons, we have
∑

a,b

∣

∣Aa,b
∣

∣

2
=

∑

a,b,c,d

Aa,b δacδbd
(

Ac,d
)∗

=
∑

a,b,c,d

Aa,b
(

2TrTaT c
)(

2TrTbTd
)(

Ac,d
)∗

=
∑

i,j,k,l

∣

∣2A ′
ij,kl

∣

∣

2
, (3.22)

where

A ′
ij,kl(g

∗g∗ → X) =
∑

a,b

Ta
ijT

b
klA

a,b(g∗g∗ → X) . (3.23)

So we see that attaching the quark lines to the off-shell gluons does not alter the color

content of the amplitude apart from a factor 2 if, eventually, we sum over the color degrees

of freedom of the quarks. As an alternative approach, we could simply interpret the

amplitude to be in the color-flow representation [28, 29], which would also require an extra

factor
√
2×

√
2. This explains the factor

√
2×

√
2 in eq. (2.4).

3.2.2 Collinear limit

We consider the amplitude of eq. (3.19). Let Jaµ be an off-shell current, i.e. the sum of

all connected sub-graphs that contain a given set of the external particles plus one off-

shell gluon. An example is depicted in figure 2. The propagator of the off-shell gluon is

not included in the off-shell current. The momentum kµ of this gluon is the sum of the

momenta of the external particles in Jaµ. Gauge invariance implies current conservation,

which dictates that

kµ Jaµ = 0 . (3.24)

If this off-shell current is attached to the A-quark line via the numerator of a gluon prop-

agator dν
µ(k, n) in an axial gauge with gauge vector nµ, we have

ℓ
µ
1 d

ν
µ(k, n) J

a
ν = ℓ

µ
1

(

−gνµ +
kµn

ν + nµk
ν

n·k − n2 kµk
ν

(n·k)2
)

Jaν

= −
(

ℓ
µ
1 J

a
µ

)

+
ℓ1 ·k
n·k

(

nµJaµ
)

. (3.25)
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For the gluon with momentum k
µ
1 = x1ℓ

µ
1 + k

µ
1⊥, we have ℓ1 ·k1 = 0, and we see that the

corresponding off-shell current Ja1µ is always attached to the A-quark line as
(

− ℓ
µ
1 J

a
1µ

)

,

independently from the gauge. Using current conservation again, kµ1 J
a
1µ = 0, we have

− ℓ
µ
1 J

a
1µ =

1

x1
k
µ
1⊥J

a
1µ . (3.26)

Including the remaining piece of propagator i/k21⊥, we see that the off-shell gluon with

momentum k1 is attached to the A-quark line via the contraction with

−i

x1

√

−k21⊥

× k
µ
1⊥

√

−k21⊥

. (3.27)

The second part in the expression above will give the correct average over the azimuthal

angle, and the first part represents the reciprocal contribution to the factor of eq. (2.4).

Similarly, for the gluon with momentum k
µ
2 = x2ℓ

µ
2 + k

µ
2⊥ we find that it is attached to the

B-quark line via the contraction with

−i

x2

√

−k22⊥

× k
µ
2⊥

√

−k22⊥

. (3.28)

For k21⊥, k
2
2⊥ → 0, contributions that do not contain both off-shell gluons with the

momenta k1, k2 vanish, and only those from the first term on the r.h.s. of figure 1 remain,

which are exactly the ones one would take into account for the on-shell process gg → X.

The only difference is that these gluons are contracted with (3.27) and (3.28) instead of

polarization vectors. We consider the collinear limit at the level of the squared amplitude,

averaged over the azimuthal angles of k1⊥ and k2⊥. Notice that for k21⊥, k
2
2⊥ → 0, the

amplitude only depends on k1⊥, k2⊥ through the contractions with (3.27) and (3.28), and

it is enough to prove that the contractions of the squared amplitude with

〈

k
µ
1⊥k

ν
1⊥

−k21⊥

〉

φ

,

〈

k
µ
2⊥k

ν
2⊥

−k22⊥

〉

φ

(3.29)

lead to the correct average over initial-state polarizations. We just consider k1⊥, the other

one goes analogously. Using its decomposition (3.9) in terms of ℓ3, ℓ4, we have

k
µ
1⊥k

ν
1⊥

−k21⊥
=

κ31
κ41

ℓ
µ
3 ℓ

ν
3

2ℓ1 ·ℓ2
+

κ41
κ31

ℓ
µ
4 ℓ

ν
4

2ℓ1 ·ℓ2
+

ℓ
µ
3 ℓ

ν
4 + ℓ

µ
4 ℓ

ν
3

2ℓ1 ·ℓ2
. (3.30)

Rembering eq. (3.2), we see that ℓ
µ
3/
√
ℓ1 ·ℓ2 and ℓν4/

√
ℓ1 ·ℓ2 are just the two polarization

vectors in the Kleiss-Stirling [30] construction for light-like momentum ℓ1 with reference

momentum ℓ2, and that the third term on the r.h.s. in eq. (3.30) gives the desired polariza-

tion average. The dependence of κ31/κ
4
1 on φ is proportional to e2iφ, so that the first two

terms vanish in the average over φ.
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4 Processes with one off-shell gluon

For processes with only one off-shell gluon, i.e. g∗ y → X, with y = g, q, q, one has to

consider the process qA y → qA X, and only apply the eikonal Feynman rules to the A-

quark line. In this case, the helicity amplitude can be simplified further by using a special

axial gauge.

In the previous section we saw already that the off-shell current Ja1µ with momentum

k1 = x1ℓ1+k1⊥ is attached to the A-quark line as
(

− ℓ
µ
1 J

a
1µ

)

, independently from the gauge.

Eq. (3.25) also tells us that if we choose the axial gauge with nµ = ℓ
µ
1 , then all contributions

to the amplitude with any other off-shell current attached to the A-quark line vanish. In

other words, the only graphs with gluons attached to the A-quark line that need to be

taken into account are one of the following:

1. the only gluon attached to the A-quark line is the gluon with momentum k
µ
1 =

x1ℓ
µ
1 + k

µ
1⊥

2. all gluons attached to the A-quark line are on-shell

Consequently, if X in the process g∗ y → X does not consist of gluons only, the second

option above cannot occur, and we see that

• for the process g∗ y → X where X does not consist of gluons only, helicity amplitudes

can be calculated by applying Feynman rules without attaching a propagator, in the

axial gauge with gauge vector ℓ1, and by contracting the off-shell gluon with

k
µ
1⊥

√

−k21⊥

. (4.1)

We assume the off-shell gluon to be in the adjoint color representation here. If X consists

of gluons only, then the contribution coming from graphs with all on-shell gluons attached

to the A-quark line is exactly the ‘gauge-restoring’ amplitude of equation (25) in [23]. It

can be eliminated by choosing the reference momentum of the polarization vector εµ of at

least one of the on-shell gluons equal to ℓ
µ
1 , so that for this on-shell gluon ℓ1 ·ε = 0.

5 Effective reggeon vertices

In this section we will show that the prescription for the calculation of scattering amplitudes

with off-shell gluons can reproduce the results of [15]. The effective vertices involving

reggeized gluons presented in that paper correspond to amplitudes with off-shell gluons as

presented here, in the case that the non-reggeized gluons are on-shell. Reggeized gluons in

these vertices correspond to gluons with momenta restricted to be of the form of eq. (2.2).

To be more specific, in the following, we show that our prescription provides

−x1E
√

−k21

√
2T c

ij ×
−x2E
√

−k22

√
2Td

kl × Γ
−µ1µ2···µn+
ca1a2···and

(k1;p1, p2, . . . , pn; k2) , (5.1)
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pA pA ′

k1
p2 k1 + p2

pA pA ′

p2 k1 + p2

pA

pA ′

k1 + p2

p2

Figure 3. Feynman graphs for qA g → qA g.

∑

perm.
=

A A ′

1

2

n

.
.
.

n · · · 1

A ′A

2

Figure 4. Effective vertices consisting of n gluons attached to an eikonal line. The sum is over all

permutations of (1, 2, . . . , n).

where Γ is the reggeon-reggeon-n-particle vertex from [15]. Analogously, the prescription

provides the single-reggeon vertices.

We present two explicit calculations in appendix B, namely for g∗g → g and g∗g∗ → g.

The necessary graphs in the embedding of g∗g → g are depicted in figure 3. The last two

graphs in figure 3 contribute as an effective vertex of the type of figure 4. These vertices

contain all possible ways a number of gluons can be attached directly to the eikonal line.

According to our prescription, pA ′ = 0, and the denominator factor of each propagator is

given by −ℓ1 ·p where p is the sum of the incoming momenta of the gluons to the right of

the propagator. We have

A A ′

1

2

n

.
.
.

= ign−1
s x1

√

−2k21 ℓ
µ1

1 ℓ
µ2

1 · · · ℓµn

1 (Ga1a1...an
(ξ1, ξ2, . . . , ξn))ij , (5.2)

where we abreviate

ξi = ℓ1 ·pi , (5.3)

and where

Ga1a2···an
(ξ1, ξ2, . . . , ξn) = (−1)n−1

∑

perm.

Ta1Ta2 · · · Tan

ξ1(ξ1 + ξ2) · · · (ξ1 + ξ2 + · · ·+ ξn−1)
, (5.4)

which is identical to equation (19) in [15]. The sum is over all permutations of (1, 2, . . . , n).

Due to momentum conservation and ℓ1 ·k1 = 0, the arguments to Ga1a2···an
are restricted

such that ξ1 + ξ2 + · · · + ξn−1 + ξn = 0. In appendix C we prove that this implies the

identity

Tr {Ga1a1...an
(ξ1, ξ2, . . . , ξn)} = 0 , (5.5)

so that

(Ga1a1...an
(ξ1, ξ2, . . . , ξn))ij = 2T c

ijTr {T
cGa1a1...an

(ξ1, ξ2, . . . , ξn)} . (5.6)
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A

1

A ′

2

A

1

A ′

2

A

1

A ′

2

= +

Figure 5. Graphs for the reggeon-gluon-gluon vertex.

A A ′

1

B B ′

A A ′

B B ′

1

A A ′

B B ′

1

A A ′

B B ′

1= + +

Figure 6. Graphs for the reggeon-reggeon-gluon vertex.

Combining the foregoing, we see that

A A ′

1

2

n

.
.
.

=
−x1E
√

−k21

√
2T c

ij

(

−ign−1
s

)

∆−µ1µ2···µn

ca1a2···an
(ξ1, ξ2, . . . , ξn) , (5.7)

with

∆−µ1µ2···µn

ca1a2···an
(ξ1, ξ2, . . . , ξn) = −

2k21
E

ℓ
µ1

1 ℓ
µ2

1 · · · ℓµn

1 Tr {T cGa1a1...an
(ξ1, ξ2, . . . , ξn)} , (5.8)

which is the equivalent of equation (18) in [15] for the eikonal (−)-direction. The factor E in

the denominator is necessary to compensate for the fact that the vector ℓ1 has the dimension

of E, while the vector n− in [15] is dimensionless. For n = 3, the factor ig2s in eq. (5.7)

corresponds to the same factor in the denominator on the l.h.s. of equation (43) in [15].

The remaining minus sign is due to the fact that in the formula above, all momenta are

considered to be incoming, while p1, p2 in equation (43) in [15] are outgoing. Equation (41)

in [15] contains a misprint, and the factor −i should be accompanying the ∆s.

The vertices of figure 4 contain all eikonal vertices and propagators. Any vertex involv-

ing reggeized gluons can be constructed using these in combination with normal Feynman

rules. By recursively following the graphical decompositions of figure 5 to figure 8, it can

be understood that our prescription delivers the reggeon-reggeon-particles vertices up to 3

particles. On one hand, by expanding all blobs and effective vertices, one can see that all

Feynman graphs for the process qA qB → qA qB X are obtained. On the other hand, one

can easily identify the graphs in our figures with those in figures 4, 5 and 8 from [15]. Only

for our figure 8, our notation is slightly more compact, and the comparison requires the

expansion of the first term on the second line following figure 7.
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Figure 7. Graphs for the reggeon-reggeon-gluon-gluon vertex.

= + +
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1
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A A ′
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1
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B B ′
3

1

2
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3

B B ′

2

3

1

A A ′

B B ′
3

B B ′

1
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2
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∑

perm.

+++

1

2

B B ′

A A ′

3

1

2

A A ′

3

B B ′

1

A A ′

2

B B ′
3

∑

cycl. perm.

+ ++

Figure 8. Graphs for the reggeon-reggeon-gluon-gluon-gluon vertex.

6 Numerical application

We implemented the prescription of section 2 into a numerical program to calculate differ-

ential cross sections within high-energy factorization for arbitrary final states:

dσ =

∫ 1

0

dx1

∫

d2k1⊥ f(x1, k1⊥)

∫ 1

0

dx2

∫

d2k2⊥ f(x2, k2⊥)dΦ(k1, k2;p1, p2, . . . , pn)

× 1

(N2
c − 1)2

∑

colors

∑

helicities

∣

∣A
(

g∗(k1)g
∗(k2) → X(p1, p2, . . . , pn)

)
∣

∣

2

2s x21x
2
2 Sym(X)

, (6.1)
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where k1, k2 are defined as in eq. (2.2) and the sums are over all final-state helicities, and

all colors, including the initial-state colors. Sym(X) is the symmetry factor associated with

possible identical particles in the final state, and s is the square of the total center-of-mass

energy. The function f is the transversal-momentum dependent gluon density function.

Tree-level helicity amplitudes A are automatically calculated following the recursive

Dyson-Schwinger method, in the spirit of [18, 20, 21, 31, 32]. The helicity and color sums

are performed numerically, evaluating so-called color-dressed helicity amplitudes [33, 34].

As mentioned at the beginning, this happens following the prescription of section 2, i.e.,

the recursive Dyson-Schwinger relations are augmented with the eikonal Feynman rules,

and amplitudes with two initial-state and two final-state eikonal quarks are evaluated. This

increases the multiplicity by 2, but this causes no serious burden for tree-level processes up

to 6 final-state particles. Also, the eikonal vertices and propagators are computationally

less involved than the other vertices and propagators. The phase space integration of the

final-state momenta is performed withKaleu [35], and the integration over the initial-state

variables x1, x2, k1⊥, k2⊥ is performed with adaptive grids following the method of [36].

Since the scope of this paper is rather a proof of concept than a phenomenological

study, we choose to present results within a simple model for the transversal-momentum

dependent pdf. We use

f(x, k⊥) = θ(µ− k⊥)
1

2πQ2
0

exp

(

−
k2⊥

2Q2
0 x fcol(x, µ)

)

, (6.2)

where Q0 is a scale of a few GeV, and fcol(x, µ) is the collinear gluon density from

CTEQ6L1 [37]. For simplicity, we just fix the scale µ to the mass of the Z-boson. eq. (6.2)

has the property that the off-shellness of the initial-state gluon is squeezed to zero for small

values of Q0, such that

lim
Q0→0

∫

d2k⊥ f(x, k⊥) = x fcol(x, µ) . (6.3)

This way, we can check the collinear limit without having to worry about the collinear limit

of the transversal-momentum dependent pdf.

In the following, we present some differential distributions for the processes

g∗g∗ → bb̄Z → bb̄ µ+µ− (6.4)

g∗g∗ → bb̄Zg → bb̄ µ+µ− g (6.5)

g∗g∗ → bb̄g (6.6)

g∗g∗ → bb̄gg . (6.7)

The Standard Model input parameters used are

mW = 80.419GeV ΓW = 2.12GeV (6.8)

mZ = 91.1882GeV ΓZ = 2.4952GeV (6.9)

Gµ = 1.16639× 10−5GeV−2 (6.10)

αS = 0.13 (6.11)
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The value of the fine-structure constant is defined following the Gµ scheme

sin2 θW = 1−m2
W/m2

Z (6.12)

α =

√
2Gµm

2
W sin2 θW
π

(6.13)

The masses of the fermions involved in the processes are

mb = 4.62GeV (6.14)

mµ = 0.1056583GeV (6.15)

All calculations are performed at a center-of-mass energy of 14TeV. The phase space of

gluons in the final state is restricted such that pT > 1GeV, and such that

√

∆φ2 + ∆y2 > 0.4 , (6.16)

where ∆φ is the difference in azimuthal angle and ∆y the difference in rapidity with any

of the other final-state gluons or quarks.

In figure 9, figure 10, figure 11 and figure 12 some distributions are depicted for the

mentioned processes. Results for two values of the scale Q0 in eq. (6.2) are presented:

Q0 = 0, which refers to the result within collinear factorization, and Q0 = 4GeV. The

latter value was chosen such that it leads to a ratio of the cross sections for the process

g∗g∗ → bb̄Z similar to those presented in [38]. The absolute values are considerably

smaller, because we present results for an off-shell Z-boson with only the µ+µ−-channel

taken into account.

We want to stress that the presented results should merely be seen as a proof of the

computational potential of our approach. Still, we may state that the results are consistent

with those presented in e.g. [38, 40]. The cross sections within high-energy factorization are

suppressed compared to collinear factorization at leading-order QCD, and the transversal-

momentum distributions show a larger spread.

7 Summary

We presented a prescription to calculate tree-level helicity amplitudes for arbitrary scatter-

ing processes with off-shell initial-state gluons within the kinematics of high-energy scatter-

ing. We showed that the amplitudes are manifestly gauge invariant, and that the approach

is equivalent to Lipatov’s effective action approach. We established the connection with

earlier work regarding multi-gluon amplitudes with one off-shell initial-state gluon, and we

showed the computational potential of the presented approach with numerical calculations

for scattering processes with several particles in the final state.
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Figure 9. Differential cross sections of the transverse momentum pT and the rapidity y of the

Z-boson and the bb̄-pair in the process g∗g∗ → bb̄Z → bb̄µ+µ−. The different curves correspond

to the different values of Q0 in eq. (6.2), with Q0 = 0 refering to collinear factorization. The total

cross sections are 26.181 ± 0.014 pb for Q0 = 0GeV, 16.159 ± 0.036 pb for Q0 = 4GeV. These

numbers are considerably smaller than those in [38], because here the Z-boson is off-shell with only

the µ+µ−-channel taken into account.

A Definition of spinors

We introduce the bi-spinor of a four-momentum p following

σ·p = σ0p0 − ~σ·~p =

(

p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)

, (A.1)

where σ0 is the identity 2× 2-matrix and ~σ = (σ1, σ2, σ3) are the Pauli matrices. We also

define

σ̃·p = σ0p0 + ~σ·~p . (A.2)

For p2 = p2
0 − p2

1 − p2
2 − p2

3 = 0, we may write

σ·p = L(p)L∗(p)
T , σ̃·p = R(p)R∗(p)

T , (A.3)
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Figure 10. Differential cross sections of the transverse momentum pT and the rapidity y of the Z-

boson and the bb̄-pair in the process g∗g∗ → bb̄Zg → bb̄µ+µ−g. The different curves correspond

to the different values of Q0 in eq. (6.2), with Q0 = 0 refering to collinear factorization. The total

cross sections are 93.57± 0.21 pb for Q0 = 0GeV, 76.98± 0.23 pb for Q0 = 4GeV.

with

L(p) =
1

√

|p0 + p3|

(

−p1 + ip2

p0 + p3

)

L∗(p) =

√

|p0 + p3|

p0 + p3

(

−p1 − ip2

p0 + p3

)

R(p) =

√

|p0 + p3|

p0 + p3

(

p0 + p3

p1 + ip2

)

R∗(p) =
1

√

|p0 + p3|

(

p0 + p3

p1 − ip2

)

. (A.4)

If p is real with p0 > 0, then L∗(p) = L(p)∗ and R∗(p) = R(p)∗, and L(p), R(p) are the

well-known Weyl spinors. The spinors above are defined also for complex momentum, as
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Figure 11. Differential cross sections of the transverse momentum pT and the rapidity y of the

bb̄-pair in the process g∗g∗ → bb̄g. The different curves correspond to the different values of Q0 in

eq. (6.2), withQ0 = 0 refering to collinear factorization. The total cross sections are 695.41±0.32 µb

for Q0 = 0GeV, 171.74± 0.20 µb for Q0 = 4GeV.
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Figure 12. Differential cross sections of the transverse momentum pT and the rapidity y of the

bb̄-pair in the process g∗g∗ → bb̄gg. The different curves correspond to the different values of Q0 in

eq. (6.2), with Q0 = 0 refering to collinear factorization. The total cross sections are 772.4± 1.2 µb

for Q0 = 0GeV, 393.9± 1.2 µb for Q0 = 4GeV.

long as it is on-shell. Introducing the bra-ket-notation, we write

|p] =

(

L(p)

0

)

, 〈p| =
(

0 , L∗(p)
T
)

|p〉 =
(

0

R(p)

)

, [p| =
(

R∗(p)
T , 0

)

(A.5)
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so that

|p〉[p| + |p]〈p| =
(

0 σ·p
σ̃·p 0

)

= p/ . (A.6)

This leads to the Weyl representation of the γ-algebra, with

γ5 = iγ0γ1γ2γ3 =

(

−1 0

0 1

)

. (A.7)

We state some basic relations. We trivially have

[p|p〉 = 〈p|p] = 0 , (A.8)

and explicit calculation reveals that also

〈p|p〉 = [p|p] = 0 . (A.9)

From explicit calculation also follows that

〈p|q〉 [q|p] = 2 p·q . (A.10)

One more important relation is that

2 p·q = 〈p|q〉[q|p] + 〈p|q]〈q|p]
= 〈p|

(

|q〉[q| + |q]〈q|
)

|p]

= 〈p|q/ |p] . (A.11)

By decomposing any arbitrary four-vector into two light-like vector, it can easily be shown

that this relation also holds if q is not light-like.

Realize, finally, that in explicit numerical calculations, it is usually not wise to identify

p1 = px, p2 = py, p3 = pz, since in collider physics one may typically encounter situations

in which p0 = −pz. Therefore, it is better to identify e.g. p1 = pz, p2 = px, p3 = py.

B Explict calculation of reggeon-gluon vertices

In this appendix, we calculate some simple reggeon-gluon vertices using our prescription.

The calculations are performed in the Feynman gauge.

B.1 The reggeon-gluon-gluon vertex

First, consider the process g∗g → g. The process is embedded in

qA(pA, j)g(p2, a, ν) → qA(pA ′ , i)g(k1 + p2, b, σ) .

The arguments a and b refer to the color of the gluons, the arguments ν and σ are the

Lorentz indices of the gluons, and the arguments j and i refer to the color of the quarks.

The necessary Feynman graphs are depicted in figure 3. According to the prescription, the
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fermion line should be interpreted as an eikonal line with momenta pA = k1 and pA ′ = 0.

The sum C of all three graphs is

C = igsx1

√

−2k21

[

T c
ij ℓ

µ
1

−i

k21
fcab Vµ

νσ(k1, p2,−k1 − p2) +
(TaTb)ij ℓ

ν
1 ℓ

σ
1

ℓ1 ·(k1 + p2)
+

(TbTa)ij ℓ
σ
1 ℓ

ν
1

ℓ1 ·(−p2)

]

,

where Vµνσ is the usual vertex for three vector-bosons

Vµνσ(p1, p2, p3) = (p1 − p2)
σ gµν + (p2 − p3)

µ gνσ + (p3 − p1)
ν gσµ . (B.1)

Using ℓ1 ·k1 = 0, we find

C = igsx1

√

−2k21

[

−i T c
ij f

cab

k21

[

2(ℓ1 ·p2)g
νσ − (2k1 + p2)

νℓσ1 + (k1 − p2)
σℓν1
]

+
[Ta, Tb]ij

ℓ1 ·p2
ℓν1 ℓ

σ
1

]

.

Inserting [Ta, Tb] = ifcabT c, we get

C =
−gsx1

√
2T c

ij f
cab

√

−k21

[

2(ℓ1 ·p2)g
νσ − (2k1 + p2)

νℓσ1 + (k1 − p2)
σℓν1 −

k21
ℓ1 ·p2

ℓν1 ℓ
σ
1

]

=
−x1E
√

−k21

√
2T c

ij γ
νσ−
‖ (p2, a; k1 + p2, b; k1, c) ,

with

γνσ−
‖ (p2, a;p1, b; k1, c)

=
gs

E
fabc

[

2(ℓ1 ·p2)g
νσ − (2p1 − p2)

νℓσ1 − (2p2 − p1)
σℓν1 −

k21
ℓ1 ·p2

ℓν1 ℓ
σ
1

]

(B.2)

which, for ℓ1 = En−, is identical to equation (34) in [15].

B.2 The reggeon-reggeon-gluon vertex

Next, we consider the process g∗g∗ → g. It is embedded in

qA(pA, j)qB(pB, l) → qA(pA ′ , i)qB(pB ′ , k)g(k1 + k2, b, σ) ,

where the arguments j, l, i and k refer to the color of the quarks, the argument b refers

to the color of the gluon, and σ is the Lorentz index of the gluon. The necessary graphs

are depicted in figure 13. According to our prescription, we have pA = k1, pB = k2,

pA ′ = pB ′ = 0, and the sum of the graphs is equal to

C = −2gsx1x2

√

k21k
2
2

[

T c
ij ℓ

µ
1

−i

k21
fcab Vµν

σ(k1, k2,−k1 − k2)
−i

k22
Ta
kl ℓ

ν
2

+
(TaTb)ij ℓ

ν
1 ℓ

σ
1

ℓ1 ·(k1 + k2)

−i

k22
Ta
kl ℓ2ν +

(TbTa)ij ℓ
σ
1 ℓ

ν
1

ℓ1 ·(−k2)

−i

k22
Ta
kl ℓ2ν

+ T c
ij ℓ1µ

−i

k21

(T cTb)kl ℓ
µ
2 ℓ

σ
2

ℓ2 ·(k1 + k2)
+ T c

ij ℓ1µ
−i

k21

(TbT c)kl ℓ
σ
2 ℓ

µ
2

ℓ2 ·(−k1)

]
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pA pA ′

pB pB ′

k2

k1

k1 + k2

pA pA ′

pB pB ′

k2 k1 + k2

pA

pA ′

pB pB ′

k2

k1 + k2
pA pA ′

pB pB ′

k1 k1 + k2

pA pA ′

pB

pB ′

k1

k1 + k2

Figure 13. Feynman graphs for qA qB → qA qB g.

Using ℓ1 ·k1 = ℓ2 ·k2 = 0, we find

C = −2gsx1x2

√

k21k
2
2

[

−T c
ijT

a
klf

cab

k21k
2
2

[

2(ℓ1 ·k2)ℓσ2 − 2(ℓ2 ·k1)ℓσ1 + (ℓ1 ·ℓ2)(k1 − k2)
σ

+
[Ta, Tb]ij ℓ

ν
1 ℓ

σ
1

ℓ1 ·k2
−i

k22
Ta
kl ℓ2ν + T c

ij ℓ1µ
−i

k21

[T c, Tb]kl ℓ
µ
2 ℓ

σ
2

ℓ2 ·k1

]

.

Inserting [Ta, Tb] = ifabcT c and [T c, Tb] = ifcbaTa, we get

C = −2gsx1x2

√

k21k
2
2

[

−T c
ijT

a
klf

cab

k21k
2
2

[

2(ℓ1 ·k2)ℓσ2 − 2(ℓ2 ·k1)ℓσ1 + (ℓ1 ·ℓ2)(k1 − k2)
σ
]

+
fabcT c

ijT
a
kl

(ℓ1 ·k2)k22
(ℓ1 ·ℓ2)ℓσ1 +

fcbaTa
klT

c
ij

(ℓ2 ·k1)k21
(ℓ1 ·ℓ2)ℓσ2

]

.

Using the anti-symmetry of fabc, we finally find

C =
2gsx1x2ℓ1 ·ℓ2
√

k21k
2
2

T c
ijT

a
klf

cba

[

− 2
ℓ1 ·k2
ℓ1 ·ℓ2

ℓσ2 + 2
ℓ2 ·k1
ℓ1 ·ℓ2

ℓσ1 − (k1 − k2)
σ +

k21
ℓ1 ·k2

ℓσ1 −
k22

ℓ2 ·k1
ℓσ2

]

=
x1x2E

2

√

k21k
2
2

2T c
ijT

a
kl Γ

−σ+(k1, c; k1 + k2, b; k2, a) ,

with

Γ−σ+(k1, c; k1 + k2, b; k2, a)

= 2 gs f
abc

[(

ℓ2 ·k1
E2

+
k21

ℓ1 ·k2

)

ℓσ1 −

(

ℓ1 ·k2
E2

+
k22

ℓ2 ·k1

)

ℓσ2 + (k2 − k1)
σ

]

(B.3)

which, for ℓ1 = En− and ℓ2 = En+, is identical to the first line of equation (41) in [15]

combined with equation (42) in [15]. Realize that ℓ1 ·ℓ2 = 2E2.

C Proof of eq. (5.5)

Here, we proof that for a cycle-symmetric tensor τi1...in and the set of the complex numbers

ξ1, . . . , ξn satisfying ξ1 + . . .+ ξn = 0 the following identity holds

∑

{i1,...,in}

τi1...in

ξi1 (ξi1 + ξi2) . . .
(

ξi1 + ξi2 + . . .+ ξin−1

) = 0 , (C.1)

where the sum goes over all the permutations of the indices i1, . . . , in.
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Let us decompose the sum over all permutations as follows

∑

{i1,...,in}

τi1...in

ξi1 (ξi1 + ξi2) . . .
(

ξi1 + ξi2 + . . .+ ξin−1

) =
∑

{i1,...,in}
′

τi1...in
∑

(i1,...,in)

a (i1, . . . , in) ,

(C.2)

where

a (i1, . . . , in) =
1

ξi1 (ξi1 + ξi2) . . .
(

ξi1 + ξi2 + . . .+ ξin−1

) (C.3)

and {i1, . . . , in}
′ denotes the set of all non-cyclic permutations of the indices. The notation

(i1, . . . , in) refers to the set of all cyclic permutations. Let us construct the following

meromorphic function

f (ξ) =
−1

(−ξ) (−ξ+ ξi1) (−ξ+ ξi1 + ξi2) . . .
(

−ξ+ ξi1 + ξi2 + . . .+ ξin−1

) . (C.4)

The single proper poles are

z0 = 0,

z1 = ξi1 ,

z2 = ξi1 + ξi2 ,

...

zn = ξi1 + ξi2 + . . .+ ξin−1
. (C.5)

The residues of f (ξ) in those points are

res
ξ=z0

f (ξ) =
1

ξi1 (ξi1 + ξi2) . . .
(

ξi1 + ξi2 + . . .+ ξin−1

) = a (i1, . . . , in) , (C.6)

res
ξ=z1

f (ξ) =
1

(−ξi1) ξi2 (ξi2 + ξi3) . . .
(

ξi2 + . . .+ ξin−1

)

=
1

ξi2 (ξi2 + ξi3) . . .
(

ξi2 + . . .+ ξin−1

) (

ξi2 + . . .+ ξin−1
+ ξin

)

= a (i2, . . . , in, i1) , (C.7)

res
ξ=z2

f (ξ) =
1

(−ξi1 − ξi2) (−ξi2) ξi3 (ξi3 + ξi4) . . .
(

ξi2 + . . .+ ξin−1

)

=
1

ξi3 (ξi3 + ξi4) . . .
(

ξi3 + . . .+ ξin−1

)

(ξi3 + . . .+ ξin) (ξi3 + . . .+ ξin + ξi1)

= a (i3, . . . , in, i1, i2) ,

and so on. Let us now consider the integral of f (ξ) over the circle with origin ξ = 0 and

radius R → ∞. Obviously ∮

R→∞

f (ξ)dξ = 0 . (C.8)
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On the other hand we have

0 =
∑

res

f (ξ) =
∑

(i1,...,in)

a (i1, . . . , in) (C.9)

and thus the sums in eq. (C.2) vanish. Let us finally remark that we cross-checked the

identity explicitly up to n = 6 with the help of FORM [39].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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